Mass Spectrometry-Based Metabolomics Revealed Effects of Metronidazole on Giardia duodenalis
Abstract
:1. Introduction
2. Results
2.1. Effects of Metronidazole on G. duodenalis
2.2. Conventional Transmission Electron Microscopy
2.3. Metabolomics Analysis
3. Discussion
4. Materials and Methods
4.1. G. duodenalis Culture Conditions
4.2. In Vitro Anti-giardia Assay
4.3. Ethidium Bromide/Acridine Orange (EB/AO) Staining
4.4. Conventional Transmission Electron Microscopy
4.5. Metabolite Extraction
4.6. Mass Spectrometric Analysis
4.7. Data Analysis
4.8. Sequence alignment
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ankarklev, J.; Jerlström-Hultqvist, J.; Ringqvist, E.; Troell, K.; Svärd, S.G. Behind the smile: Cell biology and disease mechanisms of Giardia species. Nat. Rev. Genet. 2010, 8, 413–422. [Google Scholar] [CrossRef] [PubMed]
- Einarsson, E.; Ma’Ayeh, S.; Svärd, S.G. An up-date on Giardia and giardiasis. Curr. Opin. Microbiol. 2016, 34, 47–52. [Google Scholar] [CrossRef]
- Ramírez, J.D.; Heredia, R.D.; Hernández, C.; León, C.M.; Moncada, L.I.; Reyes, P.; Pinilla, A.E.; Lopez, M.C. Molecular diagnosis and genotype analysis of Giardia duodenalis in asymptomatic children from a rural area in central Colombia. Infect. Genet. Evol. 2015, 32, 208–213. [Google Scholar] [CrossRef] [PubMed]
- Müller, J.; Hemphill, A.; Müller, N. Physiological aspects of nitro drug resistance in Giardia lamblia. Int. J. Parasitol. Drugs Drug Resist. 2018, 8, 271–277. [Google Scholar] [CrossRef] [PubMed]
- Cama, V.A.; Mathison, B.A. Infections by Intestinal Coccidia and Giardia duodenalis. Clin. Lab. Med. 2015, 35, 423–444. [Google Scholar] [CrossRef] [Green Version]
- Gillin, F.D.; Reiner, D.S.; McCaffery, J.M. Cell Biology of the Primitive Eukaryote Giardia lamblia. Annu. Rev. Microbiol. 1996, 50, 679–705. [Google Scholar] [CrossRef]
- Hooshyar, H.; Rostamkhani, P.; Arbabi, M.; Delavari, M. Giardia lamblia infection: Review of current diagnostic strategies. Gastroenterol. Hepatol. Bed Bench 2019, 12, 3–12. [Google Scholar]
- Espelage, W.; Der Heiden, M.A.; Stark, K.; Alpers, K. Characteristics and risk factors for symptomatic Giardia lamblia infections in Germany. BMC Public Health 2010, 10, 41. [Google Scholar] [CrossRef] [Green Version]
- Leung, A.K.; Leung, A.A.; Wong, A.H.; Sergi, C.M.; Kam, J.K. Giardiasis: An Overview. Recent Patents Inflamm. Allergy Drug Discov. 2019, 13, 134–143. [Google Scholar] [CrossRef]
- Mørch, K.; Hanevik, K. Giardiasis treatment: An update with a focus on refractory disease. Curr. Opin. Infect. Dis. 2020, 33, 355–364. [Google Scholar] [CrossRef]
- Adam, R.D. Biology of Giardia lamblia. Clin. Microbiol. Rev. 2001, 14, 447–475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pintong, A.-R.; Ruangsittichai, J.; Ampawong, S.; Thima, K.; Sriwichai, P.; Komalamisra, N.; Popruk, S. Efficacy of Ageratum conyzoides extracts against Giardia duodenalis trophozoites: An experimental study. BMC Complement. Med. Ther. 2020, 20, 63. [Google Scholar] [CrossRef] [PubMed]
- Eckmann, L. Mucosal defences against Giardia. Parasite Immunol. 2003, 25, 259–270. [Google Scholar] [CrossRef] [PubMed]
- Fraser, D.; Bilenko, N.; Deckelbaum, R.J.; Dagan, R.; El-On, J.; Naggan, L. Giardia lamblia Carriage in Israeli Bedouin Infants: Risk Factors and Consequences. Clin. Infect. Dis. 2000, 30, 419–424. [Google Scholar] [CrossRef]
- Sawangjaroen, K.; Subhadhirasakul, S.; Phongpaichit, S.; Siripanth, C.; Jamjaroen, K.; Sawangjaroen, N. The in vitro anti-giardial activity of extracts from plants that are used for self-medication by AIDS patients in southern Thailand. Parasitol. Res. 2004, 95, 17–21. [Google Scholar] [CrossRef]
- Bahadur, V.; Mastronicola, D.; Tiwari, H.K.; Kumar, Y.; Falabella, M.; Pucillo, L.P.; Sarti, P.; Giuffrè, A.; Singh, B.K. O2-Dependent Efficacy of Novel Piperidine- and Piperazine-Based Chalcones against the Human Parasite Giardia intestinalis. Antimicrob. Agents Chemother. 2014, 58, 543–549. [Google Scholar] [CrossRef] [Green Version]
- Löfmark, S.; Edlund, C.; Nord, C.E. Metronidazole Is Still the Drug of Choice for Treatment of Anaerobic Infections. Clin. Infect. Dis. 2010, 50 (Suppl. 1), S16–S23. [Google Scholar] [CrossRef] [Green Version]
- Leitsch, D. A review on metronidazole: An old warhorse in antimicrobial chemotherapy. Parasitology 2017, 146, 1167–1178. [Google Scholar] [CrossRef]
- Müller, M.; Gorrell, T.E. Metabolism and metronidazole uptake in Trichomonas vaginalis isolates with different metronidazole susceptibilities. Antimicrob. Agents Chemother. 1983, 24, 667–673. [Google Scholar] [CrossRef] [Green Version]
- Plant, C.W.; Edwards, D.I. The effect of tinidazole, metronidazole and nitrofurazone on nucleic acid synthesis in Clostridium bifermentans. J. Antimicrob. Chemother. 1976, 2, 203–209. [Google Scholar] [CrossRef]
- Ings, R.M.; McFadzean, J.A.; Ormerod, W.E. The mode of action of metronidazole in Trichomonas vaginalis and other micro-organisms. Biochem. Pharmacol. 1974, 23, 1421–1429. [Google Scholar] [CrossRef]
- Uzlikova, M.; Nohynkova, E. The effect of metronidazole on the cell cycle and DNA in metronidazole-susceptible and -resistant Giardia cell lines. Mol. Biochem. Parasitol. 2014, 198, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Leitsch, D.; Burgess, A.G.; Dunn, L.A.; Krauer, K.G.; Tan, K.; Duchêne, M.; Upcroft, P.; Eckmann, L.; Upcroft, J.A. Pyruvate:ferredoxin oxidoreductase and thioredoxin reductase are involved in 5-nitroimidazole activation while flavin metabolism is linked to 5-nitroimidazole resistance in Giardia lamblia. J. Antimicrob. Chemother. 2011, 66, 1756–1765. [Google Scholar] [CrossRef] [Green Version]
- Leitsch, D.; Kolarich, D.; Wilson, I.B.H.; Altmann, F.; Duchêne, M. Nitroimidazole Action in Entamoeba histolytica: A Central Role for Thioredoxin Reductase. PLoS Biol. 2007, 5, e211. [Google Scholar] [CrossRef] [PubMed]
- Leitsch, D.; Schlosser, S.; Burgess, A.; Duchêne, M. Nitroimidazole drugs vary in their mode of action in the human parasite Giardia lamblia. Int. J. Parasitol. Drugs Drug Resist. 2012, 2, 166–170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Camerini, S.; Bocedi, A.; Cecchetti, S.; Casella, M.; Carbo, M.; Morea, V.; Pozio, E.; Ricci, G.; Lalle, M. Proteomic and functional analyses reveal pleiotropic action of the anti-tumoral compound NBDHEX in Giardia duodenalis. Int. J. Parasitol. Drugs Drug Resist. 2017, 7, 147–158. [Google Scholar] [CrossRef] [PubMed]
- Upcroft, P.; Upcroft, J.A. Drug Targets and Mechanisms of Resistance in the Anaerobic Protozoa. Clin. Microbiol. Rev. 2001, 14, 150–164. [Google Scholar] [CrossRef] [Green Version]
- Kissinger, P. Trichomonas vaginalis: A review of epidemiologic, clinical and treatment issues. BMC Infect. Dis. 2015, 15, 307. [Google Scholar] [CrossRef] [Green Version]
- Ticona, J.C.; Bilbao-Ramos, P.; Amesty, Á.; Flores, N.; Dea-Ayuela, M.A.; Bazzocchi, I.L.; Jiménez, I.A. Flavonoids from Piper Species as Promising Antiprotozoal Agents against Giardia intestinalis: Structure-Activity Relationship and Drug-Likeness Studies. Pharmaceuticals 2022, 15, 1386. [Google Scholar] [CrossRef]
- Wishart, D.S.; Tzur, D.; Knox, C.; Eisner, R.; Guo, A.C.; Young, N.; Cheng, D.; Jewell, K.; Arndt, D.; Sawhney, S.; et al. HMDB: The Human Metabolome Database. Nucleic Acids Res. 2007, 35, D521–D526. [Google Scholar] [CrossRef]
- Aronson, J.K. Changing beta-blockers in heart failure: When is a class not a class? Br. J. Gen. Pract. 2008, 58, 387–389. [Google Scholar] [CrossRef] [Green Version]
- Costa, R.R.; Oliveira-Da-Silva, J.A.; Reis, T.A.R.; Tavares, G.S.V.; Mendonça, D.V.C.; Freitas, C.S.; Lage, D.P.; Martins, V.T.; Antinarelli, L.M.R.; Machado, A.S.; et al. Acarbose presents in vitro and in vivo antileishmanial activity against Leishmania infantum and is a promising therapeutic candidate against visceral leishmaniasis. Med. Microbiol. Immunol. 2021, 210, 133–147. [Google Scholar] [CrossRef]
- Ellis, J.E.; Setchell, K.D.; Kaneshiro, E.S. Detection of ubiquinone in parasitic and free-living protozoa, including species devoid of mitochondria. Mol. Biochem. Parasitol. 1994, 65, 213–224. [Google Scholar] [CrossRef] [PubMed]
- Mazzari, S.; Canella, R.; Petrelli, L.; Marcolongo, G.; Leon, A. N-(2-Hydroxyethyl)hexadecanamide is orally active in reducing edema formation and inflammatory hyperalgesia by down-modulating mast cell activation. Eur. J. Pharmacol. 1996, 300, 227–236. [Google Scholar] [CrossRef]
- Bertello, L.E.; Gonçalvez, M.F.; Colli, W.; de Lederkremer, R.M. Structural analysis of inositol phospholipids from Trypanosoma cruzi epimastigote forms. Biochem. J. 1995, 310, 255–261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pierre, G.; Macdonald, A.; Gray, G.; Hendriksz, C.; Preece, M.A.; Chakrapani, A. Prospective treatment in carnitine–acylcarnitine translocase deficiency. J. Inherit. Metab. Dis. 2007, 30, 815. [Google Scholar] [CrossRef]
- Wójcik, C. Regulation of apoptosis by the ubiquitin and proteasome pathway. J. Cell. Mol. Med. 2002, 6, 25–48. [Google Scholar] [CrossRef] [PubMed]
- Tocher, J.H.; Edwards, D.I. The interaction of reduced metronidazole with DNA bases and nucleosides. Int. J. Radiat. Oncol. 1992, 22, 661–663. [Google Scholar] [CrossRef] [PubMed]
- Sakellari, M.; Chondrogianni, N.; Gonos, E.S. Protein synthesis inhibition induces proteasome assembly and function. Biochem. Biophys. Res. Commun. 2019, 514, 224–230. [Google Scholar] [CrossRef]
- Déchamps, S.; Shastri, S.; Wengelnik, K.; Vial, H.J. Glycerophospholipid acquisition in Plasmodium—A puzzling assembly of biosynthetic pathways. Int. J. Parasitol. 2010, 40, 1347–1365. [Google Scholar] [CrossRef]
- Vial, H.J.; Penarete, D.; Wein, S.; Caldarelli, S.; Fraisse, L.; Peyrottes, S. Lipids as Drug Targets for Malaria Therapy. In Apicomplexan Parasites: Molecular Approaches toward Targeted Drug Development; Wiley: Hoboken, NJ, USA, 2011; pp. 137–162. [Google Scholar] [CrossRef]
- Lopes-de-Campos, D.; Nunes, C.; Sarmento, B.; Jakobtorweihen, S.; Reis, S. Metronidazole within phosphatidylcholine lipid membranes: New insights to improve the design of imidazole derivatives. Eur. J. Pharm. Biopharm. 2018, 129, 204–214. [Google Scholar] [CrossRef] [PubMed]
- Oberholzer, M.; Marti, G.; Baresic, M.; Kunz, S.; Hemphill, A.; Seebeck, T. The Trypanosoma bruceic AMP phosphodiesterases TbrPDEBl and TbrPDEB2: Flagellar enzymes that are essential for parasite virulence. FASEB J. 2006, 21, 720–731. [Google Scholar] [CrossRef]
- Seebeck, T.; Sterk, G.J.; Ke, H. Phosphodiesterase inhibitors as a new generation of antiprotozoan drugs: Exploiting the benefit of enzymes that are highly conserved between host and parasite. Future Med. Chem. 2011, 3, 1289–1306. [Google Scholar] [CrossRef] [Green Version]
- de Araújo, J.S.; da Silva, C.F.; Batista, D.D.G.J.; Nefertiti, A.; Fiuza, L.F.D.A.; Fonseca-Berzal, C.R.; da Silva, P.B.; Batista, M.M.; Sijm, M.; Kalejaiye, T.D.; et al. Efficacy of Novel Pyrazolone Phosphodiesterase Inhibitors in Experimental Mouse Models of Trypanosoma cruzi. Antimicrob. Agents Chemother. 2020, 64, e00414-20. [Google Scholar] [CrossRef]
- Keister, D.B. Axenic culture of Giardia lamblia in TYI-S-33 medium supplemented with bile. Trans. R. Soc. Trop. Med. Hyg. 1983, 77, 487–488. [Google Scholar] [CrossRef]
- Maknitikul, S.; Luplertlop, N.; Chaisri, U.; Maneerat, Y.; Ampawong, S. Featured Article: Immunomodulatory effect of hemozoin on pneumocyte apoptosis via CARD9 pathway, a possibly retarding pulmonary resolution. Exp. Biol. Med. 2018, 243, 395–407. [Google Scholar] [CrossRef] [PubMed]
- Klomkliew, P.; Sawaswong, V.; Chanchaem, P.; Nimsamer, P.; Adisakwattana, P.; Phuphisut, O.; Tipthara, P.; Tarning, J.; Payungporn, S.; Reamtong, O. Gut bacteriome and metabolome of Ascaris lumbricoides in patients. Sci. Rep. 2022, 12, 19524. [Google Scholar] [CrossRef] [PubMed]
No. | Potential Metabolites | m/z | Mass Error (ppm) | log2(FC) | p-Value |
---|---|---|---|---|---|
1 | Squamosinin A | 621.4373 | 0 | 7.4866 | 1.43 × 10−6 |
2 | octacosanal | 426.467 | 0 | 7.4709 | 3.09 × 10−8 |
3 | Acarbose | 644.2434 | 4 | 7.054 | 3.59 × 10−7 |
4 | PGPC | 590.3465 | 1 | 6.3959 | 7.61 × 10−9 |
5 | 3-Demethylubiquinone-9 | 513.5355 | 2 | 6.2659 | 1.18 × 10−8 |
6 | Cer(d18:0/12:0) | 484.4725 | 0 | 6.1207 | 0.002144 |
7 | GlcCer(d16:1/23:0) | 814.616 | 2 | 5.9571 | 0.000112 |
8 | Cer(d18:0/12:0) | 501.4987 | 1 | 5.6833 | 1.10 × 10−6 |
9 | LacCer(d18:0/22:0) | 765.6695 | 0 | 5.616 | 0.00154 |
10 | Cer(d18:0/14:0) | 529.53 | 1 | 5.4023 | 3.46 × 10−8 |
11 | C8-Dihydroceramide | 456.4408 | 1 | 5.1804 | 0.000001 |
12 | PC(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z))[S] | 558.4361 | 0 | 5.129 | 1.09 × 10−6 |
13 | DL-Cerebronic acid | 402.3941 | 0 | 5.0947 | 7.21 × 10−9 |
14 | 2-amino-14,16-dimethyloctadecan-3-ol | 398.4362 | 0 | 5.0425 | 7.21 × 10−9 |
15 | N-(2-hydroxyethyl)hexacosanamide | 485.5042 | 0 | 5.0409 | 4.81 × 10−6 |
16 | tetracosanal | 370.4047 | 1 | 4.5593 | 2.57 × 10−8 |
17 | Glycerol 2-(9Z,12Z-octadecadienoate) 1-hexadecanoate 3-O-[alpha-D-galactopyranosyl-(1–>6)-beta-D-galactopyranoside] | 915.601 | 4 | 4.3026 | 0.002712 |
18 | L-Arginine | 175.119 | 0 | 4.2669 | 5.92 × 10−8 |
19 | 22-methyl-tricosanoic acid | 386.3993 | 0 | 4.2412 | 8.68 × 10−9 |
20 | PS(21:0/0:0) | 566.3447 | 3 | 4.206 | 0.000137 |
No. | Potential Metabolites | m/z | Mass Error (ppm) | log2(FC) | p-Value |
---|---|---|---|---|---|
1 | N-(2-hydroxyethyl)hexacosanamide | 485.5042 | 0 | −10.517 | 3.79 × 10−11 |
2 | C-8 Ceramine | 457.4729 | 0 | −10.511 | 2.86 × 10−10 |
3 | Famotidine sulfoxide | 336.0372 | 0 | −7.5605 | 7.61 × 10−9 |
4 | SM(d18:1/16:0) | 703.5747 | 0 | −6.876 | 1.49 × 10−6 |
5 | 9Z-Pentatriaconte | 513.5355 | 2 | −6.7659 | 4.56 × 10−3 |
6 | WIN56291 | 338.0346 | 0 | −6.5084 | 1.95 × 10−8 |
7 | SM(d18:1/16:0) | 703.5745 | 0 | −6.2087 | 4.31 × 10−7 |
8 | SM(d18:1/16:0) | 725.5566 | 0 | −6.0514 | 1.11 × 10−6 |
9 | C6 CERAMIDE | 430.3895 | 0 | −5.9306 | 7.45 × 10−10 |
10 | N4-Phosphoagmatine | 955.7572 | 1 | −5.8778 | 3.11 × 10−7 |
11 | 23-Hexacosen-1-ol | 398.436 | 1 | −5.5802 | 4.95 × 10−9 |
12 | SM(d18:1/18:1(9Z)) | 729.5898 | 1 | −5.3147 | 9.88 × 10−7 |
13 | SM(d18:1/16:0) | 725.5568 | 0 | −4.9543 | 1.26 × 10−6 |
14 | Lignoceric acid | 386.3992 | 0 | −4.538 | 2.52 × 10−7 |
15 | CETRIMONIUM | 312.3629 | 0 | −4.3126 | 2.04 × 10−9 |
16 | PG(12:0/21:0) | 759.5147 | 0 | −4.2497 | 1.55 × 10−5 |
17 | Hexacosanoyl carnitine | 523.472 | 0 | −4.2286 | 5.92 × 10−8 |
18 | Cer(d18:0/14:0) | 529.5302 | 0 | −4.2116 | 5.21 × 10−7 |
19 | PC(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z))[S] | 558.4364 | 1 | −4.2024 | 2.79 × 10−7 |
20 | SM(d18:1/18:1(9Z)) | 729.5908 | 0 | −4.1938 | 1.48 × 10−5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Popruk, S.; Abu, A.; Ampawong, S.; Thiangtrongjit, T.; Tipthara, P.; Tarning, J.; Sreesai, S.; Reamtong, O. Mass Spectrometry-Based Metabolomics Revealed Effects of Metronidazole on Giardia duodenalis. Pharmaceuticals 2023, 16, 408. https://doi.org/10.3390/ph16030408
Popruk S, Abu A, Ampawong S, Thiangtrongjit T, Tipthara P, Tarning J, Sreesai S, Reamtong O. Mass Spectrometry-Based Metabolomics Revealed Effects of Metronidazole on Giardia duodenalis. Pharmaceuticals. 2023; 16(3):408. https://doi.org/10.3390/ph16030408
Chicago/Turabian StylePopruk, Supaluk, Amanee Abu, Sumate Ampawong, Tipparat Thiangtrongjit, Phornpimon Tipthara, Joel Tarning, Suthasinee Sreesai, and Onrapak Reamtong. 2023. "Mass Spectrometry-Based Metabolomics Revealed Effects of Metronidazole on Giardia duodenalis" Pharmaceuticals 16, no. 3: 408. https://doi.org/10.3390/ph16030408
APA StylePopruk, S., Abu, A., Ampawong, S., Thiangtrongjit, T., Tipthara, P., Tarning, J., Sreesai, S., & Reamtong, O. (2023). Mass Spectrometry-Based Metabolomics Revealed Effects of Metronidazole on Giardia duodenalis. Pharmaceuticals, 16(3), 408. https://doi.org/10.3390/ph16030408