Pirimicarb Induction of Behavioral Disorders and of Neurological and Reproductive Toxicities in Male Rats: Euphoric and Preventive Effects of Ephedra alata Monjauzeana
Abstract
:1. Introduction
2. Results
2.1. Behavioral Evaluation
2.1.1. Forced Swim Test (FST)
2.1.2. Open Field Test (OFT)
2.1.3. Elevated Plus Maze (EPM)
2.1.4. Elevated Zero Maze (EZM)
2.2. Cortisol and Testosterone Titers
2.3. Oxidative Stress Parameters
2.4. IL-β Quantification
2.5. Photomicrographs of Histologic Sections
2.6. UPLC-ESI-MS-MS Analysis of Brain and Testis
3. Discussion
4. Materials and Methods
4.1. Chemicals and Reagents
4.2. Animals
4.3. Experimental Design
4.4. Behavioral Evaluation
4.4.1. Forced Swim Test (FST)
4.4.2. Open Field Test (OFT)
4.4.3. Elevated Plus Maze (EPM)
4.4.4. Elevated Zero Maze (EZM)
4.5. Cortisol and Testosterone Titers
4.6. Oxidative Stress Parameters
4.6.1. Tissue Homogenate
4.6.2. Protein Titration
4.6.3. Malondialdehyde (MDA)
4.6.4. Reduced Glutathione (GSH)
4.6.5. Superoxide Dismutase (SOD)
4.6.6. Catalase (CAT)
4.7. IL1-β Titration and Quantification in Brain and Plasma
4.8. Histopathological Examination
4.9. Testing for the Presence of Pirimicarb in Brain and Testis Tissues
4.9.1. Pirimicarb Extraction
4.9.2. UPLC-ESI-MS-MS Analysis
4.10. Statistical Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Blair, A.; Ritz, B.; Wesseling, C.; Freeman, L.B. Pesticides and human health. J. Occup. Environ. Med. 2015, 72, 81–82. [Google Scholar] [CrossRef] [PubMed]
- Tudi, M.; Ruan, H.D.; Wang, L.; Lyu, J.; Sadler, R.; Connell, D.; Chu, C. Agriculture Development, Pesticide Application and Its Impact on the Environment. Int. J. Environ. Res. Public Health 2021, 18, 1112. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.H.; Kabir, E.; Jahan, S.A. Exposure to pesticides and the associated human health effects. Sci. Total Environ. 2017, 575, 525–535. [Google Scholar] [CrossRef]
- Parra-Arroyo, L.; González-González, R.B.; Castillo-Zacarías, C.; Melchor Martínez, E.M.; Sosa-Hernández, J.E.; Bilal, M.; Iqbal, H.M.N.; Barceló, D.; Parra-Saldívar, R. Highly hazardous pesticides and related pollutants: Toxicological, regulatory, and analytical aspects. Sci. Total Environ. 2022, 807, 18–26. [Google Scholar] [CrossRef]
- Semu, E. Heavy Metals and Organopesticides: Ecotoxicology, Health Effects and Mitigation Options with Emphasis on Sub-Saharan Africa. Toxicol. Curr. Res. 2019, 3, 010. [Google Scholar] [CrossRef]
- Albayrak, T.; Yorulmaz, S.; İnak, E.; Toprak, U.; Van Leeuwen, T. Pirimicarb resistance and associated mechanisms in field-collected and selected populations of Neoseiulus californicus. Pestic. Biochem. Physiol. 2022, 180, 104984. [Google Scholar] [CrossRef]
- Chen, T.; Fu, F.; Chen, Z.; Li, D.; Zhang, L.; Chen, G. Study on the photodegradation and microbiological degradation of pirimicarb insecticide by using liquid chromatography coupled with ion-trap mass spectrometry. J. Chromatogr. A 2009, 1216, 3217–3222. [Google Scholar] [CrossRef] [PubMed]
- Jing, X.; Wu, J.; Wang, H.; Guo, L.; Zheng, X.; Wang, X.; Wang, S. Application of deep eutectic solvent-based extraction coupled with an S-CQD fluorescent sensor for the determination of pirimicarb in cereals. Food Chem. 2022, 370, 131360. [Google Scholar] [CrossRef]
- Bolygó, E.; Atreya, N.C. Solid-phase extraction for multi-residue analysis of some triazole and pyrimidine pesticides in water. Fresenius J. Anal. Chem. 1991, 339, 423–430. [Google Scholar] [CrossRef]
- Cabras, P.; Spanedda, L.; Cabitza, F.; Cubeddu, M.; Martini, M.G.; Brandolini, V. Pirimicarb and its metabolite residues in lettuce. Influence of cultural environment. J. Agric. Food Chem. 1990, 38, 879–882. [Google Scholar] [CrossRef]
- Archibald, B.A.; Solomon, K.R.; Stephenson, G.R. Estimating pirimicarb exposure to greenhouse workers using video imaging. Arch. Environ. Contam. Toxicol. 1994, 27, 126–129. [Google Scholar] [CrossRef] [PubMed]
- Hardt, J.; Appl, U.; Angerer, J. Biological monitoring of exposure to pirimicarb: Hydroxypyrimidines in human urine. Toxicol. Lett. 1999, 107, 89–93. [Google Scholar] [CrossRef] [PubMed]
- Mesnage, R.; Defarge, N.; Spiroux De Vendômois, J.; Séralini, G.E. Major pesticides are more toxic to human cells than their declared active principles. BioMed Res. Int. 2014, 2014, 179691. [Google Scholar] [CrossRef] [Green Version]
- Sams, C.; Jones, K. Human volunteer studies investigating the potential for toxicokinetic interactions between the pesticides deltamethrin; Pirimicarb and chlorpyrifos-methyl following oral exposure at the acceptable daily intake. Toxicol. Lett. 2011, 200, 41–45. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.; Wang, H.P.; Xu, M.Y.; Liang, Y.J.; Sun, Y.J.; Yang, L.; Li, L.; Li, W.; Wu, Y.J. Combined subchronic toxicity of dichlorvos with malathion or pirimicarb in mice liver and serum: A metabonomic study. Food Chem. Toxicol. 2014, 70, 222–230. [Google Scholar] [CrossRef] [PubMed]
- Soloneski, S.; Kujawski, M.; Scuto, A.; Larramendy, M.L. Carbamates: A study on genotoxic, cytotoxic, and apoptotic effects induced in Chinese hamster ovary (CHO-K1) cells. Toxicol. Vitr. 2015, 29, 834–844. [Google Scholar] [CrossRef]
- Siroki, O.; Ündeger, Ü.; Institóris, L.; Nehéz, M.; Basaran, N.; Nagymajtényi, L.; Dési, I. A study on geno- and immunotoxicological effects of subacute propoxur and pirimicarb exposure in rats. Ecotoxicol. Environ. Saf. 2001, 50, 76–81. [Google Scholar] [CrossRef]
- Hass, U.; Christiansen, S.; Axelstad, M.; Scholze, M.; Boberg, J. Combined exposure to low doses of pesticides causes decreased birth weights in rats. Reprod. Toxicol. 2017, 72, 97–105. [Google Scholar] [CrossRef] [Green Version]
- Khattabi, L.; Boudiar, T.; Bouhenna, M.M.; Chettoum, A.; Chebrouk, F.; Chader, H.; Lozano-sánchez, J.; Segura-carretero, A.; Nieto, G.; Akkal, S. RP-HPLC-ESI-QTOF-MS Qualitative Profiling, Antioxidant, Anti-Enzymatic, Anti-Inflammatory and Non-Cytotoxic Properties of Ephedra alata Monjauzeana. Foods 2022, 11, 145. [Google Scholar] [CrossRef]
- Danciu, C.; Muntean, D.; Alexa, E.; Farcas, C.; Oprean, C.; Zupko, I.; Bor, A.; Minda, D.; Proks, M.; Buda, V.; et al. Phytochemical Characterization and Evaluation of the Antimicrobial, Antiproliferative and Pro-Apoptotic Potential of Ephedra alata Decne. Hydroalcoholic Extract against the MCF-7 Breast Cancer Cell Line. Molecules 2018, 24, 13. [Google Scholar] [CrossRef] [Green Version]
- Mufti, A.; Contreras, M.; Gómez-cruz, I.; Alshamrani, A.; Nahdi, S. Ephedra alata Subsp. Alenda as a Novel Source of Bioactive Phytochemicals: Characterization Based on the Mass Spectrometry and Profiling of Antioxidant and Anti-Inflammatory Properties. Life 2023, 13, 323. [Google Scholar] [CrossRef] [PubMed]
- Shi, C.; Li, J.; Li, J. Ephedrine attenuates cerebral ischemia/reperfusion injury in rats through NF-κB signaling pathway. Hum. Exp. Toxicol. 2021, 40, 994–1002. [Google Scholar] [CrossRef]
- Chen, S.; Xiao, N.; Zhang, X. Effect of combined therapy with ephedrine and hyperbaric oxygen on neonatal hypoxic-ischemic brain injury. Neurosci. Lett. 2009, 465, 171–176. [Google Scholar] [CrossRef] [PubMed]
- Zheng, F.H.; Wei, P.; Huo, H.L.; Xing, X.F.; Chen, F.L.; Tan, X.M.; Luo, J.B. Neuroprotective Effect of Gui Zhi (Ramulus Cinnamomi) on Ma Huang- (Herb Ephedra-) Induced Toxicity in Rats Treated with a Ma Huang-Gui Zhi Herb Pair. Evid. Based Complement. Altern. Med. 2015, 2015, 913461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramachandraih, C.T.; Subramanyam, N.; Bar, K.J.; Baker, G.; Yeragani, V.K. Antidepressants: From MAOIs to SSRIs and more. Indian J. Psychiatry 2011, 53, 180–182. [Google Scholar] [CrossRef]
- Agim, Z.S. Recent advancements in behavioral testing in rodents. MethodsX 2021, 8, 101536. [Google Scholar] [CrossRef]
- Knight, P.; Chellian, R.; Wilson, R.; Behnood-Rod, A.; Panunzio, S.; Bruijnzeel, A.W. Sex differences in the elevated plus-maze test and large open field test in adult Wistar rats. Pharmacol. Biochem. Behav. 2021, 204, 173168. [Google Scholar] [CrossRef]
- Díaz-Morán, S.; Estanislau, C.; Cañete, T.; Blázquez, G.; Ráez, A.; Tobeña, A.; Fernández-Teruel, A. Relationships of open-field behaviour with anxiety in the elevated zero-maze test: Focus on freezing and grooming. World J. Neurosci. 2014, 4, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Bogdanova, O.V.; Kanekar, S.; D’Anci, K.E.; Renshaw, P.F. Factors influencing behavior in the forced swim test. Physiol. Behav. 2013, 118, 227–239. [Google Scholar] [CrossRef] [Green Version]
- Sergievich, A.A.; Khoroshikh, P.P.; Artemenko, A.F.; Zakharenko, A.M.; Chaika, V.V.; Kodintsev, V.V.; Stroeva, O.A.; Lenda, E.G.; Tsatsakis, A.; Burykina, T.I.; et al. Behavioral impacts of a mixture of six pesticides on rats. Sci. Total Environ. 2020, 727, 138491. [Google Scholar] [CrossRef]
- Lieberman, H.R. The effects of ginseng, ephedrine, and caffeine on cognitive performance, mood and energy. Nutr. Rev. 2001, 59, 91–102. [Google Scholar] [CrossRef] [PubMed]
- Fodor, A.; Kovács, K.B.; Balázsfi, D.; Klausz, B.; Pintér, O.; Demeter, K.; Daviu, N.; Rabasa, C.; Rotllant, D.; Nadal, R.; et al. Depressive- and anxiety-like behaviors and stress-related neuronal activation in vasopressin-deficient female Brattleboro rats. Physiol. Behav. 2016, 158, 100–111. [Google Scholar] [CrossRef] [PubMed]
- Steckler, T.; Holsboer, F.; Reul, J.M.H.M. Glucocorticoids and depression. Best Pract. Res. Clin. Endocrinol. Metab. 1999, 13, 597–614. [Google Scholar] [CrossRef] [PubMed]
- De Mello, A.D.A.F.; De Mello, M.F.; Carpenter, L.L.; Price, L.H. Update on stress and depression: The role of the hypothalamic-pituitary-adrenal (HPA) axis. Uma atualização sobre estresse e depressão: O papel do eixo. Rev. Bras. De Psiquiatr. 2003, 25, 231–238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laflamme, N.; Rivest, S. Toll-like receptor 4: The missing link of the cerebral innate immune response triggered by circulating gram-negative bacterial cell wall components. FASEB J. 2001, 15, 155–163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haddad, J.J.; Saadé, N.E.; Safieh-Garabedian, B. Cytokines and neuro-immune-endocrine interactions: A role for the hypothalamic-pituitary-adrenal revolving axis. J. Neuroimmunol. 2002, 133, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Beishuizen, A.; Thijs, L.G. Endotoxin and the hypothalamo-pituitary-adrenal (HPA) axis. J. Endotoxin Res. 2003, 9, 3–24. [Google Scholar] [CrossRef]
- Wahyuni, S.; Sarlita, E.; Sufiawati, I. Relationship between Cortisol, Cytokines and Stress on Training: A Scoping Review. J. Int. Dent. Med. Res. 2022, 15, 1340–1347. [Google Scholar]
- Nguyen, M.D.; Julien, J.P.; Rivest, S. Innate immunity: The missing link in neuroprotection and neurodegeneration? Nat. Rev. Neurosci. 2002, 3, 216–227. [Google Scholar] [CrossRef]
- Dong, Y.; Benveniste, E.N. Immune function of astrocytes. Glia 2001, 36, 180–190. [Google Scholar] [CrossRef]
- Basu, A.; Lazovic, J.; Krady, J.K.; Mauger, D.T.; Rothstein, R.P.; Smith, M.B.; Levison, S.W. Interleukin-1 and the interleukin-1 type 1 receptor are essential for the progressive neurodegeneration that ensues subsequent to a mild hypoxic/ischemic injury. J. Cereb. Blood Flow Metab. 2005, 25, 17–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yeager, M.P.; Guyre, C.A.; Sites, B.D.; Collins, J.E.; Pioli, P.A.; Guyre, P.M. The stress hormone cortisol enhances interferon-ϒ–mediated proinflammatory responses of human immune cells. Anesth. Analg. 2018, 127, 556–563. [Google Scholar] [CrossRef] [PubMed]
- Soumaya, B.; Yosra, E.; Rim, B.M.; Sarra, D.; Sawsen, S.; Sarra, B.; Kamel, M.; Wissem, A.W.; Isoda, H.; Wided, M.K. Preliminary phytochemical analysis, antioxidant, anti-inflammatory and anticancer activities of two Tunisian Ephedra species: Ephedra alata and Ephedra fragilis. South African J. Bot. 2020, 135, 421–428. [Google Scholar] [CrossRef]
- Kmail, A. In vitro evaluation of anti-inflammatory and antioxidant effects of Asparagus aphyllus L., Crataegus azarolus L., and Ephedra alata Decne.in monocultures and co-cultures of HepG2 and THP-1-derived macrophages. Pharmacogn. Commun. 2017, 7, 24–33. [Google Scholar] [CrossRef] [Green Version]
- Niki, E. Lipid peroxidation products as oxidative stress biomarkers. BioFactors 2008, 34, 171–180. [Google Scholar] [CrossRef]
- Lopresti, A.L.; Maker, G.L.; Hood, S.D.; Drummond, P.D. A review of peripheral biomarkers in major depression: The potential of inflammatory and oxidative stress biomarkers. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2014, 48, 102–111. [Google Scholar] [CrossRef] [Green Version]
- Possamai, F.P.; Fortunato, J.J.; Feier, G.; Agostinho, F.R.; Quevedo, J.; Wilhelm Filho, D.; Dal-Pizzol, F. Oxidative stress after acute and sub-chronic malathion intoxication in Wistar rats. Environ. Toxicol. Pharmacol. 2007, 23, 198–204. [Google Scholar] [CrossRef]
- Uchendu, C.; Ambali, S.F.; Ayo, J.O.; Esievo, K.A.N. Chronic co-exposure to chlorpyrifos and deltamethrin pesticides induces alterations in serum lipids and oxidative stress in Wistar rats: Mitigating role of alpha-lipoic acid. Environ. Sci. Pollut. Res. 2018, 25, 19605–19611. [Google Scholar] [CrossRef]
- Rai, D.K.; Sharma, B. Carbofuran-induced oxidative stress in mammalian brain. Mol. Biotechnol. 2007, 37, 66–71. [Google Scholar] [CrossRef]
- Jafari, M.; Salehi, M.; Ahmadi, S.; Asgari, A.; Abasnezhad, M.; Hajigholamali, M. The role of oxidative stress in diazinon-induced tissues toxicity in Wistar and Norway rats. Toxicol. Mech. Methods 2012, 22, 638–647. [Google Scholar] [CrossRef]
- Singh, R.; Firdous, S.; Sharma, P. Neurotoxic effect of cypermethrin and protective role of resveratrol in Wistar rats. Int. J. Nutr. Pharmacol. Neurol. Dis. 2014, 4, 104. [Google Scholar] [CrossRef]
- Avdatek, F.; Birdane, Y.O.; Türkmen, R.; Demirel, H.H. Ameliorative effect of resveratrol on testicular oxidative stress, spermatological parameters and DNA damage in glyphosate-based herbicide-exposed rats. Andrologia 2018, 50, e13036. [Google Scholar] [CrossRef] [PubMed]
- Abarikwu, S.O.; Akiri, O.F.; Durojaiye, M.A.; Adenike, A. Combined effects of repeated administration of Bretmont Wipeout (glyphosate) and Ultrazin (atrazine) on testosterone, oxidative stress and sperm quality of Wistar rats. Toxicol. Mech. Methods 2015, 25, 70–80. [Google Scholar] [CrossRef] [PubMed]
- Attia, A.A.; ElMazoudy, R.H.; El-Shenawy, N.S. Antioxidant role of propolis extract against oxidative damage of testicular tissue induced by insecticide chlorpyrifos in rats. Pestic. Biochem. Physiol. 2012, 103, 87–93. [Google Scholar] [CrossRef]
- Birben, E.; Sahiner, U.; Sackesen, C.; Erzurum, S.; Kalayci, O. Oxidative Stress and Antioxidant Defense Mechanism in. World Allergy Organ. J. 2012, 22, 9–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- López, O.; Hernández, A.F.; Rodrigo, L.; Gil, F.; Pena, G.; Serrano, J.L.; Parrón, T.; Villanueva, E.; Pla, A. Changes in antioxidant enzymes in humans with long-term exposure to pesticides. Toxicol. Lett. 2007, 171, 146–153. [Google Scholar] [CrossRef]
- Tiss, M.; Souiy, Z.; Achour, L.; Hamden, K. Ephedra alata extracts exerts anti-obesity, anti-hyperglycemia, anti-antipyretic and analgesic effects. Nutr. Food Sci. 2022, 52, 119–128. [Google Scholar] [CrossRef]
- Zerargui, F.; Saffidine, K.; Guemmaz, T.; Laroui, H.; Arrar, L.; Baghiani, A. Antithrombotic, Antihemolitic and Analgesic Activities of Ephedra Alata Alanda Extracts. Ann. Rom. Soc. Cell Biol. 2022, 26, 3767–3783. [Google Scholar]
- Ben Lamine, J.; Boujbiha, M.A.; Dahane, S.; Ben Cherifa, A.; Khlifi, A.; Chahdoura, H.; Yakoubi, M.T.; Ferchichi, S.; El Ayeb, N.; Achour, L. α-Amylase and α-glucosidase inhibitor effects and pancreatic response to diabetes mellitus on Wistar rats of Ephedra alata areal part decoction with immunohistochemical analyses. Environ. Sci. Pollut. Res. 2019, 26, 9739–9754. [Google Scholar] [CrossRef]
- Jaradat, N.; Hussen, F.; Ali, A. Al Preliminary phytochemical screening, quantitative estimation of total flavonoids, total phenols and antioxidant activity of Ephedra alata decne. J. Mater. Environ. Sci. 2015, 6, 1771–1778. [Google Scholar]
- Chouikh, A. Phytochemical profile, antioxidant, analgesic and hypolipidaemic effects of ephedra alata decne. Female cones extract. Farmacia 2020, 68, 1011–1020. [Google Scholar] [CrossRef]
- Al-Rimawi, F.; Abu-Lafi, S.; Abbadi, J.; Alamarneh, A.A.; Sawahreh, R.A.; Odeh, I. Analysis of Phenolic and Flavonoids of Wild Ephedra Alata Plant Extracts By Lc/Pda and Lc/Ms and Their Antioxidant Activity. Afr. J. Tradit. Complement. Altern. Med. 2017, 14, 130–141. [Google Scholar] [CrossRef]
- Han, K.H.; Hashimoto, N.; Fukushima, M. Relationships among alcoholic liver disease, antioxidants, and antioxidant enzymes. World J. Gastroenterol. 2016, 22, 37–49. [Google Scholar] [CrossRef] [PubMed]
- Adigun, R.; Basit, H.; Murray, J. Cell Liquefactive Necrosis; StatPearls Publishing: St. Petersburg, FL, USA, 2022. [Google Scholar]
- Shubin, A.V.; Demidyuk, I.V.; Komissarov, A.A.; Rafieva, L.M.; Kostrov, S.V. Cytoplasmic vacuolization in cell death and survival. Oncotarget 2016, 7, 55863–55889. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Madkour, D.A.; Ahmed, M.M.; Orabi, S.H.; Sayed, S.M.; Korany, R.M.S.; Khalifa, H.K. Nigella sativa oil protects against emamectin benzoate-Induced neurotoxicity in rats. Environ. Toxicol. 2021, 36, 1521–1535. [Google Scholar] [CrossRef]
- Elshama, S.S.; El-Kenawy, A.E.M.; Osman, H.E.H. Histopathological study of zinc oxide nanoparticle-induced neurotoxicity in rats. Curr. Top. Toxicol. 2017, 13, 95–103. [Google Scholar]
- Menze, E.T.; Tadros, M.G.; Abdel-Tawab, A.M.; Khalifa, A.E. Potential neuroprotective effects of hesperidin on 3-nitropropionic acid-induced neurotoxicity in rats. Neurotoxicology 2012, 33, 1265–1275. [Google Scholar] [CrossRef]
- Maksoud, H.A.; Mahfouz, M.; Soliman, M.; Elharrif, M.G.; Abbass, M.; El-Badry, M. Harmful effects of pyrethroid ester insecticide on the male reproductive system mainly through affecting testicular function and inflammatory markers. Biocell 2020, 44, 111–115. [Google Scholar] [CrossRef]
- Moreira, S.; Silva, R.; Carrageta, D.F.; Alves, M.G.; Seco-Rovira, V.; Oliveira, P.F.; de Lourdes Pereira, M. Carbamate Pesticides: Shedding Light on Their Impact on the Male Reproductive System. Int. J. Mol. Sci. 2022, 23, 8206. [Google Scholar] [CrossRef]
- Dbeibia, A.; Ben Taheur, F.; Altammar, K.A.; Haddaji, N.; Mahdhi, A.; Amri, Z.; Mzoughi, R.; Jabeur, C. Control of Staphylococcus aureus methicillin resistant isolated from auricular infections using aqueous and methanolic extracts of Ephedra alata. Saudi J. Biol. Sci. 2022, 29, 1021–1028. [Google Scholar] [CrossRef]
- Hibi, Z.; Ahmed, M.; Azzi, R. Ethnobotanical, phytochemical characterization and biological activities of Ephedra alata Decne extracts, growing wild in Bechar region, south west of Algeria. South Asian J. Exp. Biol. 2022, 12, 35–45. [Google Scholar] [CrossRef]
- Ibragic, S.; Sofić, E. Chemical composition of various ephedra species. Bosn. J. Basic Med. Sci. 2015, 15, 21–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sioud, F.; Ben Toumia, I.; Lahmer, A.; Khlifi, R.; Dhaouefi, Z.; Maatouk, M.; Ghedira, K.; Chekir-Ghedira, L. Methanolic extract of Ephedra alata ameliorates cisplatin-induced nephrotoxicity and hepatotoxicity through reducing oxidative stress and genotoxicity. Environ. Sci. Pollut. Res. 2020, 27, 12792–12801. [Google Scholar] [CrossRef] [PubMed]
- Yakubu, M.T.; Akanji, M.A.; Oladiji, A.T. Aphrodisiac potentials of the aqueous extract of Fadogia agrestis (Schweinf. Ex Hiern) stem in male albino rats. Asian J. Androl. 2005, 7, 399–404. [Google Scholar] [CrossRef]
- Sumalatha, K.; Saravana Kumar, A.; Mohana Lakshmi, S. Review on Natural Aphrodisiac Potentials To Treat sexual dysfunction. Int. J. Pharm. Ther. 2010, 1, 6–14. [Google Scholar]
- Chahal, K.S.; Prakash, A.; Majeed, A.B.A. The role of multifunctional drug therapy against carbamate induced neuronal toxicity during acute and chronic phase in rats. Environ. Toxicol. Pharmacol. 2015, 40, 220–229. [Google Scholar] [CrossRef]
- Sayım, F.; Karabay, Ü. Neurotoxic Effects of Cypermethrin in Wistar Rats: A Haematological, Biochemical and Histopathological Study. J. Health Sci. 2005, 51, 300–307. [Google Scholar] [CrossRef] [Green Version]
- Almeida, A.; Frinhani, A.; Leite, G.; Marques, M.; Simões, I.; Felippe, A.; Sampaio, V.; Coelho, T.; Aparecida, M.; Andrea, T.; et al. Neurotoxicology and Teratology Atropine counteracts the depressive-like behaviour elicited by acute exposure to commercial chlorpyrifos in rats. Neurotoxicology Teratol. 2019, 71, 6–15. [Google Scholar] [CrossRef]
- Zhou, K.; Kerr, N.; Armour, M.A.; Rigakis, K.; Crown, B. Loss of pirimicarb residues from contaminated fabrics. Bull. Environ. Contam. Toxicol. 1996, 57, 29–33. [Google Scholar] [CrossRef]
- Cambon, C.; Declume, C.; Derache, R. Effect of the insecticidal carbamate derivatives (carbofuran, pirimicarb, aldicarb) on the activity of acetylcholinesterase in tissues from pregnant rats and fetuses. Toxicol. Appl. Pharmacol. 1979, 49, 203–208. [Google Scholar] [CrossRef]
- Borsini, F.; Meli, A. Is the forced swimming test a suitable model for revealing antidepressant activity? Psychopharmacology 1988, 94, 147–160. [Google Scholar] [CrossRef]
- Porsolt, R.D.; Anton, G.; Blavet, N.; Jalfre, M. Behavioural despair in rats: A new model sensitive to antidepressant treatments. Eur. J. Pharmacol. 1978, 47, 379–391. [Google Scholar] [CrossRef] [PubMed]
- Breed, M.D.; Moore, J. Animal Behavior; Academic Press: Cambridge, MA, USA, 2021; ISBN 9780128195581. [Google Scholar]
- Lister, R.G. The use of a plus-maze to measure anxiety in the mouse. Psychopharmacology 1987, 92, 180–185. [Google Scholar] [CrossRef]
- Pellow, S.; Chopin, P.; File, S.E.; Briley, M. Validation of open: Closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. J. Neurosci. Methods 1985, 14, 149–167. [Google Scholar] [CrossRef]
- Stuart, H.; Rodgers, S.; Pasieka, J.L. Management of Thyroid Nodules and Differentiated Thyroid Cancer; Springer: Cham, Switzerland, 2017. [Google Scholar] [CrossRef]
- Shepherd, J.K.; Grewal, S.S.; Fletcher, A.; Bill, D.J.; Dourish, C.T. Behavioural and pharmacological characterisation of the elevated “zero-maze” as an animal model of anxiety. Psychopharmacology 1994, 116, 56–64. [Google Scholar] [CrossRef]
- Kruger, N.J. The Bradford method for protein quantitation. Methods Mol. Biol. 1994, 32, 9–15. [Google Scholar] [CrossRef]
- Buege, J.A.; Aust, S.D. Biomembranes—Part C: Biological Oxidations. Methods Enzymol. 1978, 52, 302–310. [Google Scholar] [PubMed]
- Ellman, G.L. Tissue sulfhydryl groups. Arch. Biochem. Biophys. 1959, 82, 70–77. [Google Scholar] [CrossRef]
- Marklund, S.; Marklund, G. Involvement of the Superoxide Anion Radical in the Autoxidation of Pyrogallol and a Convenient Assay for Superoxide Dismutase. Eur. J. Biochem. 1974, 47, 469–474. [Google Scholar] [CrossRef]
- Nandy, S.; Paul, H.S.; Barman, N.R. In Vitro evaluation of antioxidant activity of Leucas plukenetii (Roth) Spreng. Asian J. Plant Sci. Res. 2012, 2, 254–262. [Google Scholar]
- Aebi, H. Catalase. Nippon. Rinsho. Jpn. J. Clin. Med. 1995, 53, 358–360. [Google Scholar] [CrossRef]
- Suvarna, S.K.; Layton, C.; Bancroft, J.D. Bancroft’s Theory and Practice of Histological Techniques, 8th ed.; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Anastassiades, M.; Lehotay, S.J.; Štajnbaher, D.; Schenck, F.J. Fast and Easy Multiresidue Method Employing Acetonitrile Extraction/Partitioning and “Dispersive Solid-Phase Extraction” for the determination of pesticide residues in produce. J. AOAC Int. 2003, 86, 412–431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Tissues | G1 | G2 | G3 | G4 | |
---|---|---|---|---|---|
Protein concentration (µg/mL) | Brain | (2.372 ± 0.001) a | (1.714 ± 0.003) b*** | (1.983 ± 0.003) c*** | (1.829 ± 0.002) d*** |
Testis | (1.844 ± 0.003) a | (2.053 ± 0.002) b*** | (2.254 ± 0.002) c*** | (2.042 ± 0.002) d*** |
Compound | Formula | M | MH+ | Ionization Mode | MRM Transition | Collision Energy (v) | Rt Min |
---|---|---|---|---|---|---|---|
Pirimicarb | C11H18NO2 | 238.1430 | 239.15 | ESI+ | 72.1 | −22 | 0.8 |
182.2 | −17 | 0.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khattabi, L.; Chettoum, A.; Hemida, H.; Boussebaa, W.; Atanassova, M.; Messaoudi, M. Pirimicarb Induction of Behavioral Disorders and of Neurological and Reproductive Toxicities in Male Rats: Euphoric and Preventive Effects of Ephedra alata Monjauzeana. Pharmaceuticals 2023, 16, 402. https://doi.org/10.3390/ph16030402
Khattabi L, Chettoum A, Hemida H, Boussebaa W, Atanassova M, Messaoudi M. Pirimicarb Induction of Behavioral Disorders and of Neurological and Reproductive Toxicities in Male Rats: Euphoric and Preventive Effects of Ephedra alata Monjauzeana. Pharmaceuticals. 2023; 16(3):402. https://doi.org/10.3390/ph16030402
Chicago/Turabian StyleKhattabi, Latifa, Aziez Chettoum, Houari Hemida, Walid Boussebaa, Maria Atanassova, and Mohammed Messaoudi. 2023. "Pirimicarb Induction of Behavioral Disorders and of Neurological and Reproductive Toxicities in Male Rats: Euphoric and Preventive Effects of Ephedra alata Monjauzeana" Pharmaceuticals 16, no. 3: 402. https://doi.org/10.3390/ph16030402
APA StyleKhattabi, L., Chettoum, A., Hemida, H., Boussebaa, W., Atanassova, M., & Messaoudi, M. (2023). Pirimicarb Induction of Behavioral Disorders and of Neurological and Reproductive Toxicities in Male Rats: Euphoric and Preventive Effects of Ephedra alata Monjauzeana. Pharmaceuticals, 16(3), 402. https://doi.org/10.3390/ph16030402