N-/T-Type vs. L-Type Calcium Channel Blocker in Treating Chronic Kidney Disease: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Sources and Searches
2.2. Study Selection
2.3. Data Extraction and Quality Assessment
2.4. Data Synthesis and Analysis
3. Results
3.1. Characteristics and Quality of the Studies
3.2. Effect of N-/T-Type CCB vs. L-Type CCB on Urine Albumin/Protein Excretion
3.3. Effect of N-/T-Type CCB vs. L-Type CCB on Serum Creatinine and GFR
3.4. Effect of N-/T-Type CCB vs. L-Type CCB on BP
3.5. Effect of N-/T-Type CCB vs. L-Type CCB on Plasma Aldosterone
3.6. Safety Analysis
3.7. Sensitivity Analysis and Meta-Regression
3.8. Publication Bias
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Webster, A.C.; Nagler, E.V.; Morton, R.L.; Masson, P. Chronic Kidney Disease. Lancet 2017, 389, 1238–1252. [Google Scholar] [CrossRef]
- Lv, J.-C.; Zhang, L.-X. Prevalence and Disease Burden of Chronic Kidney Disease. Ren. Fibros. Mech. Ther. 2019, 1165, 3–15. [Google Scholar] [CrossRef]
- Evans, M.; Lewis, R.D.; Morgan, A.R.; Whyte, M.B.; Hanif, W.; Bain, S.C.; Davies, S.; Dashora, U.; Yousef, Z.; Patel, D.C.; et al. A Narrative Review of Chronic Kidney Disease in Clinical Practice: Current Challenges and Future Perspectives. Adv. Ther. 2021, 39, 33–43. [Google Scholar] [CrossRef]
- Mills, K.T.; Xu, Y.; Zhang, W.; Bundy, J.D.; Chen, C.-S.; Kelly, T.N.; Chen, J.; He, J. A systematic analysis of worldwide population-based data on the global burden of chronic kidney disease in 2010. Kidney Int. 2015, 88, 950–957. [Google Scholar] [CrossRef] [Green Version]
- Sharma, S.; Smyth, B. From Proteinuria to Fibrosis: An Update on Pathophysiology and Treatment Options. Kidney Blood Press. Res. 2021, 46, 411–420. [Google Scholar] [CrossRef]
- Chen, C.-H.; Wu, H.-Y.; Wang, C.-L.; Yang, F.-J.; Wu, P.-C.; Hung, S.-C.; Kan, W.-C.; Yang, C.-W.; Chiang, C.-K.; Huang, J.-W.; et al. Proteinuria as a Therapeutic Target in Advanced Chronic Kidney Disease: A Retrospective Multicenter Cohort Study. Sci. Rep. 2016, 6, 26539. [Google Scholar] [CrossRef] [Green Version]
- Whaley-Connell, A.T.; Sowers, J.R.; Stevens, L.A.; McFarlane, S.I.; Shlipak, M.G.; Norris, K.C.; Chen, S.-C.; Qiu, Y.; Wang, C.; Li, S.; et al. CKD in the United States: Kidney Early Evaluation Program (KEEP) and National Health and Nutrition Examination Survey (NHANES) 1999–2004. Am. J. Kidney Dis. 2008, 51, S13–S20. [Google Scholar] [CrossRef] [Green Version]
- Liu, D.; Lv, L.-L. New Understanding on the Role of Proteinuria in Progression of Chronic Kidney Disease. Ren. Fibros. Mech. Ther. 2019, 1165, 487–500. [Google Scholar] [CrossRef]
- Chang, A.R.; Lóser, M.; Malhotra, R.; Appel, L.J. Blood Pressure Goals in Patients with CKD: A Review of Evidence and Guidelines. Clin. J. Am. Soc. Nephrol. 2019, 14, 161–169. [Google Scholar] [CrossRef] [Green Version]
- Der Mesropian, P.J.; Shaikh, G.; Beers, K.H.; Mehta, S.; Prado, M.R.M.; Hongalgi, K.; Mathew, R.O.; Feustel, P.J.; Salman, L.H.; Perna, A.; et al. Effect of Intensive Blood Pressure on the Progression of Non-Diabetic Chronic Kidney Disease at Varying Degrees of Proteinuria. J. Investig. Med. 2021, 69, 1035–1043. [Google Scholar] [CrossRef]
- Cheung, A.K.; Rahman, M.; Reboussin, D.M.; Craven, T.E.; Greene, T.; Kimmel, P.L.; Cushman, W.C.; Hawfield, A.T.; Johnson, K.C.; Lewis, C.E.; et al. Effects of Intensive BP Control in CKD. J. Am. Soc. Nephrol. 2017, 28, 2812–2823. [Google Scholar] [CrossRef] [Green Version]
- Rovin, B.H.; Adler, S.G.; Barratt, J.; Bridoux, F.; Burdge, K.A.; Chan, T.M.; Cook, H.T.; Fervenza, F.C.; Gibson, K.L.; Glassock, R.J.; et al. KDIGO 2021 Clinical Practice Guideline for the Management of Glomerular Diseases. Kidney Int. 2021, 100, S1–S276. [Google Scholar]
- Hayashi, K.; Wakino, S.; Sugano, N.; Ozawa, Y.; Homma, K.; Saruta, T. Ca2+ channel subtypes and pharmacology in the kidney. Circ. Res. 2007, 100, 342–353. [Google Scholar] [CrossRef] [Green Version]
- Ohno, S.; Ishii, A.; Yanagita, M.; Yokoi, H. Calcium channel blocker in patients with chronic kidney disease. Clin. Exp. Nephrol. 2021, 26, 207–215. [Google Scholar] [CrossRef]
- Pongpanich, P.; Pitakpaiboonkul, P.; Takkavatakarn, K.; Praditpornsilpa, K.; Eiam-Ong, S.; Susantitaphong, P. The benefits of angiotensin-converting enzyme inhibitors/angiotensin II receptor blockers combined with calcium channel blockers on metabolic, renal, and cardiovascular outcomes in hypertensive patients: A meta-analysis. Int. Urol. Nephrol. 2018, 50, 2261–2278. [Google Scholar] [CrossRef]
- Ihm, C.-G. Hypertension in Chronic Glomerulonephritis. Electrolytes Blood Press. 2015, 13, 41–45. [Google Scholar] [CrossRef] [Green Version]
- Zhao, M.; Wang, R.; Yu, Y.; Chang, M.; Ma, S.; Zhang, H.; Qu, H.; Zhang, Y. Efficacy and Safety of Angiotensin-Converting Enzyme Inhibitor in Combination with Angiotensin-Receptor Blocker in Chronic Kidney Disease Based on Dose: A Systematic Review and Meta-Analysis. Front. Pharm. 2021, 12, 638611. [Google Scholar] [CrossRef]
- Takayama, T.; Yoda, S.; Yajima, Y.; Kasamaki, Y.; Kunimoto, S.; Kanai, T.; Hirayama, A. Improvements in Augmentation Index and Urinary Albumin Excretion with Benidipine in Hypertensive Patients with Chronic Kidney Disease. Int. Heart J. 2016, 57, 53–60. [Google Scholar] [CrossRef] [Green Version]
- Abe, M.; Maruyama, N.; Suzuki, H.; Inoshita, A.; Yoshida, Y.; Okada, K.; Soma, M. L/N-type calcium channel blocker cilnidipine reduces plasma aldosterone, albuminuria, and urinary liver-type fatty acid binding protein in patients with chronic kidney disease. Heart Vessel. 2012, 28, 480–489. [Google Scholar] [CrossRef]
- Takenaka, T.; Seto, T.; Okayama, M.; Kojima, E.; Nodaira, Y.; Sueyoshi, K.; Kikuta, T.; Watanabe, Y.; Inoue, T.; Takane, H.; et al. Long-Term Effects of Calcium Antagonists on Augmentation Index in Hypertensive Patients with Chronic Kidney Disease: A Randomized Controlled Study. Am. J. Nephrol. 2012, 35, 416–423. [Google Scholar] [CrossRef]
- Hatta, T.; Takeda, K.; Shiotsu, Y.; Sugishita, C.; Adachi, T.; Kimura, T.; Sonomura, K.; Kusaba, T.; Kishimioto, N.; Narumiya, H.; et al. Switching to an L/N-Type Calcium Channel Blocker Shows Renoprotective Effects in Patients with Chronic Kidney Disease: The Kyoto Cilnidipine Study. J. Int. Med. Res. 2012, 40, 1417–1428. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, T.; Sato, E.; Fujiwara, N.; Kawagoe, Y.; Koide, H.; Ueda, Y.; Takeuchi, M.; Yamagishi, S.-I. Calcium Channel Blocker Inhibition of AGE and RAGE Axis Limits Renal Injury in Nondiabetic Patients with Stage I or II Chronic Kidney Disease. Clin. Cardiol. 2011, 34, 372–377. [Google Scholar] [CrossRef]
- Abe, M.; Okada, K.; Maruyama, N.; Matsumoto, S.; Maruyama, T.; Fujita, T.; Matsumoto, K.; Soma, M. Benidipine reduces albuminuria and plasma aldosterone in mild-to-moderate stage chronic kidney disease with albuminuria. Hypertens. Res. 2010, 34, 268–273. [Google Scholar] [CrossRef] [Green Version]
- Abe, M.; Maruyama, N.; Okada, K.; Matsumoto, S.; Matsumoto, K.; Soma, M. Additive antioxidative effects of azelnidipine on angiotensin receptor blocker olmesartan treatment for type 2 diabetic patients with albuminuria. Hypertens. Res. 2011, 34, 935–941. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, T.; Sato, E.; Fujiwara, N.; Kawagoe, Y.; Ueda, Y.; Sugaya, T.; Yamagishi, S.; Yamada, S.; Koide, H. Comparative effects of benidipine and amlodipine on proteinuria, urinary 8-OHdG, urinary L-FABP, and inflammatory and atherosclerosis markers in early-stage chronic kidney disease. Am. J. Med. Sci. 2010, 339, 157–163. [Google Scholar] [CrossRef]
- Miwa, Y.; Tsuchihashi, T.; Ohta, Y.; Tominaga, M.; Kawano, Y.; Sasaguri, T.; Ueno, M.; Matsuoka, H. Antiproteinuric Effect of Cilnidipine in Hypertensive Japanese Treated with Renin-Angiotensin-System Inhibitors—A Multicenter, Open, Randomized Trial Using 24-Hour Urine Collection. Clin. Exp. Hypertens. 2010, 32, 400–405. [Google Scholar] [CrossRef]
- Abe, M.; Okada, K.; Maruyama, T.; Maruyama, N.; Matsumoto, K. Comparison of the antiproteinuric effects of the calcium channel blockers benidipine and amlodipine administered in combination with angiotensin receptor blockers to hypertensive patients with stage 3–5 chronic kidney disease. Hypertens. Res. 2009, 32, 270–275. [Google Scholar] [CrossRef]
- Ogawa, S.; Mori, T.; Nako, K.; Ito, S. Combination Therapy with Renin-Angiotensin System Inhibitors and the Calcium Channel Blocker Azelnidipine Decreases Plasma Inflammatory Markers and Urinary Oxidative Stress Markers in Patients with Diabetic Nephropathy. Hypertens. Res. 2008, 31, 1147–1155. [Google Scholar] [CrossRef] [Green Version]
- Fujita, T.; Ando, K.; Nishimura, H.; Ideura, T.; Yasuda, G.; Isshiki, M.; Takahashi, K. Antiproteinuric effect of the calcium channel blocker cilnidipine added to renin-angiotensin inhibition in hypertensive patients with chronic renal disease. Kidney Int. 2007, 72, 1543–1549. [Google Scholar] [CrossRef] [Green Version]
- Hamrahian, S.M.; Falkner, B. Hypertension in Chronic Kidney Disease. Adv. Exp. Med. Biol. 2017, 956, 307–325. [Google Scholar]
- Cravedi, P.; Ruggenenti, P.; Remuzzi, G. Proteinuria should be used as a surrogate in CKD. Nat. Rev. Nephrol. 2012, 8, 301–306. [Google Scholar] [CrossRef]
- Waijer, S.W.; Gansevoort, R.T.; Heerspink, H.J. Change in albuminuria as a surrogate endpoint. Curr. Opin. Nephrol. Hypertens. 2019, 28, 519–526. [Google Scholar] [CrossRef]
- Ku, E.; Lee, B.J.; Wei, J.; Weir, M.R. Hypertension in CKD: Core Curriculum 2019. Am. J. Kidney Dis. 2019, 74, 120–131. [Google Scholar] [CrossRef] [Green Version]
- Ku, E.; Glidden, D.V.; Johansen, K.L.; Sarnak, M.; Tighiouart, H.; Grimes, B.; Hsu, C.-Y. Association between strict blood pressure control during chronic kidney disease and lower mortality after onset of end-stage renal disease. Kidney Int. 2015, 87, 1055–1060. [Google Scholar] [CrossRef] [Green Version]
- Malhotra, R.; Nguyen, H.A.; Benavente, O.; Mete, M.; Howard, B.V.; Mant, J.; Odden, M.C.; Peralta, C.A.; Cheung, A.K.; Nadkarni, G.N.; et al. Association between More Intensive vs. Less Intensive Blood Pressure Lowering and Risk of Mortality in Chronic Kidney Disease Stages 3 to 5: A Systematic Review and Meta-analysis. JAMA Intern. Med. 2017, 177, 1498–1505. [Google Scholar] [CrossRef]
- Smith, D.K.; Lennon, R.; Carlsgaard, P.B. Managing Hypertension Using Combination Therapy. Am. Fam. Physician 2020, 101, 341–349. [Google Scholar]
- Norris, K.C.; Nicholas, S.B. Strategies for Controlling Blood Pressure and Reducing Cardiovascular Disease Risk in Patients with Chronic Kidney Disease. Ethn. Dis. 2015, 25, 515–520. [Google Scholar] [CrossRef] [Green Version]
- Pugh, D.; Gallacher, P.J.; Dhaun, N. Management of Hypertension in Chronic Kidney Disease. Drugs 2019, 79, 365–379. [Google Scholar] [CrossRef] [Green Version]
- Shaikh, G.B.; Hippargi, S.; Majid, D.S.A.; Das, K.K. Protective Actions of Cilnidipine: Dual L/N-Type Calcium Channel Blocker Against Hypertensive Renal Injury in Rats. Biomed. Pharmacol. J. 2021, 14, 1887–1893. [Google Scholar] [CrossRef]
- Ando, K. L-/N-type calcium channel blockers and proteinuria. Curr. Hypertens. Rev. 2013, 9, 210–218. [Google Scholar] [CrossRef]
- Moore, K.H.; Clemmer, J.S. Questioning the renoprotective role of L-type calcium channel blockers in chronic kidney disease using physiological modeling. Am. J. Physiol. Physiol. 2021, 321, F548–F557. [Google Scholar] [CrossRef]
- Hansen, P.B.L.; Jensen, B.L.; Andreasen, D.; Skøtt, O. Differential Expression of T- and L-Type Voltage-Dependent Calcium Channels in Renal Resistance Vessels. Circ. Res. 2001, 89, 630–638. [Google Scholar] [CrossRef]
- Lei, B.; Nakano, D.; Fujisawa, Y.; Liu, Y.; Hitomi, H.; Kobori, H.; Mori, H.; Masaki, T.; Asanuma, K.; Tomino, Y.; et al. N-type calcium channel inhibition with cilnidipine elicits glomerular podocyte protection independent of sympathetic nerve inhibition. J. Pharm. Sci. 2012, 119, 359–367. [Google Scholar] [CrossRef] [Green Version]
- Brunette, M.G.; Leclerc, M.; Couchourel, D.; Mailloux, J.; Bourgeois, Y. Characterization of three types of calcium channel in the luminal membrane of the distal nephron. Can. J. Physiol. Pharmacol. 2004, 82, 30–37. [Google Scholar] [CrossRef]
- Andreasen, D.; Jensen, B.L.; Hansen, P.B.; Kwon, T.H.; Nielsen, S.; Skøtt, O. The alpha(1G)-subunit of a voltage-dependent Ca(2+) channel is localized in rat distal nephron and collecting duct. Am. J. Physiol. Ren. Physiol. 2000, 279, F997–F1005. [Google Scholar] [CrossRef]
- Bai, L.; Sun, S.; Sun, Y.; Wang, F.; Nishiyama, A. N-type calcium channel and renal injury. Int. Urol. Nephrol. 2022, 54, 2871–2879. [Google Scholar] [CrossRef]
- Konda, T.; Enomoto, A.; Takahara, A.; Yamamoto, H. Effects of L/N-type calcium channel antagonist, cilnidipine on progressive renal injuries in Dahl salt-sensitive rats. Biol. Pharm. Bull. 2006, 29, 933–937. [Google Scholar] [CrossRef] [Green Version]
- Fan, Y.-Y.; Kohno, M.; Nakano, D.; Ohsaki, H.; Kobori, H.; Suwarni, D.; Ohashi, N.; Hitomi, H.; Asanuma, K.; Noma, T.; et al. Cilnidipine suppresses podocyte injury and proteinuria in metabolic syndrome rats: Possible involvement of N-type calcium channel in podocyte. J. Hypertens. 2010, 28, 1034–1043. [Google Scholar] [CrossRef] [Green Version]
- Sugano, N.; Wakino, S.; Kanda, T.; Tatematsu, S.; Homma, K.; Yoshioka, K.; Hasegawa, K.; Hara, Y.; Suetsugu, Y.; Yoshizawa, T.; et al. T-type calcium channel blockade as a therapeutic strategy against renal injury in rats with subtotal nephrectomy. Kidney Int. 2008, 73, 826–834. [Google Scholar] [CrossRef] [Green Version]
- Baylis, C.; Qiu, C.; Engels, K. Comparison of L-type and mixed L- and T-type calcium channel blockers on kidney injury caused by deoxycorticosterone-salt hypertension in rats. Am. J. Kidney Dis. 2001, 38, 1292–1297. [Google Scholar] [CrossRef]
- Lu, Y.; Ku, E.; Campese, V.M. Aldosterone in the Pathogenesis of Chronic Kidney Disease and Proteinuria. Curr. Hypertens. Rep. 2010, 12, 303–306. [Google Scholar] [CrossRef]
- Bomback, A.S.; Klemmer, P.J. The incidence and implications of aldosterone breakthrough. Nat. Clin. Pract. Nephrol. 2007, 3, 486–492. [Google Scholar] [CrossRef]
- Schrier, R.W.; Masoumi, A.; Elhassan, E. Aldosterone: Role in edematous disorders, hypertension, chronic renal failure, and metabolic syndrome. Clin. J. Am. Soc. Nephrol. 2010, 5, 1132–1140. [Google Scholar] [CrossRef] [Green Version]
- Hargovan, M.; Ferro, A. Aldosterone synthase inhibitors in hypertension: Current status and future possibilities. JRSM Cardiovasc. Dis. 2014, 3, 2048004014522440. [Google Scholar] [CrossRef] [Green Version]
- John, S.; Thuluvath, P.J. Hyponatremia in cirrhosis: Pathophysiology and management. World J. Gastroenterol. 2015, 21, 3197–3205. [Google Scholar] [CrossRef]
- Schjoedt, K.J. The renin-angiotensin-aldosterone system and its blockade in diabetic nephropathy: Main focus on the role of aldosterone. Dan. Med. Bull. 2011, 58, B4265. [Google Scholar]
- Goenka, L.; Padmanaban, R.; George, M. The Ascent of Mineralocorticoid Receptor Antagonists in Diabetic Nephropathy. Curr. Clin. Pharmacol. 2019, 14, 78–83. [Google Scholar] [CrossRef]
- Erraez, S.; López-Mesa, M.; Gómez-Fernández, P. Mineralcorticoid receptor blockers in chronic kidney disease. Nefrología 2021, 41, 258–275. [Google Scholar] [CrossRef]
- Homma, K.; Hayashi, K.; Yamaguchi, S.; Fujishima, S.; Hori, S.; Itoh, H. Renal microcirculation and calcium channel sub-types. Curr. Hypertens. Rev. 2013, 9, 182–186. [Google Scholar] [CrossRef] [Green Version]
- Abe, M.; Okada, K.; Soma, M. T-type Ca channel blockers in patients with chronic kidney disease in clinical practice. Curr. Hypertens. Rev. 2014, 9, 202–209. [Google Scholar] [CrossRef]
- Thamcharoen, N.; Susantitaphong, P.; Wongrakpanich, S.; Chongsathidkiet, P.; Tantrachoti, P.; Pitukweerakul, S.; Avihingsanon, Y.; Praditpornsilpa, K.; Jaber, B.L.; Eiam-Ong, S. Effect of N- and T-type calcium channel blocker on proteinuria, blood pressure and kidney function in hypertensive patients: A meta-analysis. Hypertens. Res. 2015, 38, 847–855. [Google Scholar] [CrossRef]
Studies | CCB | N (T/C) | Male (%) | Age (Y) | Duration (Months) | sCr (umol/L) | GFR [mL/min or mL/(min·1.73 m2)] | Urine Albumin or Protein Excretion (mg/g Creatinine or mg/24 h) | SBP (mm Hg) | DBP (mm Hg) | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
N-/T-Type CCB | L-Type CCB | T | C | T | C | ||||||||
Takayama T. 2016 [18] | Benidipine + RASI | Amlodipine + RASI | 41/47 | 73.20 | 66.00 | 68.30 | 72.90 | 12 | NR | 54.25 | 250.00 † | 135.75 | 70.70 |
Abe M. 2013 [19] | Cilnidipine + ARB | Amlodipine + ARB | 35/35 | 54.29 | 60.00 | 66.00 | 67.00 | 12 | 101.66 | 47.00 | 323.50 † | 143.00 | 81.50 |
Takenaka T. 2012 [20] | Azelnidipine + ARB | Amlodipine + ARB | 29/30 | 63.00 | 60.00 | 66.00 | 67.00 | 12 | NR | 25.50 | NR | 139.50 | 84.50 |
Hatta T. 2012 [21] | Cilnidipine + ARB | L-type CCB + ARB | 24/26 | 54.17 | 88.46 | 57.00 | 56.00 | 12 | 164.42 | 36.05 | 1595.00 | 128.90 | 71.80 |
Nakamura T. 2011 [22] | Azelnidipine + ARB | Amlodipine + ARB | 15/15 | 60.00 | 60.00 | 45.30 | 45.50 | 6 | NR | 81.90 | 1000.00 | 155.00 | 92.50 |
Abe M. 2011 (Benidipine) [23] | Benidipine + ARB | Amlodipine + ARB | 52/52 | 57.69 | 57.69 | 67.30 | 67.50 | 6 | 109.62 | 44.80 | ≥30 † | 144.50 | 81.50 |
Abe M. 2011 (Azelnidipine) [24] | Azelnidipine + Olmesartan | Amlodipine + Olmesartan | 34/33 | 61.76 | 60.61 | 65.80 | 66.00 | 6 | 93.70 | 53.80 | 383.50 † | 140.70 | 81.65 |
Nakamura T. 2010 [25] | Benidipine + ACEI/ARB | Amlodipine + ACEI/ARB | 20/20 | 55.00 | 55.00 | 33.50 | 31.60 | 12 | 63.21 | 92.35 | 1550.00 | 153.50 | 91.50 |
Miwa Y. 2010 [26] | Cilnidipine + ACEI/ARB | Amlodipine + ACEI/ARB | 18/17 | 50.00 | 52.94 | 66.80 | 57.90 | 12 | 76.47 | NR | 490.00 | 138.25 | 75.90 |
Abe M. 2009 [27] | Benidipine + ARB | Amlodipine + ARB | 24/23 | 62.50 | 65.22 | 65.90 | 65.50 | 6 | 266.97 | 21.95 | 3364.50 | 153.55 | 86.95 |
Ogawa S. 2008 [28] | Azelnidipine + ACEI/ARB | Nifedipine + ACEI/ARB | 21/17 | 52.38 | 52.94 | 61.70 | 59.40 | 12 | 68.07 | 69.80 | 490.69 † | 156.50 | 78.45 |
Fujita T. 2007 [29] | Cilnidipine + ACEI/ARB | Amlodipine + ACEI/ARB | 179/160 | 67.60 | 58.13 | 59.90 | 59.30 | 12 | 113.15 | NR | 1816.50 | 152.40 | 87.45 |
Outcome | No. Studies | No. Participants | Random Effects Model | Assessment of Heterogeneity | Publication Bias (p-Value) | |||
---|---|---|---|---|---|---|---|---|
95% CI | p-Value | I2 (%) | p-Value | Begg’s Test | Egger’s Test | |||
Urine albumin/protein excretion (mg/g of creatinine or mg/24 h) | 10 | 833 | SMD: −0.41 (−0.64, −0.18) | <0.001 | 55.0 | 0.02 | 0.03 | 0.10 |
Serum creatinine (μmol/L) | 4 | 580 | WMD: −3.64 (−11.63, 4.35) | 0.37 | 0.0 | 0.88 | 1.00 | 0.52 |
Glomerular filtration rate (mL/min or mL/(min·1.73 m2)) | 6 | 418 | SMD: 0.06 (−0.13, 0.25) | 0.53 | 0.0 | 0.85 | 0.71 | 0.87 |
Systolic blood pressure (mmHg) | 10 | 882 | WMD: 0.17 (−1.05, 1.39) | 0.79 | 0.0 | 0.62 | 0.86 | 0.91 |
Diastolic blood pressure (mmHg) | 10 | 882 | WMD: 0.64 (−0.55, 1.83) | 0.29 | 33.0 | 0.14 | 0.47 | 0.31 |
Adverse effects | 3 | 442 | RR: 0.95 (0.35, 2.58) | 0.93 | 23.3 | 0.27 | 1.00 | 0.92 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, M.; Zhang, Z.; Pan, Z.; Ma, S.; Chang, M.; Fan, J.; Xue, S.; Wang, Y.; Qu, H.; Zhang, Y. N-/T-Type vs. L-Type Calcium Channel Blocker in Treating Chronic Kidney Disease: A Systematic Review and Meta-Analysis. Pharmaceuticals 2023, 16, 338. https://doi.org/10.3390/ph16030338
Zhao M, Zhang Z, Pan Z, Ma S, Chang M, Fan J, Xue S, Wang Y, Qu H, Zhang Y. N-/T-Type vs. L-Type Calcium Channel Blocker in Treating Chronic Kidney Disease: A Systematic Review and Meta-Analysis. Pharmaceuticals. 2023; 16(3):338. https://doi.org/10.3390/ph16030338
Chicago/Turabian StyleZhao, Mingming, Ziyan Zhang, Zhiyu Pan, Sijia Ma, Meiying Chang, Jiao Fan, Shunxuan Xue, Yuejun Wang, Hua Qu, and Yu Zhang. 2023. "N-/T-Type vs. L-Type Calcium Channel Blocker in Treating Chronic Kidney Disease: A Systematic Review and Meta-Analysis" Pharmaceuticals 16, no. 3: 338. https://doi.org/10.3390/ph16030338
APA StyleZhao, M., Zhang, Z., Pan, Z., Ma, S., Chang, M., Fan, J., Xue, S., Wang, Y., Qu, H., & Zhang, Y. (2023). N-/T-Type vs. L-Type Calcium Channel Blocker in Treating Chronic Kidney Disease: A Systematic Review and Meta-Analysis. Pharmaceuticals, 16(3), 338. https://doi.org/10.3390/ph16030338