Uncommon Septic Arthritis of the Hip Joint in an Immunocompetent Adult Patient Due to Bacillus pumilus and Paenibacillus barengoltzii Managed with Long-Term Treatment with Linezolid: A Case Report and Short Literature Review
Abstract
1. Introduction
2. Case Report
3. Discussion
3.1. Epidemiological and Clinical Considerations
3.2. Short Overview of Published Case Reports on Bacillus pumilus
3.3. Capabilities of Biofilm Formation
3.4. Long-Term Treatment with Linezolid
3.5. Limitations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ash, C.; Priest, F.G.; Collins, M.D. Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Proposal for the creation of a new genus Paenibacillus. Antonie Van Leeuwenhoek 1993, 64, 253–260. [Google Scholar] [CrossRef] [PubMed]
- Brown, K.L. Control of bacterial spores. Br. Med. Bull. 2000, 56, 158–171. [Google Scholar] [CrossRef] [PubMed]
- Celandroni, F.; Salvetti, S.; Gueye, S.A.; Mazzantini, D.; Lupetti, A.; Senesi, S.; Ghelardi, E. Identification and Pathogenic Potential of Clinical Bacillus and Paenibacillus Isolates. PLoS ONE 2016, 11, e0152831. [Google Scholar] [CrossRef] [PubMed]
- Abrishami, M.; Hashemi, B.; Abrishami, M.; Abnous, K.; Razavi-Azarkhiavi, K.; Behravan, J. PCR detection and identification of bacterial contaminants in ocular samples from postoperative endophthalmitis. J. Clin. Diagn. Res. 2015, 9, NC01–NC03. [Google Scholar] [CrossRef] [PubMed]
- Ferrand, J.; Hadou, T.; Selton-Suty, C.; Goehringer, F.; Sadoul, N.; Alauzet, C.; Lozniewski, A. Cardiac device-related endocarditis caused by Paenibacillus glucanolyticus. J. Clin. Microbiol. 2013, 51, 3439–3442. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Idelevich, E.A.; Pogoda, C.A.; Ballhausen, B.; Wüllenweber, J.; Eckardt, L.; Baumgartner, H.; Waltenberger, J.; Peters, G.; Becker, K. Pacemaker lead infection and related bacteraemia caused by normal and small colony variant phenotypes of Bacillus licheniformis. J. Med. Microbiol. 2013, 62 Pt 6, 940–944. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Jeon, Y.L.; Yang, J.J.; Kim, M.J.; Lim, G.; Cho, S.Y.; Park, T.S.; Suh, J.-T.; Park, Y.H.; Lee, M.S.; Kim, S.C.; et al. Combined Bacillus licheniformis and Bacillus subtilis infection in a patient with esophageal perforation. J. Med. Microbiol. 2012, 61 Pt 12, 1766–1769. [Google Scholar] [CrossRef]
- Kimouli, M.; Vrioni, G.; Papadopoulou, M.; Koumaki, V.; Petropoulou, D.; Gounaris, A.; Friedrich, A.W.; Tsakris, A. Two cases of severe sepsis caused by Bacillus pumilus in neonatal infants. J. Med. Microbiol. 2012, 61 Pt 4, 596–599. [Google Scholar] [CrossRef]
- Padhi, S.; Dash, M.; Sahu, R.; Panda, P. Urinary tract infection due to Paenibacillus alvei in a chronic kidney disease: A rare case report. J. Lab. Phys. 2013, 5, 133–135. [Google Scholar] [CrossRef]
- Rieg, S.; Martin Bauer, T.; Peyerl-Hoffmann, G.; Held, J.; Ritter, W.; Wagner, D.; Kern, W.V.; Serr, A. Paenibacillus larvae bacteremia in injection drug users. Emerg. Infect. Dis. 2010, 16, 487–489. [Google Scholar] [CrossRef]
- Sahu, C.; Kumar, K.; Sinha, M.K.; Venkata, A.; Majji, A.B.; Jalali, S. Review of endogenous endophthalmitis during pregnancy including case series. Int. Ophthalmol. 2013, 33, 611–618. [Google Scholar] [CrossRef] [PubMed]
- Tourasse, N.J.; Helgason, E.; Klevan, A.; Sylvestre, P.; Moya, M.; Haustant, M.; Økstad, O.A.; Fouet, A.; Mock, M.; Kolstø, A.-B. Extended and global phylogenetic view of the Bacillus cereus group population by combination of MLST, AFLP, and MLEE genotyping data. Food Microbiol. 2011, 28, 236–244. [Google Scholar] [CrossRef] [PubMed]
- Rasko, D.A.; Altherr, M.R.; Han, C.S.; Ravel, J. Genomics of the Bacillus cereus group of organisms. FEMS Microbiol. Rev. 2005, 29, 303–329. [Google Scholar]
- Keller, P.M.; Rampini, S.K.; Büchler, A.C.; Eich, G.; Wanner, R.M.; Speck, R.F.; Böttger, E.C.; Bloemberg, G.V. Recognition of potentially novel human disease-associated pathogens by implementation of systematic 16S rRNA gene sequencing in the diagnostic laboratory. J. Clin. Microbiol. 2010, 48, 3397–3402. [Google Scholar] [CrossRef] [PubMed]
- Hua, K.; Yang, X.; Feng, J.; Wang, F.; Yang, L.; Zhang, H.; Hu, Y.-C. The efficacy and safety of core decompression for the treatment of femoral head necrosis: A systematic review and meta-analysis. J. Orthop. Surg. Res. 2019, 14, 306. [Google Scholar] [CrossRef]
- Ravn, C.; Neyt, J.; Benito, N.; Abreu, M.A.; Achermann, Y.; Bozhkova, S.; Coorevits, L.; Ferrari, M.C.; Gammelsrud, K.W.; Gerlach, U.-J.; et al. Guideline for management of septic arthritis in native joints (SANJO). J. Bone Jt. Infect. 2023, 8, 29–37. [Google Scholar] [CrossRef]
- Clemett, D.; Markham, A. Linezolid. Drugs 2000, 59, 815–827. [Google Scholar] [CrossRef]
- Fusini, F.; Colò, G.; Massè, A.; Girardo, M. Uncommon cervical pain due by Bacillus pumilus spondylodiscitis in an immunocompetent patient: A case report. Acta Biomed. 2021, 92 (Suppl. S1), e2021136. [Google Scholar] [CrossRef]
- de Salazar, A.; Ferrer, F.; Vinuesa, D.; Chueca, N.; de Luis-Perez, C.; García, F. Unusual case report of skin infection by Paenibacillus timonensis. Rev. Esp. Quimioter. 2020, 33, 139–140. [Google Scholar] [CrossRef]
- Balato, G.; de Matteo, V.; Ascione, T.; de Giovanni, R.; Marano, E.; Rizzo, M.; Mariconda, M. Management of septic arthritis of the hip joint in adults. A systematic review of the literature. BMC Musculoskelet. Disord. 2021, 22 (Suppl. S2), 1006. [Google Scholar] [CrossRef]
- Jeßberger, N.; Krey, V.M.; Rademacher, C.; Böhm, M.E.; Mohr, A.-K.; Ehling-Schulz, M.; Scherer, S.; Märtlbauer, E. From genome to toxicity: A combinatory approach highlights the complexity of enterotoxin production in Bacillus cereus. Front. Microbiol. 2015, 6, 560. [Google Scholar] [CrossRef]
- Borsa, B.A.; Aldağ, M.E.; Tunalı, B.; Dinç, U.; Güngördü Dalar, Z.; Özalp, V.C. A sepsis case caused by a rare opportunistic pathogen: Bacillus pumilus. Mikrobiyol. Bul. 2016, 50, 466–470. [Google Scholar] [CrossRef] [PubMed]
- Farhat, H.; Chachaty, E.; Antoun, S.; Nitenberg, G.; Zahar, J.-R. Infections à Bacillus et immunodépression, à propos de deux cas. Méd. Mal. Infect. 2008, 38, 612–614. [Google Scholar] [CrossRef] [PubMed]
- McKillip, J.L. Prevalence and expression of enterotoxins in Bacillus cereus and other Bacillus spp., a literature review. Antonie Van Leeuwenhoek 2000, 77, 393–399. [Google Scholar] [CrossRef]
- Tena, D.; Martinez-Torres, J.A.; Perez-Pomata, M.T.; Saez-Nieto, J.A.; Rubio, V.; Bisquert, J. Cutaneous Infection Due to Bacillus pumilus: Report of 3 Cases. Clin. Infect. Dis. 2007, 44, e40–e42. [Google Scholar] [CrossRef] [PubMed]
- Grady, E.N.; MacDonald, J.; Liu, L.; Richman, A.; Yuan, Z.C. Current knowledge and perspectives of Paenibacillus: A review. Microb. Cell Fact. 2016, 15, 203. [Google Scholar] [CrossRef]
- Reboli, A.C.; Bryan, C.S.; Farrar, W.E. Bacteremia and infection of a hip prosthesis caused by Bacillus alvei. J. Clin. Microbiol. 1989, 27, 1395–1396. [Google Scholar] [CrossRef]
- DeLeon, S.D.; Welliver, R.C. Sr Paenibacillus alvei sepsis in a neonate. Pediatr. Infect. Dis. J. 2016, 35, 358. [Google Scholar] [CrossRef]
- Roux, V.; Fenner, L.; Raoult, D. Paenibacillus provencensis sp. nov., isolated from human cerebrospinal fluid, and Paenibacillus urinalis sp. nov., isolated from human urine. Int. J. Syst. Evol. Microbiol. 2008, 58, 682–687. [Google Scholar] [CrossRef]
- Bosshard, P.P.; Zbinden, R.; Altwegg, M. Paenibacillus turicensis sp. nov., a novel bacterium harbouring heterogeneities between 16S rRNA genes. Int. J. Syst. Evol. Microbiol. 2002, 52, 2241–2249. [Google Scholar]
- Roux, V.; Raoult, D. Paenibacillus massiliensis sp. nov. Paenibacillus sanguinis sp. nov. and Paenibacillus timonensis sp. nov., isolated from blood cultures. Int. J. Syst. Evol. Microbiol. 2004, 54, 1049–1054. [Google Scholar] [CrossRef] [PubMed]
- Birlutiu, R.M.; Roman, M.D.; Cismasiu, R.S.; Fleaca, S.R.; Popa, C.M.; Mihalache, M.; Birlutiu, V. Sonication contribution to identifying prosthetic joint infection with Ralstonia pickettii: A case report and review of the literature. BMC Musculoskelet. Disord. 2017, 18, 311. [Google Scholar] [CrossRef]
- Birlutiu, R.M.; Stoica, C.I.; Russu, O.; Cismasiu, R.S.; Birlutiu, V. Positivity Trends of Bacterial Cultures from Cases of Acute and Chronic Periprosthetic Joint Infections. J. Clin. Med. 2022, 11, 2238. [Google Scholar] [CrossRef] [PubMed]
- Roman, M.D.; Bocea, B.A.; Ion, N.I.; Vorovenci, A.E.; Dragomirescu, D.; Birlutiu, R.M.; Birlutiu, V.; Fleaca, S.R. Are There Any Changes in the Causative Microorganisms Isolated in the Last Years from Hip and Knee Periprosthetic Joint Infections? Antimicrobial Susceptibility Test Results Analysis. Microorganisms 2023, 11, 116. [Google Scholar] [CrossRef]
- Birlutiu, R.M.; Birlutiu, V.; Cismasiu, R.S.; Mihalache, M. bbFISH-ing in the sonication fluid. Medicine 2019, 98, e16501. [Google Scholar] [CrossRef] [PubMed]
- Birlutiu, R.M.; Mihalache, M.; Mihalache, P.; Cismasiu, R.S.; Birlutiu, V. Mid-term follow-up results after implementing a new strategy for the diagnosis and management of periprosthetic joint infections. BMC Infect. Dis. 2021, 21, 807. [Google Scholar] [CrossRef]
- Rondaan, C.; Maso, A.; Birlutiu, R.M.; Fernandez Sampedro, M.; Soriano, A.; Diaz de Brito, V.; Gómez Junyent, J.; Del Toro, M.D.; Hofstaetter, J.G.; Salles, M.J.; et al. Is an isolated positive sonication fluid culture in revision arthroplasties clinically relevant? Clin. Microbiol. Infect. 2023. [Google Scholar] [CrossRef]
- Nguyen, S.; Pasquet, A.; Legout, L.; Beltrand, E.; Dubreuil, L.; Migaud, H.; Yazdanpanah, Y.; Senneville, E. Efficacy and tolerance of rifampicin-linezolid compared with rifampicin-cotrimoxazole combinations in prolonged oral therapy for bone and joint infections. Clin. Microbiol. Infect. 2009, 15, 1163–1169. [Google Scholar] [CrossRef]
- Theil, C.; Schmidt-Braekling, T.; Gosheger, G.; Schwarze, J.; Dieckmann, R.; Schneider, K.N.; Möllenbeck, B. Clinical use of linezolid in periprosthetic joint infections—A systematic review. J. Bone Jt. Infect. 2020, 6, 7–16. [Google Scholar] [CrossRef]
- Soriano, A.; Gómez, J.; Gómez, L.; Azanza, J.; Pérez, R.; Romero, F.; Pons, M.; Bella, F.; Velasco, M.; Mensa, J. Efficacy and tolerability of prolonged linezolid therapy in the treatment of orthopedic implant infections. Eur. J. Clin. Microbiol. Infect. Dis. 2007, 26, 353–356. [Google Scholar] [CrossRef]
- Schwameis, R.; Syré, S.; Sarahrudi, K.; Appelt, A.; Marhofer, D.; Burau, D.; Kloft, C.; Zeitlinger, M. Penetration of linezolid into synovial fluid and muscle tissue after elective arthroscopy. J. Antimicrob. Chemother. 2017, 72, 2817–2822. [Google Scholar] [CrossRef] [PubMed]
- Vintila, B.I.; Arseniu, A.M.; Butuca, A.; Sava, M.; Bîrluțiu, V.; Rus, L.L.; Axente, D.D.; Morgovan, C.; Gligor, F.G. Adverse Drug Reactions Relevant to Drug Resistance and Ineffectiveness Associated with Meropenem, Linezolid, and Colistin: An Analysis Based on Spontaneous Reports from the European Pharmacovigilance Database. Antibiotics 2023, 12, 918. [Google Scholar] [CrossRef] [PubMed]
- Vintila, B.I.; Arseniu, A.M.; Morgovan, C.; Butuca, A.; Sava, M.; Bîrluțiu, V.; Rus, L.L.; Ghibu, S.; Bereanu, A.S.; Roxana Codru, I.; et al. A Pharmacovigilance Study Regarding the Risk of Antibiotic-Associated Clostridioides difficile Infection Based on Reports from the EudraVigilance Database: Analysis of Some of the Most Used Antibiotics in Intensive Care Units. Pharmaceuticals 2023, 16, 1585. [Google Scholar] [CrossRef] [PubMed]
Date | Parameter | Values | Reference Value |
---|---|---|---|
On admission | C-reactive protein | 2.0 mg/L | 0–0.3 mg/L |
Fibrinogen | 382 mg/dL | 180–350 mg/dL | |
WBCs | 9.93 × 103/µL | 4–9 × 103/µL | |
Differential blood count: | |||
Neutrophils | 6.86 × 103/µL | 1.5–7.5 × 103/µL | |
Lymphocytes | 2.22 × 103/µL | 1.2–3.5 × 103/µL | |
Monocytes | 0.59 × 103/µL | 0.2–0.8 × 103/µL | |
Basophils | 0.03 × 103/µL | 0.01–0.15 × 103/µL | |
Eosinophils | 0.12 × 103/µL | 0.02–0.06 × 103/µL | |
Red blood cells | 5.56 × 106/µL | 4.6–6.2 × 106/µL | |
Hemoglobin | 16.1 g/dL | 14–18 g/dL | |
Hematocrit | 47.2% | 40–52% | |
Thrombocytes | 304 × 103/µL | 150–450 × 103/µL | |
Coagulation tests | Prothrombin time (PT): 10.8 s | 9.8–12.1 s | |
Activated partial thromboplastin time (aPTT): 22.6 s | 22.1–28.1 s | ||
International normalized ratio (INR): 1.04 s | 0.86–1.2 s | ||
ESR | 24 mm/h | 0–15 mm/h | |
Urea | 28 mg/dL | 15–39 mg/dL | |
Creatinine | 0.89 mg/dL | 0.7–1.3 mg/dL | |
Blood glucose | 104 mg/dL | 74–106 mg/dL | |
Urine culture | Negative < 1000 CFU/mL | ||
Alanine transaminase | 38 U/L | 16–63 U/L | |
Aspartate transferase | 117 U/L | 15–37 U/L |
Antibiotic | MIC (μg/mL) | MIC Interpretation |
---|---|---|
Bacillus pumilus—beta-lactamases, ESBL-producing, carbapenemase, mannose-binding lectin, inducible resistance to clindamycin (negative) | ||
Ciprofloxacin | =0.5 | Intermediate |
Erythromycin | =1 | Resistant |
Levofloxacin | ≤1 | Intermediate |
Linezolid | ≤1 | Sensitive |
Meropenem | ≤0.25 | Sensitive |
Vancomycin | ≤1 | Sensitive |
Paenibacillus barengoltzii—beta-lactamases, ESBL-producing, carbapenemase, mannose-binding lectin, inducible resistance to clindamycin (negative) | ||
Ciprofloxacin | =0.5 | Intermediate |
Erythromycin | =0.5 | Sensitive |
Levofloxacin | ≤1 | Intermediate |
Linezolid | ≤1 | Sensitive |
Meropenem | ≤0.5 | Sensitive |
Vancomycin | ≤1 | Sensitive |
Date | Parameter | Values | Reference Value |
---|---|---|---|
Day 1 after surgery | C-reactive protein | - | 0–0.3 mg/L |
Fibrinogen | 438 mg/dL | 180–350 mg/dL | |
WBCs | 11.13 × 103/µL | 4–9 × 103/µL | |
Red blood cells | 4.32 × 106/µL | 4.6–6.2 × 106/µL | |
Hemoglobin | 12.5 g/dL | 14–18 g/dL | |
Hematocrit | 36.5% | 40–52% | |
Thrombocytes | 356 × 103/µL | 150–450 × 103/µL | |
ESR | - | 0–15 mm/h | |
Urea | 22 mg/dL | 15–39 mg/dL | |
Creatinine | 0.8 mg/dL | 0.7–1.3 mg/dL | |
Blood glucose | 134 mg/dL | 74–106 mg/dL | |
Alanine transaminase | 81 U/L | 16–63 U/L | |
Aspartate transferase | 51 U/L | 15–37 U/L | |
Day 3 after surgery | C-reactive protein | 3.7 mg/L | 0–0.3 mg/L |
Fibrinogen | 586 mg/dL | 180–350 mg/dL | |
WBCs | 11.09 × 103/µL | 4–9 × 103/µL | |
Red blood cells | 4.61 × 106/µL | 4.6–6.2 × 106/µL | |
Hemoglobin | 13.2 g/dL | 14–18 g/dL | |
Hematocrit | 40.0% | 40–52% | |
Thrombocytes | 342 × 103/µL | 150–450 × 103/µL | |
ESR | 50 mm/h | 0–15 mm/h | |
Urea | 37 mg/dL | 15–39 mg/dL | |
Creatinine | 0.81 mg/dL | 0.7–1.3 mg/dL | |
Blood glucose | 99 mg/dL | 74–106 mg/dL | |
Alanine transaminase | 86 U/L | 16–63 U/L | |
Aspartate transferase | 53 U/L | 15–37 U/L | |
At the time of discharge | C-reactive protein | 1.2 mg/L | 0–0.3 mg/L |
Fibrinogen | 367 mg/dL | 180–350 mg/dL | |
WBCs | 6.1 × 103/µL | 4–9 × 103/µL | |
Red blood cells | 4.78 × 106/µL | 4.6–6.2 × 106/µL | |
Hemoglobin | 14.2 g/dL | 14–18 g/dL | |
Hematocrit | 42.3% | 40–52% | |
Thrombocytes | 342 × 103/µL | 150–450 × 103/µL | |
ESR | 24 mm/h | 0–15 mm/h | |
Urea | 33 mg/dL | 15–39 mg/dL | |
Creatinine | 0.83 mg/dL | 0.7–1.3 mg/dL | |
Blood glucose | 102 mg/dL | 74–106 mg/dL | |
Alanine transaminase | 233 U/L | 16–63 U/L | |
Aspartate transferase | 86 U/L | 15–37 U/L |
Author | Isolated Strain | Type of Infection | Antibiotic Susceptibility Test Results | Treatment |
---|---|---|---|---|
Fusini et al. [18] | Bacillus pumilus | C6–C7 intervertebral disc spondylodiscitis | Susceptible to ampicillin, amoxicillin, ciprofloxacin, clindamycin, erythromycin, imipenem, levofloxacin, teicoplanin, trimethoprim–sulfamethoxazole, and vancomycin | 6 weeks IV amoxicillin/clavulanic acid 2.2 g q8H plus ciprofloxacin 400 mg q12H, then oral therapy for 6 weeks with amoxicillin/clavulanic acid 875/125 mg q8H plus ciprofloxacin 500 mg q12H |
Borsa et al. [22] | Bacillus pumilus | Sepsis | Resistant to penicillin Susceptible to vancomycin, erythromycin, clindamycin, levofloxacin, and trimethoprim–sulfamethoxazole | IV ceftriaxone (1000 mg q12H) in association with metronidazole (500 mg q12H for 7 days followed by IV ceftriaxone (1000 mg q12H) for 14 days |
Kimouli et al. [8] | Bacillus pumilus (2 strains) | Neonatal sepsis | Susceptible to penicillin, ampicillin, imipenem, vancomycin, erythromycin, levofloxacin, and trimethoprim–sulfamethoxazole and just one strain was susceptible to clindamycin | Vancomycin for 10 days |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cismasiu, R.S.; Birlutiu, R.-M.; Preoțescu, L.L. Uncommon Septic Arthritis of the Hip Joint in an Immunocompetent Adult Patient Due to Bacillus pumilus and Paenibacillus barengoltzii Managed with Long-Term Treatment with Linezolid: A Case Report and Short Literature Review. Pharmaceuticals 2023, 16, 1743. https://doi.org/10.3390/ph16121743
Cismasiu RS, Birlutiu R-M, Preoțescu LL. Uncommon Septic Arthritis of the Hip Joint in an Immunocompetent Adult Patient Due to Bacillus pumilus and Paenibacillus barengoltzii Managed with Long-Term Treatment with Linezolid: A Case Report and Short Literature Review. Pharmaceuticals. 2023; 16(12):1743. https://doi.org/10.3390/ph16121743
Chicago/Turabian StyleCismasiu, Razvan Silviu, Rares-Mircea Birlutiu, and Liliana Lucia Preoțescu. 2023. "Uncommon Septic Arthritis of the Hip Joint in an Immunocompetent Adult Patient Due to Bacillus pumilus and Paenibacillus barengoltzii Managed with Long-Term Treatment with Linezolid: A Case Report and Short Literature Review" Pharmaceuticals 16, no. 12: 1743. https://doi.org/10.3390/ph16121743
APA StyleCismasiu, R. S., Birlutiu, R.-M., & Preoțescu, L. L. (2023). Uncommon Septic Arthritis of the Hip Joint in an Immunocompetent Adult Patient Due to Bacillus pumilus and Paenibacillus barengoltzii Managed with Long-Term Treatment with Linezolid: A Case Report and Short Literature Review. Pharmaceuticals, 16(12), 1743. https://doi.org/10.3390/ph16121743