In Vitro Screening of Antimicrobial and Anti-Coagulant Activities, ADME Profiling, and Molecular Docking Study of Citrus limon L. and Citrus paradisi L. Cold-Pressed Volatile Oils
Abstract
:1. Introduction
2. Results
2.1. Chemical Composition of Essential Oils
2.2. Antibacterial Activity
2.3. Antifungal Activity
2.4. Determination of Anticoagulant Activity
2.5. Molecular Docking Studies
2.6. Predictive ADME Analysis
3. Discussion
4. Materials and Methods
4.1. Sample Preparation
4.2. GC–EIMS Analysis
4.3. Antimicrobial Activity
4.3.1. Microbial Strains
4.3.2. Microdilution Method
4.4. Anticoagulant Activity
4.5. Molecular Docking Study
4.6. ADME properties
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Okoye, C.O.; Okeke, E.S.; Ezeorba, T.P.C.; Chukwudozie, K.I.; Chiejina, C.O.; Fomena Temgoua, N.S. Microbial and Bio-based Preservatives: Recent Advances in Antimicrobial Compounds. In Microbes for Natural Food Additives; Springer: Singapore, 2023; pp. 53–74. [Google Scholar]
- Snoussi, M.; Noumi, E.; Trabelsi, N.; Flamini, G.; Papetti, A.; De Feo, V. Mentha spicata essential oil: Chemical composition, antioxidant and antibacterial activities against planktonic and biofilm cultures of Vibrio spp. strains. Molecules 2015, 20, 14402–14424. [Google Scholar] [CrossRef]
- Leite, P.M.; Miranda, A.P.N.; Gomes, I.; Rodrigues, M.L.; Amorim, J.M.; de Lima, G.; Duarte, R.C.F.; Fuly, A.L.; Faraco, A.A.G.; das Graças Carvalho, M.; et al. Anticoagulant and antiplatelet activity of aqueous extracts of Citrus sinensis and Lippia alba: Interactions and potential for the development of antithrombotics. Blood Coagul. Fibrinolysis 2022, 33, 457–462. [Google Scholar] [CrossRef]
- Alves-Silva, J.M.; Zuzarte, M.; Girão, H. The role of essential oils and their main compounds in the management of cardiovascular disease risk factors. Molecules 2021, 26, 3506. [Google Scholar] [CrossRef]
- Maria, G.A.; Riccardo, N. Citrus bergamia, Risso: The peel, the juice and the seed oil of the bergamot fruit of Reggio Calabria (South Italy). Emir. J. Food Agric. 2020, 32, 522–532. [Google Scholar] [CrossRef]
- Gioffrè, G.; Ursino, D.; Labate, M.L.C.; Giuffrè, A.M. The peel essential oil composition of bergamot fruit (Citrus bergamia, Risso) of Reggio Calabria (Italy): A review. Emir. J. Food Agric. 2020, 32, 835–845. [Google Scholar] [CrossRef]
- Rowshan, V.; Najafian, S. Changes of peel essential oil composition of Citrus aurantium L. during fruit maturation in Iran. J. Essent. Oil-Bear. Plants 2015, 18, 1006–1012. [Google Scholar] [CrossRef]
- Ferhat, M.-A.; Boukhatem, M.N.; Hazzit, M.; Meklati, B.Y.; Chemat, F. Cold pressing, hydrodistillation and microwave dry distillation of citrus essential oil from Algeria: A comparative study. Electron. J. Biol. 2016, 1, 30–41. [Google Scholar]
- Pasdaran, A.; Hamedi, A.; Shiehzadeh, S.; Hamedi, A. A review of citrus plants as functional foods and dietary supplements for human health, with an emphasis on meta-analyses, clinical trials, and their chemical composition. Clin. Nutr. ESPEN 2023, 54, 311–336. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Lou, Y.; Li, Y.; Zhang, J.; Li, P.; Yang, B.; Gu, Q. Review of phytochemical and nutritional characteristics and food applications of Citrus L. fruits. Front. Nutr. 2022, 9, 968604. [Google Scholar] [CrossRef] [PubMed]
- Ben Hsouna, A.; Ben Halima, N.; Smaoui, S.; Hamdi, N. Citrus lemon essential oil: Chemical composition, antioxidant and antimicrobial activities with its preservative effect against Listeria monocytogenes inoculated in minced beef meat. Lipids Health Dis. 2017, 16, 146. [Google Scholar] [CrossRef] [PubMed]
- Mallick, N.; Alam Khan, R.; Riaz, A.; Afroz, S. Anticoagulant, antiplatelet and antianemic effects of Citrus paradisi (grape fruit) juice in rabbits. Pharm. Pharmacol. 2016, 7, 397–406. [Google Scholar] [CrossRef]
- Ceccato-Antonini, S.R.; Shirahigue, L.D.; Varano, A.; da Silva, B.N.; Brianti, C.S.; de Azevedo, F.A. Citrus essential oil: Would it be feasible as antimicrobial in the bioethanol industry? Biotechnol. Lett. 2023, 45, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Meryem, S.; Mohamed, D.; Nour-eddine, C.; Faouzi, E. Chemical composition, antibacterial and antioxidant properties of three Moroccan citrus peel essential oils. Sci. Afr. 2023, 20, e01592. [Google Scholar] [CrossRef]
- Lahiri, D.; Nag, M.; Dey, A.; Pandit, S.; Joshi, S.; Upadhye, V.J.; Ray, R.R. Citrus Essential Oils: A Treasure Trove of Antibiofilm Agent. Appl. Biochem. Biotechnol. 2022, 194, 4625–4638. [Google Scholar] [CrossRef] [PubMed]
- Favela-Hernández, J.M.J.; González-Santiago, O.; Ramírez-Cabrera, M.A.; Esquivel-Ferriño, P.C.; Camacho-Corona, M.D.R. Chemistry and Pharmacology of Citrus sinensis. Molecules 2016, 21, 247. [Google Scholar] [CrossRef] [PubMed]
- FAO. Citrus Fruit Statistical Compendium 2020. In Citrus Fruit. Fresh and Processed; 0002-9440; FAO: Rome, Italy, 2020; Available online: https://www.fao.org/3/cb6492en/cb6492en.pdf (accessed on 1 April 2020).
- Makni, M.; Jemai, R.; Kriaa, W.; Chtourou, Y.; Fetoui, H. Citrus limon from Tunisia: Phytochemical and physicochemical properties and biological activities. BioMed Res. Int. 2018, 2018, 6251546. [Google Scholar] [CrossRef] [PubMed]
- Maaroufi, Z.; Cojean, S.; Loiseau, P.M.; Yahyaoui, M.; Agnely, F.; Abderraba, M.; Mekhloufi, G. In vitro antileishmanial potentialities of essential oils from Citrus limon and Pistacia lentiscus harvested in Tunisia. Parasitol. Res. 2021, 120, 1455–1469. [Google Scholar] [CrossRef]
- Kandsi, F.; Elbouzidi, A.; Lafdil, F.Z.; Meskali, N.; Azghar, A.; Addi, M.; Hano, C.; Maleb, A.; Gseyra, N. Antibacterial and antioxidant activity of Dysphania ambrosioides (L.) mosyakin and clemants essential oils: Experimental and computational approaches. Antibiotics 2022, 11, 482. [Google Scholar] [CrossRef]
- Alminderej, F.; Bakari, S.; Almundarij, T.I.; Snoussi, M.; Aouadi, K.; Kadri, A. Antioxidant activities of a new chemotype of Piper cubeba L. fruit essential oil (Methyl eugenol/Eugenol): In Silico molecular docking and ADMET studies. Plants 2020, 9, 1534. [Google Scholar] [CrossRef]
- Noumi, E.; Ahmad, I.; Adnan, M.; Merghni, A.; Patel, H.; Haddaji, N.; Bouali, N.; Alabbosh, K.F.; Ghannay, S.; Aouadi, K. GC/MS Profiling, antibacterial, anti-quorum sensing, and antibiofilm properties of Anethum graveolens L. essential oil: Molecular docking study and In-silico ADME profiling. Plants 2023, 12, 1997. [Google Scholar] [CrossRef]
- Edziri, H.; Ammar, S.; Souad, L.; Mahjoub, M.; Mastouri, M.; Aouni, M.; Mighri, Z.; Verschaeve, L. In vitro evaluation of antimicrobial and antioxidant activities of some Tunisian vegetables. S. Afr. J. Bot. 2012, 78, 252–256. [Google Scholar] [CrossRef]
- Ghannay, S.; Aouadi, K.; Kadri, A.; Snoussi, M. GC-MS profiling, vibriocidal, antioxidant, antibiofilm, and anti-quorum sensing properties of Carum carvi L. essential oil: In vitro and in silico approaches. Plants 2022, 11, 1072. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Shang, F.; Chen, Y.; Lan, J.; Wang, L.; Chen, J.; Gao, P.; Ha, N.-C.; Quan, C.; Nam, K.H.; et al. Biochemical and structural analysis of the Klebsiella pneumoniae cytidine deaminase CDA. Biochem. Biophys. Res. Commun. 2019, 519, 280–286. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Silvestre, A.; Penadés, M.; Selva, L.; Pérez-Fuentes, S.; Moreno-Grua, E.; García-Quirós, A.; Pascual, J.J.; Arnau-Bonachera, A.; Barragán, A.; Corpa, J.M. Pathogenesis of intradermal staphylococcal infections: Rabbit experimental approach to natural Staphylococcus aureus skin infections. Am. J. Pathol. 2020, 190, 1188–1210. [Google Scholar] [CrossRef]
- Horchani, M.; Hajlaoui, A.; Harrath, A.H.; Mansour, L.; Ben Jannet, H.; Romdhane, A. New pyrazolo-triazolo-pyrimidine derivatives as antibacterial agents: Design and synthesis, molecular docking and DFT studies. J. Mol. Struct. 2020, 1199, 127007. [Google Scholar] [CrossRef]
- Horchani, M.; Edziri, H.; Harrath, A.H.; Jannet, H.B.; Romdhane, A. Access to new Schiff bases tethered with pyrazolopyrimidinone as antibacterial agents: Design and synthesis, molecular docking and DFT analysis. J. Mol. Struct. 2022, 1248, 131523. [Google Scholar] [CrossRef]
- Bourgou, S.; Rahali, F.Z.; Ourghemmi, I.; Saïdani Tounsi, M. Changes of peel essential oil composition of four Tunisian Citrus during fruit maturation. Sci. World J. 2012, 2012, 528593. [Google Scholar] [CrossRef] [PubMed]
- Paw, M.; Begum, T.; Gogoi, R.; Pandey, S.K.; Lal, M. Chemical composition of Citrus limon L. Burmf peel essential oil from north east India. J. Essent. Oil-Bear. Plants 2020, 23, 337–344. [Google Scholar] [CrossRef]
- Lopes Campêlo, L.M.; Moura Gonçalves, F.C.; Feitosa, C.M.; de Freitas, R.M. Antioxidant activity of Citrus limon essential oil in mouse hippocampus. Pharm. Biol. 2011, 49, 709–715. [Google Scholar] [CrossRef]
- Viuda-Martos, M.; Ruiz-Navajas, Y.; Fernández-López, J.; Pérez-Álvarez, J.A. Chemical composition of mandarin (C. reticulata L.), grapefruit (C. paradisi L.), lemon (C. limon L.) and orange (C. sinensis L.) essential oils. J. Essent. Oil-Bear. Plants 2009, 12, 236–243. [Google Scholar] [CrossRef]
- Ou, M.-C.; Liu, Y.-H.; Sun, Y.-W.; Chan, C.-F. The composition, antioxidant and antibacterial activities of cold-pressed and distilled essential oils of Citrus paradisi and Citrus grandis (L.) Osbeck. Evid.-Based Complement. Altern. Med. 2015, 2015, 804091. [Google Scholar] [CrossRef]
- Okunowo, W.O.; Oyedeji, O.; Afolabi, L.O.; Matanmi, E. Essential Oil of Grape Fruit (Citrus paradisi) Peels and Its Antimicrobial Activities. Am. J. Plant Sci. 2013, 4, 34556. [Google Scholar] [CrossRef]
- Edziri, H.; Jaziri, R.; Chehab, H.; Verschaeve, L.; Flamini, G.; Boujnah, D.; Hammami, M.; Aouni, M.; Mastouri, M. A comparative study on chemical composition, antibiofilm and biological activities of leaves extracts of four Tunisian olive cultivars. Heliyon 2019, 5, e01604. [Google Scholar] [CrossRef]
- Delgado, A.J.M.; Velázquez, U.C.; González, J.G.B.; Montes, A.C.; Villarreal, S.M.L.; García, L.E.V.; Casas, R.M.S.; Luis, O.E.R. Evaluation of the essential oil of Citrus paradisi as an alternative treatment against Candida albicans. Open J. Stomatol. 2020, 10, 258. [Google Scholar] [CrossRef]
- Akarca, G.; Sevik, R. Biological activities of Citrus limon L. and Citrus sinensis L. peel essential oils. J. Essent. Oil-Bear. Plants 2021, 24, 1415–1427. [Google Scholar] [CrossRef]
- Trombetta, D.; Castelli, F.; Sarpietro, M.G.; Venuti, V.; Cristani, M.; Daniele, C.; Saija, A.; Mazzanti, G.; Bisignano, G. Mechanisms of antibacterial action of three monoterpenes. Antimicrob. Agents Chemother. 2005, 49, 2474–2478. [Google Scholar] [CrossRef]
- Hąc-Wydro, K.; Flasiński, M.; Romańczuk, K. Essential oils as food eco-preservatives: Model system studies on the effect of temperature on limonene antibacterial activity. Food Chem. 2017, 235, 127–135. [Google Scholar] [CrossRef]
- Bassolé, I.H.N.; Juliani, H.R. Essential oils in combination and their antimicrobial properties. Molecules 2012, 17, 3989–4006. [Google Scholar] [CrossRef]
- Viuda-Martos, M.; Ruiz-Navajas, Y.; Fernández-López, J.; Pérez-Álvarez, J. Antifungal activity of lemon (Citrus lemon L.), mandarin (Citrus reticulata L.), grapefruit (Citrus paradisi L.) and orange (Citrus sinensis L.) essential oils. Food Control 2008, 19, 1130–1138. [Google Scholar] [CrossRef]
- Hamdi, A.; Majouli, K.; Flamini, G.; Marzouk, B.; Marzouk, Z.; Heyden, Y. Antioxidant and anticandidal activities of the Tunisian Haplophyllum tuberculatum (Forssk.) A. Juss. essential oils. S. Afr. J. Bot. 2017, 112, 210–214. [Google Scholar] [CrossRef]
- Thakre, A.; Zore, G.; Kodgire, S.; Kazi, R.; Mulange, S.; Patil, R.; Shelar, A.; Santhakumari, B.; Kulkarni, M.; Kharat, K. Limonene inhibits Candida albicans growth by inducing apoptosis. Med. Mycol. J. 2018, 56, 565–578. [Google Scholar]
- Ahmedi, S.; Pant, P.; Raj, N.; Manzoor, N. Limonene inhibits virulence associated traits in Candida albicans: In-Vitro and in-silico studies. Phytomed. Plus. 2022, 2, 100285. [Google Scholar] [CrossRef]
- D’Angelo, G. Inflammation and coagulation: A “continuum” between coagulation activation and prothrombotic state. J. Blood Disord. 2015, 2, 1023. [Google Scholar]
- Li, L.-Z.; Gao, P.-Y.; Song, S.-J.; Yuan, Y.-Q.; Liu, C.-T.; Huang, X.-X.; Liu, Q.-B. Monoterpenes and flavones from the leaves of Crataegus pinnatifida with anticoagulant activities. J. Funct. Foods 2015, 12, 237–245. [Google Scholar] [CrossRef]
- Ksenofontov, A.A.; Bocharov, P.S.; Antina, E.V.; Shevchenko, O.G.; Samorodov, A.V.; Gilfanov, I.R.; Pavelyev, R.S.; Ostolopovskaya, O.V.; Startseva, V.A.; Fedyunina, I.V.; et al. Thioterpenoids as potential antithrombotic drugs: Molecular docking, antiaggregant, anticoagulant and antioxidant activities. Biomolecules 2022, 12, 1599. [Google Scholar] [CrossRef]
- Riaz, A.; Khan, R.A.; Mirza, T.; Mustansir, T.; Ahmed, M. In vitro/in vivo effect of Citrus limon (L. Burm. f.) juice on blood parameters, coagulation and anticoagulation factors in rabbits. Pak. J. Pharm. Sci. 2014, 27, 907–915. [Google Scholar]
- Edziri, H.; Mastouri, M.; Mahjoub, M.A.; Mighri, Z.; Mahjoub, A.; Verschaeve, L. Antibacterial, antifungal and cytotoxic activities of two flavonoids from Retama raetam flowers. Molecules 2012, 17, 7284–7293. [Google Scholar] [CrossRef]
- Joulain, D.; König, W.A. The atlas of spectral data of sesquiterpene hydrocarbons. Phytochemistry 1999, 52, 1385–1986. [Google Scholar] [CrossRef]
- Ghannay, S.; Aouadi, K.; Kadri, A.; Snoussi, M. In vitro and in silico screening of anti-Vibrio spp., antibiofilm, antioxidant and anti-quorum sensing activities of Cuminum cyminum L. volatile oil. Plants 2022, 11, 2236. [Google Scholar] [CrossRef]
- Snoussi, M.; Ahmad, I.; Aljohani, A.M.; Patel, H.; Abdulhakeem, M.A.; Alhazmi, Y.S.; Tepe, B.; Adnan, M.; Siddiqui, A.J.; Sarikurkcu, C. Phytochemical analysis, antioxidant, and antimicrobial activities of Ducrosia flabellifolia: A combined experimental and computational approaches. Antioxidants 2022, 11, 2174. [Google Scholar] [CrossRef]
- Czaikoski, P.G.; Menaldo, D.L.; Marcussi, S.; Baseggio, A.L.; Fuly, A.L.; Paula, R.C.; Quadros, A.U.; Romao, P.R.; Buschini, M.L.; Cunha, F.Q. Anticoagulant and fibrinogenolytic properties of the venom of Polybia occidentalis social wasp. Blood Coagul Fibrinolysis 2010, 21, 653–659. [Google Scholar] [CrossRef]
- Edziri, H.; Guerrab, M.; Anthonissen, R.; Mastouri, M.; Verschaeve, L. Phytochemical screening, antioxidant, anticoagulant and in vitro toxic and genotoxic properties of aerial parts extracts of Fumaria officinalis L. growing in Tunisia. S. Afr. J. Bot. 2020, 130, 268–273. [Google Scholar] [CrossRef]
- Liu, C.I.; Liu, G.Y.; Song, Y.; Yin, F.; Hensler, M.E.; Jeng, W.Y.; Nizet, V.; Wang, A.H.; Oldfield, E. A cholesterol biosynthesis inhibitor blocks Staphylococcus aureus virulence. Science 2008, 319, 1391–1394. [Google Scholar] [CrossRef]
Composition | RI | EOL | EOP |
---|---|---|---|
α-Thujene | 933 | 0.4 | |
α-Pinene | 941 | 2.1 | 0.5 |
Camphene | 955 | 0.1 | |
Sabinene | 977 | 2.2 | 0.2 |
β-Pinene | 982 | 13.3 | 0.2 |
Myrcene | 993 | 1.9 | 0.5 |
Octanal | 1003 | 0.2 | |
δ-3-Carene | 1013 | 0.1 | |
α-Terpinene | 1020 | 0.2 | |
p-Cymene | 1028 | 0.9 | 0.2 |
Limonene | 1032 | 60.6 | 86.8 |
(E)-β-ocimene | 1052 | 0.1 | |
γ-Terpinene | 1063 | 11.0 | |
Terpinolene | 1090 | 0.5 | |
Linalool | 1101 | 0.4 | |
Cis-p-menth-2-en-1-ol | 1123 | 0.8 | |
Cis-limonene oxide | 1136 | 1.9 | |
Trans-limonene oxide | 1140 | 2.4 | |
Citronellal | 1155 | 0.1 | |
α-Terpineol | 1191 | 0.2 | |
Decanal | 1206 | 0.3 | |
Trans-carveol | 1219 | 1 | |
Cis-carveol | 1230 | 0.8 | |
Neral | 1241 | 1.2 | |
Carvone | 1244 | 1.4 | |
Geranial | 1271 | 2.0 | |
Linalyl acetate | 1259 | 0.8 | |
Neryl acetate | 1365 | 0.7 | |
Geranyl acetate | 1383 | 0.6 | 0.2 |
Caryophyllene oxide | 1582 | 0.1 | |
Nootkatone | 1809 | 0.2 | |
Cis-α-bergamotene | 1416 | 0.1 | |
β-Caryophyllene | 1419 | 0.4 | |
Trans-α-bergamotene | 1437 | 0.5 | |
β-Bisabolene | 1508 | 0.8 | |
Monoterpene hydrocarbons (%) | 93.3 | 88.4 | |
Oxygenated monoterpenes (%) | 4.8 | 9.7 | |
Sesquiterpene hydrocarbons (%) | 1.8 | 0.0 | |
Oxygenated sesquiterpenes (%) | 0.0 | 0.3 | |
Non-terpene derivatives (%) | 0.0 | 0.5 | |
Total identified compound (%) | 99.9 | 98.9 |
Tested Microorganisms | C. limon Essential Oil | C. paradisi Essential Oil | Ciprofloxacin | ||||||
---|---|---|---|---|---|---|---|---|---|
MIC * | MBC ** | MBC/MIC Ratio | MIC | MBC | MBC/MIC Ratio | MIC | MBC | MBC/MIC Ratio | |
Pseudomonas aeruginosa BLSE 2 | 2.5 | 2.5 | 1 | 0.768 | 0.768 | 1 | 0.125 | >0.125 | - |
Pseudomonas aeruginosa BLSE13 | 2.5 | 2.5 | 1 | 0.768 | 0.768 | 1 | 0.125 | >0.125 | - |
Pseudomonas aeruginosa IMP24 | 2.5 | 2.5 | 1 | 0.768 | 0.768 | 1 | 0.125 | >0.125 | - |
Pseudomonas aeruginosa ATCC 27853 | 2.5 | 2.5 | 1 | 0.768 | 0.768 | 1 | 0.125 | >0.125 | - |
Escherichia coli ATCC 25922 | 1.25 | 2.5 | 2 | 0.384 | 0.384 | 1 | 0.062 | 0.062 | 1 |
Klebsiella pneumoniae ATCC 13883 | 0.625 | 1.25 | 2 | 0.192 | 0.192 | 1 | 0.125 | >0.125 | - |
Acinetobacter baumannii ATCC 19606 | 2.5 | 2.5 | 1 | 0.192 | 0.192 | 1 | 0.031 | 0.125 | 4 |
Enterococcu faecalis ATCC 29212 | 1.25 | 2.5 | 2 | 0.384 | 0.384 | 1 | 0.125 | >0.125 | - |
Enterococcus faecium CI234 | 1.25 | 2.5 | 2 | 0.384 | 0.384 | 1 | 0.125 | >0.125 | - |
Staphylococcus aureus ATCC 25923 | 0.625 | 1.25 | 2 | 0.384 | 0.768 | 2 | 0.031 | 0.125 | 4 |
Staphylococcus aureus MRSA-3 | 1.25 | 2.5 | 2 | 0.384 | 0.768 | 2 | 0.031 | 0.125 | 4 |
Staphylococcus aureus MRSA-126 | 1.25 | 2.5 | 2 | 0.384 | 0.768 | 2 | 0.031 | 0.125 | 4 |
Bacilus cereus ATCC 11778 | 1.25 | 2.5 | 2 | 0.768 | 1.536 | 2 | 0.002 | 0.062 | 31 |
Bacilus subtilis ATCC 14579 | 1.25 | 2.5 | 2 | 0.768 | 0.768 | 1 | 0.002 | 0.062 | 31 |
Candida Species | C. limon EO | MFC/MIC Ratio | C. paradisi EO | MFC/MIC Ratio | Amphotericin B | ||
---|---|---|---|---|---|---|---|
MIC | MFC | MIC | MFC | MIC | |||
C. glabrata ATCC 90030 | 6.25 | 12.5 | 2 | 1.2 | 2.4 | 2 | 0.5 |
C. albicans ATCC 90028 | 6.25 | 12.5 | 2 | 1.2 | 2.4 | 2 | 0.5 |
C. parapsilosis ATCC 22019 | 6.25 | 12.5 | 2 | 1.2 | 2.4 | 2 | 0.5 |
C. krusei ATCC 6258 | 12.5 | 12.5 | 1 | 1.2 | 2.4 | 2 | 0.5 |
Essential Oil/Control | PT(s) | aPTT(s) |
---|---|---|
C. paradisi EO | 82.21 ± 2.65 | 180.00 ± 1.20 |
C. limon EO | 80.00 ± 1.67 | 38.50 ± 2.05 |
Normal saline | 15.00 ± 2.87 | 34.40 ± 1.54 |
Heparin | 40.80 ± 4.71 | 120.50 ± 1.18 |
Compound | Free Binding Energy of Pdb: 6K63 (kcal/mol) | Free Binding Energy of Pdb: 2ZCQ (kcal/mol) |
---|---|---|
α-Pinene | −4.4 | −5.7 |
Sabinene | −4.1 | −6.2 |
β-Pinene | −4.1 | −5.9 |
Limonene | −4.6 | −6.7 |
γ-Terpinene | −4.3 | −6.8 |
Geranial | −4.1 | −6.9 |
Ciprofloxacin (Standard) | −4.2 | −6.7 |
Ligand | Docking Results of Pdb 6K63: Interacting Amino Acids (Types of Interactions) | Docking Results of Pdb 2ZCQ: Interacting Amino Acids (Types of Interactions) |
---|---|---|
α-Pinene | His182 (b,c); Phe184 (4b); Pro210 (2a) | Phe22 (4b); Tyr41 (b); Ala134 (2a); Val137 (a); Leu164 (a) |
Sabinene | His182 (4b); Phe184 (b); His208 (2b); Pro210 (a) | Phe22 (2b); Phe26 (2b); Val137 (2a); Leu141 (2a); Leu164 (a) |
β-Pinene | His182 (3b,c); Ala204 (a); His208 (b); Pro210 (2a) | Phe22 (4b); Ala134 (a); Val137 (a); Leu164 (a) |
Limonene | His182 (3b); Phe184 (2b); Cys202 (a); Ala204 (a); His208 (b); Pro210 (2a) | Phe22 (2b); Phe26 (b); Tyr41 (2b); Cys44 (a); Val137 (2a); Leu164 (a) |
γ-Terpinene | His182 (b,c); Phe184 (2b); Cys202 (a); Ala204 (a); Pro210 (2a); Lys265 (a) | Met15 (a); Phe22 (b); Phe26 (b); Val37 (a); Tyr41 (b); Ala134 (a); Val137 (2a); Leu141 (2a); Leu164 (a) |
Geranial | His182 (b,c); Cys202 (a); Ala204 (a); His208 (2b); Pro210 (a) | Met15 (a); Phe22 (2b); Phe26 (2b); Val37 (2a); Ile40 (a); Tyr41 (2b); Val137 (a); Gly138 (d); Leu141 (2a); Ala157 (e); Leu164 (a) |
Ciprofloxacin (Standard) | Thr174 (d); His182 (f); His208 (d,f,g) | Phe22 (2f); Phe26 (b); Val37 (a); Tyr41 (b); Val133 (g); Ala134 (b); Val137 (2c); Leu141 (a); Gly161 (d) |
Entry | α-Pinene | Sabinene | β-Pinene | Limonene | γ-Terpinene | Geranial |
---|---|---|---|---|---|---|
GI absorption | Low | Low | Low | Low | Low | High |
BBB permeant | Yes | Yes | Yes | Yes | Yes | Yes |
P–gp substrate | No | No | No | No | No | No |
CYP1A2 inhibitor | No | No | No | No | No | No |
CYP2C19 inhibitor | No | No | No | No | No | No |
CYP2C9 inhibitor | Yes | No | Yes | Yes | No | No |
CYP2D6 inhibitor | No | No | No | No | No | No |
CYP3A4 inhibitor | No | No | No | No | No | No |
Log Kp (cm/s) a | −3.95 | −4.94 | −4.18 | −3.89 | −3.94 | −4.71 |
Lipinski | Yes | Yes | Yes | Yes | Yes | Yes |
TPSA (Å2) | 00.00 | 00.00 | 00.00 | 00.00 | 00.00 | 20.23 |
Consensus Log Po/w | 3.44 | 3.25 | 3.42 | 3.37 | 3.35 | 2.74 |
Bioavailability Score | 0.55 | 0.55 | 0.55 | 0.55 | 0.55 | 0.55 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hamdi, A.; Horchani, M.; Jannet, H.B.; Snoussi, M.; Noumi, E.; Bouali, N.; Kadri, A.; Polito, F.; De Feo, V.; Edziri, H. In Vitro Screening of Antimicrobial and Anti-Coagulant Activities, ADME Profiling, and Molecular Docking Study of Citrus limon L. and Citrus paradisi L. Cold-Pressed Volatile Oils. Pharmaceuticals 2023, 16, 1669. https://doi.org/10.3390/ph16121669
Hamdi A, Horchani M, Jannet HB, Snoussi M, Noumi E, Bouali N, Kadri A, Polito F, De Feo V, Edziri H. In Vitro Screening of Antimicrobial and Anti-Coagulant Activities, ADME Profiling, and Molecular Docking Study of Citrus limon L. and Citrus paradisi L. Cold-Pressed Volatile Oils. Pharmaceuticals. 2023; 16(12):1669. https://doi.org/10.3390/ph16121669
Chicago/Turabian StyleHamdi, Assia, Mabrouk Horchani, Hichem Ben Jannet, Mejdi Snoussi, Emira Noumi, Nouha Bouali, Adel Kadri, Flavio Polito, Vincenzo De Feo, and Hayet Edziri. 2023. "In Vitro Screening of Antimicrobial and Anti-Coagulant Activities, ADME Profiling, and Molecular Docking Study of Citrus limon L. and Citrus paradisi L. Cold-Pressed Volatile Oils" Pharmaceuticals 16, no. 12: 1669. https://doi.org/10.3390/ph16121669
APA StyleHamdi, A., Horchani, M., Jannet, H. B., Snoussi, M., Noumi, E., Bouali, N., Kadri, A., Polito, F., De Feo, V., & Edziri, H. (2023). In Vitro Screening of Antimicrobial and Anti-Coagulant Activities, ADME Profiling, and Molecular Docking Study of Citrus limon L. and Citrus paradisi L. Cold-Pressed Volatile Oils. Pharmaceuticals, 16(12), 1669. https://doi.org/10.3390/ph16121669