Biopsychosocial Variables in Male Schizophrenic Patients: A Comprehensive Comparison with Healthy Controls
Abstract
:1. Introduction
1.1. Schizophrenia: A Multifaceted Mental Health Condition
1.2. Impact of Antipsychotic Medications on Metabolic Syndrome
1.3. Cardiovascular Risk Factors and Cognitive Dysfunction in Schizophrenia
1.4. Emerging Research: Gut Microbiota and Molecular Interactions
1.5. Integrative Treatment Paradigm: Addressing Metabolic Syndrome in Schizophrenia
1.6. Theoretical Framework
2. Results
2.1. Neuropsychological Assessment
2.2. Psychopathology Assessment
2.3. Anthropometric Measurements
2.4. Biochemical Markers
2.5. Pharmacological Assessment
2.6. Diet and Lifestyle Assessment
3. Discussion
3.1. Key Findings
3.2. Contextualization within Existing Literature
3.3. Antropomorphic Measures
3.4. Antipsychotic Treatment
3.5. Resistance to Current Treatments
3.6. Lifestyle Factors
3.7. Limitations
3.8. Therapeutic Implications and Predictions
3.9. Implications for Future Research
4. Materials and Methods
4.1. Subjects
4.2. Neuropsychological Assessment
- -
- Trail Making Test (TMT)—part A and part B [40], which measured psychomotor speed (part A) and visuospatial working memory (part B).
- -
- Stroop Color-Word Interference Test—part RCNb and part NCWd [41], which assessed reading speed (part RCNb) and verbal working memory (part NCWd).
- -
- Verbal Fluency Test—categorical and phonological [42], which evaluated semantic and phonemic fluency.
4.3. Psychopathology Assessment
4.4. Anthropometric Measurements
4.5. Biochemical Markers
4.6. Pharmacological Assessment
4.7. Diet and Lifestyle Assessment
4.8. Ethical Approval
4.9. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bora, E.; Akdede, B.B.; Alptekin, K. The relationship between cognitive impairment in schizophrenia and metabolic syndrome. Psychol. Med. 2017, 47, 1030–1040. [Google Scholar] [CrossRef]
- Hagi, K.; Nosaka, T.; Dickinson, D.; Lindenmayer, J.P.; Lee, J.; Friedman, J.; Boyer, L.; Han, M.; Abdul-Rashid, N.A.; Correll, C.U. Association Between Cardiovascular Risk Factors and Cognitive Impairment in People with Schizophrenia: A Systematic Review and Meta-analysis. JAMA Psychiatry 2021, 78, 510–518. [Google Scholar] [CrossRef]
- Mitchell, A.J.; Vancampfort, D.; Sweers, K.; van Winkel, R.; Yu, W.; De Hert, M. Prevalence of metabolic syndrome and metabolic abnormalities in schizophrenia and related disorders--a systematic review and meta-analysis. Schizophr. Bull. 2013, 39, 306–318. [Google Scholar] [CrossRef]
- Vancampfort, D.; Stubbs, B.; Mitchell, A.J.; De Hert, M.; Wampers, M.; Ward, P.B.; Rosenbaum, S.; Correll, C.U. Risk of metabolic syndrome and its components in people with schizophrenia and related psychotic disorders, bipolar disorder and major depressive disorder: A systematic review and meta-analysis. World Psychiatry 2015, 14, 339–347. [Google Scholar] [CrossRef]
- Riordan, H.J.; Antonini, P.; Murphy, M.F. Atypical antipsychotics and metabolic syndrome in patients with schizophrenia: Risk factors, monitoring, and healthcare implications. Am. Health Drug Benefits 2011, 4, 292–302. [Google Scholar]
- Ijaz, S.; Bolea, B.; Davies, S.; Savović, J.; Richards, A.; Sullivan, S.; Moran, P. Antipsychotic polypharmacy and metabolic syndrome in schizophrenia: A review of systematic reviews. BMC Psychiatry 2018, 18, 275. [Google Scholar] [CrossRef]
- Hasnain, M.; Fredrickson, S.K.; Vieweg, W.V.; Pandurangi, A.K. Metabolic syndrome associated with schizophrenia and atypical antipsychotics. Curr. Diabetes Rep. 2010, 10, 209–216. [Google Scholar] [CrossRef]
- Schmitt, A.; Maurus, I.; Rossner, M.J.; Röh, A.; Lembeck, M.; von Wilmsdorff, M.; Takahashi, S.; Rauchmann, B.; Keeser, D.; Hasan, A. Effects of Aerobic Exercise on Metabolic Syndrome, Cardiorespiratory Fitness, and Symptoms in Schizophrenia Include Decreased Mortality. Front. Psychiatry 2018, 9, 690. [Google Scholar] [CrossRef]
- Bueno-Antequera, J.; Munguía-Izquierdo, D. Exercise and Schizophrenia. Adv. Exp. Med. Biol. 2020, 1228, 317–332. [Google Scholar]
- Battini, V.; Cirnigliaro, G.; Leuzzi, R.; Rissotto, E.; Mosini, G.; Benatti, B.; Pozzi, M.; Nobile, M.; Radice, S.; Carnovale, C. The potential effect of metformin on cognitive and other symptom dimensions in patients with schizophrenia and antipsychotic-induced weight gain: A systematic review, meta-analysis, and meta-regression. Front. Psychiatry 2023, 14, 1215807. [Google Scholar] [CrossRef]
- Zeng, C.; Yang, P.; Cao, T.; Gu, Y.; Li, N.; Zhang, B.; Xu, P.; Liu, Y.; Luo, Z.; Cai, H. Gut microbiota: An intermediary between metabolic syndrome and cognitive deficits in schizophrenia. Prog. Neuropsychopharmacol. Biol. Psychiatry 2021, 106, 110097. [Google Scholar] [CrossRef] [PubMed]
- MacKenzie, N.E.; Kowalchuk, C.; Agarwal, S.M.; Costa-Dookhan, K.A.; Caravaggio, F.; Gerretsen, P.; Chintoh, A.; Remington, G.J.; Taylor, V.H.; Müeller, D.J. Antipsychotics, Metabolic Adverse Effects, and Cognitive Function in Schizophrenia. Front. Psychiatry 2018, 9, 622. [Google Scholar] [CrossRef] [PubMed]
- Carli, M.; Kolachalam, S.; Longoni, B.; Pintaudi, A.; Baldini, M.; Aringhieri, S.; Fasciani, I.; Annibale, P.; Maggio, R. Atypical Antipsychotics and Metabolic Syndrome: From Molecular Mechanisms to Clinical Differences. Pharmaceuticals 2021, 14, 238. [Google Scholar] [CrossRef] [PubMed]
- Molina, J.D.; Avila, S.; Rubio, G.; López-Muñoz, F. Metabolomic Connections between Schizophrenia, Antipsychotic Drugs and Metabolic Syndrome: A Variety of Players. Curr. Pharm. Des. 2021, 27, 4049–4061. [Google Scholar] [CrossRef] [PubMed]
- Doménech-Matamoros, P. Influence of the use of atypical antipsychotics in metabolic syndrome. Rev. Esp. Sanid. Penit. 2020, 22, 80–86. [Google Scholar] [CrossRef] [PubMed]
- Pramyothin, P.; Khaodhiar, L. Metabolic syndrome with the atypical antipsychotics. Curr. Opin. Endocrinol. Diabetes Obes. 2010, 17, 460–466. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Du, L.; Pu, Z.; Shi, Y.; Xiao, Z.; Chen, X.; Yao, S.; Wang, L.; Li, Z.; Xue, T.; et al. Association between Metabolic Risk Factors and Cognitive Impairment in Schizophrenia Based on Sex. Psychiatry Investig. 2023, 20, 930–939. [Google Scholar] [CrossRef]
- Cao, A.; Tang, C.; Chen, X.; Li, C. Analysis of Metabolic Syndrome and Cognitive Functional Analysis in Schizophrenic Patients Based on Psychological Intervention. Prev. Med. 2023, 173, 107586. [Google Scholar] [CrossRef]
- Lindenmayer, J.P.; Khan, A.; Kaushik, S.; Thanju, A.; Praveen, R.; Hoffman, L.; Cherath, L.; Valdez, G.; Wance, D. Relationship between metabolic syndrome and cognition in patients with schizophrenia. Schizophr. Res. 2012, 142, 171–176. [Google Scholar] [CrossRef]
- Goughari, A.S.; Mazhari, S.; Pourrahimi, A.M.; Sadeghi, M.M.; Nakhaee, N. Association of metabolic syndrome with cognitive function in patients with schizophrenia. J. Psychiatr. Res. 2015, 69, 42–49. [Google Scholar]
- Luckhoff, H.K.; Kilian, S.; Olivier, M.R.; Phahladira, L.; Scheffler, F.; du Plessis, S.; Chiliza, B.; Asmal, L.; Emsley, R. Relationship between changes in metabolic syndrome constituent components over 12 months of treatment and cognitive performance in first-episode schizophrenia. Metab. Brain Dis. 2019, 34, 469–476. [Google Scholar] [CrossRef]
- Haddad, P. Weight change with atypical antipsychotics in the treatment of schizophrenia. J. Psychopharmacol. 2005, 19 (Suppl. 6), 16–27. [Google Scholar] [CrossRef] [PubMed]
- Sussman, N. The implications of weight changes with antipsychotic treatment. J. Clin. Psychopharmacol. 2003, 23 (Suppl. 1), S21–S26. [Google Scholar] [CrossRef]
- Hansen, M.V.; Hjorth, P.; Kristiansen, C.B.; Vandborg, K.; Gustafsson, L.N.; Munk-Jørgensen, P. Reducing cardiovascular risk factors in non-selected outpatients with schizophrenia. Int. J. Soc. Psychiatry 2016, 62, 400–407. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, Q.; Reynolds, G.P.; Yue, W.; Deng, W.; Yan, H.; Tan, L.; Wang, C.; Yang, G.; Lu, T.; et al. Metabolic Effects of 7 Antipsychotics on Patients with Schizophrenia: A Short-Term, Randomized, Open-Label, Multicenter, Pharmacologic Trial. J. Clin. Psychiatry 2020, 81, 16879. [Google Scholar] [CrossRef]
- Hrdlicka, M.; Zedkova, I.; Blatny, M.; Urbanek, T. Weight gain associated with atypical and typical antipsychotics during treatment of adolescent schizophrenic psychoses: A retrospective study. Neuro Endocrinol. Lett. 2009, 30, 256–261. [Google Scholar]
- Burghardt, K.J.; Seyoum, B.; Mallisho, A.; Burghardt, P.R.; Kowluru, R.A.; Yi, Z. Atypical antipsychotics, insulin resistance and weight; a meta-analysis of healthy volunteer studies. Prog. Neuropsychopharmacol. Biol. Psychiatry 2018, 83, 55–63. [Google Scholar] [CrossRef]
- Kowalchuk, C.; Kanagasundaram, P.; Belsham, D.D.; Hahn, M.K. Antipsychotics differentially regulate insulin, energy sensing, and inflammation pathways in hypothalamic rat neurons. Psychoneuroendocrinology 2019, 104, 42–48. [Google Scholar] [CrossRef]
- Abbas, M.S.; Nassar, S.T.; Tasha, T.; Desai, A.; Bajgain, A.; Ali, A.; Dutta, C.; Pasha, K.; Paul, S.; Venugopal, S. Exercise as an Adjuvant Treatment of Schizophrenia: A Review. Cureus 2023, 15, e42084. [Google Scholar] [CrossRef] [PubMed]
- Heald, A.; Pendlebury, J.; Anderson, S.; Narayan, V.; Guy, M.; Gibson, M.; Haddad, P.; Livingston, M. Lifestyle factors and the metabolic syndrome in Schizophrenia: A cross-sectional study. Ann. Gen. Psychiatry 2017, 16, 12. [Google Scholar] [CrossRef]
- Gurusamy, J.; Gandhi, S.; Damodharan, D.; Ganesan, V.; Palaniappan, M. Exercise, diet and educational interventions for metabolic syndrome in persons with schizophrenia: A systematic review. Asian J. Psychiatry 2018, 36, 73–85. [Google Scholar] [CrossRef]
- Flocco, P.; Pompili, E.; Riggio, F.; Nicolò, G.; Bernabei, L. Men.Phys—Reducing sedentary behavior and increasing physical activity in people with severe mental illness in an acute psychiatric ward: A research protocol for a randomized controlled trial. Clin. Ter. 2023, 174, 287–295. [Google Scholar]
- Li, Q.; Chen, D.; Liu, T.; Walss-Bass, C.; de Quevedo, J.L.; Soares, J.C.; Zhao, J.; Zhang, X.Y. Sex Differences in Body Mass Index and Obesity in Chinese Patients with Chronic Schizophrenia. J. Clin. Psychopharmacol. 2016, 36, 643–648. [Google Scholar] [CrossRef] [PubMed]
- Adamowicz, K.; Mazur, A.; Mak, M.; Samochowiec, J.; Kucharska-Mazur, J. Metabolic Syndrome and Cognitive Functions in Schizophrenia-Implementation of Dietary Intervention. Front. Psychiatry 2020, 11, 359. [Google Scholar] [CrossRef]
- Dari, T.; Fox, C.; Laux, J.M.; Speedlin Gonzalez, S. The Development and Validation of the Community-Based Participatory Research Knowledge Self-Assessment Scale (CBPR-KSAS): A Rasch Analysis. Meas. Eval. Couns. Dev. 2023, 56, 64–79. [Google Scholar] [CrossRef]
- Doyumgaç, I.; Tanhan, A.; Kiymaz, M.S. Understanding the Most Important Facilitators and Barriers for Online Education during COVID-19 through Online Photovoice Methodology. Int. J. High. Educ. 2021, 10, 166–190. [Google Scholar] [CrossRef]
- Subasi, Y. College Belonging among University Students during COVID-19: An Online Interpretative Phenomenological (OIPA) Perspective. J. Happiness Health 2023, 3, 109–126. [Google Scholar] [CrossRef]
- Tanhan, A.; Strack, R.W. Online Photovoice to Explore and Advocate for Muslim Biopsychosocial Spiritual Wellbeing and Issues: Ecological Systems Theory and Ally Development. Curr. Psychol. 2020, 39, 2010–2025. [Google Scholar] [CrossRef]
- WHO. The ICD-10 Classification of Mental and Behavioural Disorders: Clinical Descriptions and Diagnostic Guidelines; World Health Organization: Geneva, Switzerland, 1992; Volume 1. [Google Scholar]
- Reitan, R.M. Validity of the Trail Making Test as an indicator of organic brain damage. Percept. Mot. Skills 1958, 8, 271–276. [Google Scholar] [CrossRef]
- Stroop, J.R. Studies of interference in serial verbal reactions. J. Exp. Psychol. 1935, 18, 643. [Google Scholar] [CrossRef]
- Borkowski, J.G.; Benton, A.L.; Spreen, O. Word fluency and brain damage. Neuropsychologia 1967, 5, 135–140. [Google Scholar] [CrossRef]
- Kay, S.R.; Fiszbein, A.; Opler, L.A. The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophr. Bull. 1987, 13, 261–276. [Google Scholar] [CrossRef] [PubMed]
- WHO. Waist Circumference and Waist-Hip Ratio: Report of a WHO Expert Consultation, Geneva, 8–11 December 2008; World Health Organization: Geneva, Switzerland, 2011. [Google Scholar]
- Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Executive Summary of the Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). JAMA 2001, 285, 2486–2497. [Google Scholar] [CrossRef] [PubMed]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis model assessment: Insulin resistance and beta cell function in man. Diabetologia 1985, 28, 401–411. [Google Scholar] [CrossRef]
- Woods, S.W. Chlorpromazine equivalent doses for the newer atypical antipsychotics. J. Clin. Psychiatry 2003, 64, 663–667. [Google Scholar] [CrossRef]
- Bazire, S. Przewodnik Leków Psychotropowych 2018—Tom 2: Podręcznik dla Lekarzy i Podsumowanie Najważniejszych Informacji; Via Medica: Gdańsk, Poland, 2018; ISBN 9788366645677. [Google Scholar]
- Jeżewska-Zychowicz, M.; Gawęcki, J.; Wądołowska, L. i wsp. Kwestionariusz do badania poglądów i zwyczajów żywieniowych dla osób w wieku od 16 do 65 lat, wersja 1.1—Kwestionariusz administrowany przez ankietera-badacza. In Kwestionariusz do Badania Poglądów i Zwyczajów Żywieniowych oraz Procedura Opracowania Danych; Gawęcki, J., Ed.; Komitet Nauki o Żywieniu Człowieka PAN: Warszawa, Poland, 2014; pp. 3–20. [Google Scholar]
GROUP | N | Mean | SD | Significance a | |
---|---|---|---|---|---|
TMT_A | 1 | 30 | 31.42 | 13.822 | U = 191.50; Z = −2.50; p = 0.012 |
2 | 27 | 45.11 | 20.554 | ||
TMT_B | 1 | 30 | 82.00 | 37.482 | U = 223.00; Z = −1.91; p = 0.057 |
2 | 27 | 99.93 | 41.252 | ||
Mistakes | 1 | 30 | 2.61 | 7.095 | U = 303.00; Z = −0.21; p = 0.834 |
2 | 27 | 1.15 | 2.597 | ||
STROOP1 | 1 | 30 | 14.87 | 3.209 | U = 130.00; Z = −3.53; p < 0.001 |
2 | 27 | 20.22 | 6.518 | ||
STROOP2 | 1 | 30 | 26.30 | 7.564 | U = 151.00; Z = −3.11; p = 0.002 |
2 | 27 | 37.74 | 19.827 | ||
Mistakes | 1 | 30 | 0.57 | 1.199 | U = 298.50; Z = −2.50; p = 0.012 |
2 | 27 | 0.59 | 1.010 | ||
Phonemic fluency | 1 | 30 | 9.83 | 3.298 | t= −0.38; df = 48; p = 0.709 |
2 | 27 | 10.22 | 4.041 | ||
Phonemic fluency | 1 | 30 | 11.78 | 4.242 | t = −0.45; df = 48; p = 0.661 |
2 | 27 | 12.37 | 5.039 | ||
Phonemic fluency | 1 | 30 | 11.35 | 3.676 | t = 0.51; df = 48; p = 0.614 |
2 | 27 | 10.78 | 4.182 | ||
Semantic fluency | 1 | 30 | 20.00 | 5.099 | t = 3.09; df = 48; p = 0.003 |
2 | 27 | 15.70 | 4.705 | ||
Semantic fluency | 1 | 30 | 14.48 | 2.921 | t = 3.12; df = 48; p = 0.003 |
2 | 27 | 11.67 | 3.374 | ||
Semantic fluency | 1 | 30 | 11.48 | 2.906 | t = 0.925; df = 48; p = 0.360 |
2 | 27 | 10.44 | 4.635 |
Group | N | Mean | SD | Significance a | |
---|---|---|---|---|---|
Body weight (kg) | 1 | 30 | 82.33 | 15.094 | t = −3.23; df = 55; p = 0.002 |
2 | 27 | 96.11 | 17.068 | ||
Height (cm) | 1 | 30 | 176.10 | 9.437 | t = −0.33; df = 55; p = 0.747 |
2 | 27 | 176.96 | 10.639 | ||
Waist circumference (cm) | 1 | 30 | 93.50 | 10.312 | t = −3.73; df = 55; p < 0.001 |
2 | 27 | 105.70 | 14.250 | ||
BMI | 1 | 30 | 26.4947 | 4.30493 | t = −3.34; df = 55; p < 0.001 |
2 | 27 | 30.9333 | 5.69595 |
Group | Together | ||||
---|---|---|---|---|---|
1 | 2 | Significance a | |||
Cigarettes now (0—no; 1—yes) | 0 | 23 | 14 | 37 | Chi2 = 3.84; df = 1; p = 0.050 |
1 | 7 | 13 | 20 | ||
Together | 30 | 27 | 57 | ||
Cigarettes in the past (0—no; 1—yes) | 0 | 14 | 8 | 22 | Chi2 = 1.74; df = 1; p = 0.187 |
1 | 16 | 19 | 35 | ||
Together | 30 | 27 | 57 | ||
Hours of sleep—workdays (1–3) | 1 | 10 | 1 | 11 | V = 0.58; df = 2; p< 0.001 |
2 | 20 | 15 | 35 | ||
3 | 0 | 11 | 11 | ||
Together | 30 | 27 | 57 | ||
Hours of sleep—weekend (1–3) | 1 | 4 | 1 | 5 | V = 0.51; df = 2; p < 0.001 |
2 | 20 | 7 | 27 | ||
3 | 6 | 19 | 25 | ||
Together | 30 | 27 | 57 | ||
Hours at TV/computer (1–6) | 1 | 6 | 3 | 9 | V = 0.387; df = 5; p = 0.130 |
2 | 9 | 14 | 23 | ||
3 | 6 | 6 | 12 | ||
4 | 1 | 3 | 4 | ||
5 | 6 | 1 | 7 | ||
6 | 2 | 0 | 2 | ||
Together | 30 | 27 | 57 | ||
Activity on workdays (1–3) | 1 | 14 | 12 | 26 | V = 0.204; df = 2; p = 0.312 |
2 | 7 | 10 | 17 | ||
3 | 9 | 4 | 13 | ||
Together | 30 | 26 | 56 | ||
Activity in free time (1–3) | 1 | 1 | 13 | 14 | V = 0.52; df = 2; p< 0.001 |
2 | 22 | 11 | 33 | ||
3 | 7 | 3 | 10 | ||
Together | 30 | 27 | 57 |
Variable | Group Difference | Clinical Implication |
---|---|---|
Neuropsychological performance | Worse in SZ group indicated by TMT and Stroop test scores | Potential for cognitive enhancement therapies targeting psychomotor speed and working memory deficits |
Anthropometric measurements | Higher body weight, waist circumference, and BMI in SZ group | Need for weight management and metabolic health interventions |
Biochemical markers | Elevated insulin levels and HOMA-IR indices in SZ group suggest metabolic syndrome link | Insight into antipsychotic treatment effects on metabolic health; insulin resistance as a treatment focus |
Lifestyle factors | Longer sleep duration and lower leisure time activity in SZ group | Consideration for lifestyle modification strategies in therapeutic regimes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krysta, K.; Trędzbor, B.; Martyniak, E.; Cieślik, A.; Koźmin-Burzyńska, A.; Piekarska-Bugiel, K.; Skałacka, K.; Bieś, R.; Krzystanek, M. Biopsychosocial Variables in Male Schizophrenic Patients: A Comprehensive Comparison with Healthy Controls. Pharmaceuticals 2023, 16, 1633. https://doi.org/10.3390/ph16121633
Krysta K, Trędzbor B, Martyniak E, Cieślik A, Koźmin-Burzyńska A, Piekarska-Bugiel K, Skałacka K, Bieś R, Krzystanek M. Biopsychosocial Variables in Male Schizophrenic Patients: A Comprehensive Comparison with Healthy Controls. Pharmaceuticals. 2023; 16(12):1633. https://doi.org/10.3390/ph16121633
Chicago/Turabian StyleKrysta, Krzysztof, Beata Trędzbor, Ewa Martyniak, Aleksandra Cieślik, Agnieszka Koźmin-Burzyńska, Katarzyna Piekarska-Bugiel, Katarzyna Skałacka, Rafał Bieś, and Marek Krzystanek. 2023. "Biopsychosocial Variables in Male Schizophrenic Patients: A Comprehensive Comparison with Healthy Controls" Pharmaceuticals 16, no. 12: 1633. https://doi.org/10.3390/ph16121633
APA StyleKrysta, K., Trędzbor, B., Martyniak, E., Cieślik, A., Koźmin-Burzyńska, A., Piekarska-Bugiel, K., Skałacka, K., Bieś, R., & Krzystanek, M. (2023). Biopsychosocial Variables in Male Schizophrenic Patients: A Comprehensive Comparison with Healthy Controls. Pharmaceuticals, 16(12), 1633. https://doi.org/10.3390/ph16121633