Anti-Inflammatory Drug Candidates for Prevention and Treatment of Cardiovascular Diseases
Abstract
:1. Introduction
2. Atherosclerosis and Inflammation
2.1. Inflammatory Pathway in Atherosclerosis
2.2. Anti-Inflammatory Biotherapies
2.3. An Old/New Anti-Inflammatory Agent: Colchicine
2.4. Drugs under Investigation
3. Myocardial Infarction and Anti-Inflammatory Drugs
3.1. Inflammatory Storm after MI
3.2. Biotherapies
3.3. From Cyclosporine to Colchicine
3.4. Future Anti-Inflammatory Therapies
3.5. Targeting Cell Death with Stem Cells
4. Future in the Field of Lipid-Lowering Drugs
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- GBD 2015 Mortality and Causes of Death Collaborators. Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: A systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016, 388, 1459–1544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ridker, P.M.; Danielson, E.; Fonseca, F.A.; Genest, J.; Gotto, A.M., Jr.; Kastelein, J.J.; Koenig, W.; Libby, P.; Lorenzatti, A.J.; MacFadyen, J.G.; et al. Rosuvastatin to Prevent Vascular Events in Men and Women with Elevated C-Reactive Protein. N. Engl. J. Med. 2008, 359, 2195–2207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huet, F.; Akodad, M.; Fauconnier, J.; Lacampagne, A.; Roubille, F. Anti-inflammatory drugs as promising cardiovascular treatments. Expert Rev. Cardiovasc. Ther. 2017, 15, 109–125. [Google Scholar] [CrossRef] [PubMed]
- Falk, E.; Shah, P.K.; Fuster, V. Coronary plaque disruption. Circulation 1995, 92, 657–671. [Google Scholar] [CrossRef]
- Hansson, G.K. Inflammation, atherosclerosis, and coronary artery disease. N. Engl. J. Med. 2005, 352, 1685–1695. [Google Scholar] [CrossRef] [Green Version]
- Ghattas, A.; Griffiths, H.R.; Devitt, A.; Lip, G.Y.H.; Shantsila, E. Monocytes in coronary artery disease and atherosclerosis: Where are we now? J. Am. Coll. Cardiol. 2013, 62, 1541–1551. [Google Scholar] [CrossRef] [Green Version]
- Bäck, M.; Yurdagul, A.; Tabas, I.; Öörni, K.; Kovanen, P.T. Inflammation and its resolution in atherosclerosis: Mediators and therapeutic opportunities. Nat. Rev. Cardiol. 2019, 16, 389–406. [Google Scholar] [CrossRef] [PubMed]
- Libby, P. Current concepts of the pathogenesis of the acute coronary syndromes. Circulation 2001, 104, 365–372. [Google Scholar] [CrossRef] [Green Version]
- Braunwald, E. Creating controversy where none exists: The important role of C-reactive protein in the CARE, AFCAPS/TexCAPS, PROVE IT, REVERSAL, A to Z, JUPITER, HEART PROTECTION, and ASCOT trials. Eur. Heart J. 2012, 33, 430–432. [Google Scholar] [CrossRef] [Green Version]
- Aksentijevich, M.; Lateef, S.S.; Anzenberg, P.; Dey, A.K.; Mehta, N.N. Chronic Inflammation, Cardiometabolic Diseases and Effects of Treatment: Psoriasis as a Human Model. Trends Cardiovasc. Med. 2020, 30, 472–478. [Google Scholar] [CrossRef]
- Signorelli, S.S.; Candido, S.; Salemi, R.; Fiore, V.; Mangiafico, M.; Libra, M. Low levels of inflammation and the absence of subclinical atherosclerosis in rheumatoid arthritis. Mol. Med. Rep. 2016, 13, 3521–3524. [Google Scholar] [CrossRef] [Green Version]
- Jacobsson, L.T.H.; Turesson, C.; Gülfe, A.; Kapetanovic, M.C.; Petersson, I.F.; Saxne, T.; Geborek, P. Treatment with tumor necrosis factor blockers is associated with a lower incidence of first cardiovascular events in patients with rheumatoid arthritis. J. Rheumatol. 2005, 32, 1213–1218. [Google Scholar] [PubMed]
- Mann, D.L.; Mcmurray, J.; Packer, M.; Swedberg, K.; Borer, J.S.; Colucci, W.; Djian, J.; Drexler, H.; Feldman, A.; Kober, L.; et al. Targeted anticytokine therapy in patients with chronic heart failure: Results of the Randomized Etanercept Worldwide Evaluation (RENEWAL). Circulation 2004, 109, 1594–1602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, K.; Maguire, J.; Davenport, A. Chemokine receptor CCR5: From AIDS to atherosclerosis. Br. J. Pharmacol. 2011, 162, 1453–1469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maggi, P.; Bruno, G.; Perilli, F.; Saracino, A.; Volpe, A.; Santoro, C.; Ladisa, N.; Angarano, G. Effects of Therapy with Maraviroc on the Carotid Intima Media Thickness in HIV-1/HCV Co-infected Patients. In Vivo 2017, 31, 125–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bevilacqua, M.P.; Pober, J.S.; Majeau, G.R.; Cotran, R.S.; Gimbrone, M.A. Interleukin 1 (IL-1) induces biosynthesis and cell surface expression of procoagulant activity in human vascular endothelial cells. J. Exp. Med. 1984, 160, 618–623. [Google Scholar] [CrossRef] [Green Version]
- Ridker, P.M.; Everett, B.M.; Thuren, T.; MacFadyen, J.G.; Chang, W.H.; Ballantyne, C.; Fonseca, F.; Nicolau, J.; Koenig, W.; Anker, S.D.; et al. Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease. N. Engl. J. Med. 2017, 377, 1119–1131. [Google Scholar] [CrossRef]
- Roubille, F.; Kritikou, E.; Busseuil, D.; Barrere-Lemaire, S.; Tardif, J.C. Colchicine: An Old Wine in a New Bottle? Anti-Inflamm. Anti-Allergy Agents Med. Chem. 2013, 12, 14–23. [Google Scholar] [CrossRef]
- Nidorf, S.M.; Fiolet, A.T.L.; Mosterd, A.; Eikelboom, J.W.; Schut, A.; Opstal, T.S.J.; The, S.H.K.; Xu, X.-F.; Ireland, M.A.; Lenderink, T.; et al. Colchicine in Patients with Chronic Coronary Disease. N. Engl. J. Med. 2020, 383, 1838–1847. [Google Scholar] [CrossRef]
- Tardif, J.-C.; Kouz, S.; Waters, D.D.; Bertrand, O.F.; Diaz, R.; Maggioni, A.P.; Pinto, F.J.; Ibrahim, R.; Gamra, H.; Kiwan, G.S.; et al. Efficacy and Safety of Low-Dose Colchicine after Myocardial Infarction. N. Engl. J. Med. 2019, 381, 2497–2505. [Google Scholar] [CrossRef]
- Visseren, F.L.J.; Mach, F.; Smulders, Y.M.; Carballo, D.; Koskinas, K.C.; Bäck, M.; Benetos, A.; Biffi, A.; Boavida, J.-M.; Capodanno, D.; et al. 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice: Developed by the Task Force for cardiovascular disease prevention in clinical practice with representatives of the European Society of Cardiology and 12 medical societies with the special contribution of the European Association of Preventive Cardiology (EAPC). Eur. Heart J. 2021, 42, 3227–3337. [Google Scholar] [CrossRef]
- Ridker, P.M.; Everett, B.M.; Pradhan, A.; MacFadyen, J.G.; Solomon, D.H.; Zaharris, E.; Mam, V.; Hasan, A.; Rosenberg, Y.; Iturriaga, E.; et al. Low-Dose Methotrexate for the Prevention of Atherosclerotic Events. N. Engl. J. Med. 2019, 380, 752–762. [Google Scholar] [CrossRef] [PubMed]
- Kužnik, A.; Benčina, M.; Švajger, U.; Jeras, M.; Rozman, B.; Jerala, R. Mechanism of Endosomal TLR Inhibition by Antimalarial Drugs and Imidazoquinolines. J. Immunol. 2011, 186, 4794–4804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, T.S.; Wasko, M.C.M.; Tang, X.; Vedamurthy, D.; Yan, X.; Cote, J.; Bili, A. Hydroxychloroquine Use is Associated with Decreased Incident Cardiovascular Events in Rheumatoid Arthritis Patients. J. Am. Heart Assoc. Cardiovasc. Cerebrovasc. Dis. 2016, 5, e002867. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Libby, P.; Rocha, V.Z. All roads lead to IL-6: A central hub of cardiometabolic signaling. Int. J. Cardiol. 2018, 259, 213–215. [Google Scholar] [CrossRef] [PubMed]
- Ridker, P.M.; Rifai, N.; Stampfer, M.J.; Hennekens, C.H. Plasma Concentration of Interleukin-6 and the Risk of Future Myocardial Infarction Among Apparently Healthy Men. Circulation 2000, 101, 1767–1772. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Xie, F.; Yun, H.; Chen, L.; Muntner, P.; Levitan, E.; Safford, M.M.; Kent, S.T.; Osterman, M.T.; Lewis, J.D.; et al. Comparative effects of biologics on cardiovascular risk among older patients with rheumatoid arthritis. Ann. Rheum. Dis. 2016, 75, 1813–1818. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.X.; Aetesam-Ur-Rahman, M.; Sage, A.P.; Victor, S.; Kurian, R.; Fielding, S.; Ait-Oufella, H.; Chiu, Y.-D.; Binder, C.J.; Mckie, M.; et al. Rituximab in patients with acute ST-elevation myocardial infarction: An experimental medicine safety study. Cardiovasc. Res. 2022, 118, 872–882. [Google Scholar] [CrossRef]
- Yellon, D.M.; Hausenloy, D.J. Myocardial Reperfusion Injury. N. Engl. J. Med. 2007, 357, 1121–1135. [Google Scholar] [CrossRef] [PubMed]
- Roubille, F.; Lacampagne, A. New drug avenues for cardioprotection in patients with acute myocardial infarction. Am. J. Cardiovasc. Drugs: Drugs Devices Interv. 2014, 14, 73–77. [Google Scholar] [CrossRef]
- Roubille, F.; Tardif, J.C. Inflammation and the heart—Prime time for new therapeutic approaches. Expert Opin. Emerg. Drugs 2013, 18, 259–261. [Google Scholar] [CrossRef] [PubMed]
- Moreira, D.M.; Lueneberg, M.E.; da Silva, R.L.; Fattah, T.; Gottschall, C.A.M. MethotrexaTE THerapy in ST-Segment Elevation MYocardial InfarctionS: A Randomized Double-Blind, Placebo-Controlled Trial (TETHYS Trial). J. Cardiovasc. Pharmacol. Ther. 2017, 22, 538–545. [Google Scholar] [CrossRef] [PubMed]
- Stähli, B.E.; Gebhard, C.; Duchatelle, V.; Cournoyer, D.; Petroni, T.; Tanguay, J.; Robb, S.; Mann, J.; Guertin, M.; Wright, R.S.; et al. Effects of the P-Selectin Antagonist Inclacumab on Myocardial Damage after Percutaneous Coronary Intervention According to Timing of Infusion: Insights From the SELECT-ACS Trial. J. Am. Heart Assoc. 2016, 5, e004255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abbate, A.; Trankle, C.R.; Buckley, L.F.; Lipinski, M.J.; Appleton, D.; Kadariya, D.; Canada, J.M.; Carbone, S.; Roberts, C.S.; Abouzaki, N.; et al. Interleukin-1 Blockade Inhibits the Acute Inflammatory Response in Patients with ST-Segment–Elevation Myocardial Infarction. J. Am. Heart Assoc. 2020, 9, e014941. [Google Scholar] [CrossRef] [PubMed]
- von Stebut, E.; Reich, K.; Thaçi, D.; Koenig, W.; Pinter, A.; Körber, A.; Rassaf, T.; Waisman, A.; Mani, V.; Yates, D.; et al. Impact of Secukinumab on Endothelial Dysfunction and Other Cardiovascular Disease Parameters in Psoriasis Patients over 52 Weeks. J. Investig. Dermatol. 2019, 139, 1054–1062. [Google Scholar] [CrossRef] [Green Version]
- Kleveland, O.; Kunszt, G.; Bratlie, M.; Ueland, T.; Broch, K.; Holte, E.; Michelsen, A.E.; Bendz, B.; Amundsen, B.H.; Espevik, T.; et al. Effect of a single dose of the interleukin-6 receptor antagonist tocilizumab on inflammation and troponin T release in patients with non-ST-elevation myocardial infarction: A double-blind, randomized, placebo-controlled phase 2 trial. Eur. Heart J. 2016, 37, 2406–2413. [Google Scholar] [CrossRef] [Green Version]
- Carroll, M.B.; Haller, C.; Smith, C. Short-term application of tocilizumab during myocardial infarction (STAT-MI). Rheumatol. Int. 2018, 38, 59–66. [Google Scholar] [CrossRef]
- Broch, K.; Anstensrud, A.K.; Woxholt, S.; Sharma, K.; Tøllefsen, I.M.; Bendz, B.; Aakhus, S.; Ueland, T.; Amundsen, B.H.; Damås, J.K.; et al. Randomized Trial of Interleukin-6 Receptor Inhibition in Patients with Acute ST-Segment Elevation Myocardial Infarction. J. Am. Coll. Cardiol. 2021, 77, 1845–1855. [Google Scholar] [CrossRef]
- Gibson, C.M.; Giugliano, R.; Kloner, R.A.; Bode, C.; Tendera, M.; Jánosi, A.; Merkely, B.; Godlewski, J.; Halaby, R.; Korjian, S.; et al. EMBRACE STEMI study: A Phase 2a trial to evaluate the safety, tolerability, and efficacy of intravenous MTP-131 on reperfusion injury in patients undergoing primary percutaneous coronary intervention. Eur. Heart J. 2016, 37, 1296–1303. [Google Scholar] [CrossRef] [Green Version]
- Argaud, L.; Gateau-Roesch, O.; Muntean, D.M.; Chalabreysse, L.; Loufouat, J.; Robert, D.; Ovize, M. Specific inhibition of the mitochondrial permeability transition prevents lethal reperfusion injury. J. Mol. Cell Cardiol. 2005, 38, 367–374. [Google Scholar] [CrossRef]
- Duchen, M.R.; McGuinness, O.; Brown, L.A.; Crompton, M. On the involvement of a cyclosporin A sensitive mitochondrial pore in myocardial reperfusion injury. Cardiovasc. Res. 1993, 27, 1790–1794. [Google Scholar] [CrossRef] [PubMed]
- Cung, T.-T.; Morel, O.; Cayla, G.; Rioufol, G.; Garcia-Dorado, D.; Angoulvant, D.; Bonnefoy-Cudraz, E.; Guérin, P.; Elbaz, M.; Delarche, N. Cyclosporine before PCI in Patients with Acute Myocardial Infarction. N. Engl. J. Med. 2015, 373, 1021–1031. [Google Scholar] [CrossRef] [PubMed]
- Bouabdallaoui, N.; Tardif, J.-C.; Waters, D.D.; Pinto, F.J.; Maggioni, A.P.; Diaz, R.; Berry, C.; Koenig, W.; Lopez-Sendon, J.; Gamra, H.; et al. Time-to-treatment initiation of colchicine and cardiovascular outcomes after myocardial infarction in the Colchicine Cardiovascular Outcomes Trial (COLCOT). Eur. Heart J. 2020, 41, 4092–4099. [Google Scholar] [CrossRef] [PubMed]
- Mewton, N.; Roubille, F.; Bresson, D.; Prieur, C.; Bouleti, C.; Bochaton, T.; Ivanes, F.; Dubreuil, O.; Biere, L.; Hayek, A.; et al. Effect of Colchicine on Myocardial Injury in Acute Myocardial Infarction. Circulation 2021, 144, 859–869. [Google Scholar] [CrossRef] [PubMed]
- Villarreal, F.J.; Griffin, M.; Omens, J.; Dillmann, W.; Nguyen, J.; Covell, J. Early Short-Term Treatment with Doxycycline Modulates Postinfarction Left Ventricular Remodeling. Circulation 2003, 108, 1487–1492. [Google Scholar] [CrossRef] [Green Version]
- Cerisano, G.; Buonamici, P.; Valenti, R.; Sciagra, R.; Raspanti, S.; Santini, A.; Carrabba, N.; Dovellini, E.V.; Romito, R.; Pupi, A.; et al. Early short-term doxycycline therapy in patients with acute myocardial infarction and left ventricular dysfunction to prevent the ominous progression to adverse remodelling: The TIPTOP trial. Eur. Heart J. 2014, 35, 184–191. [Google Scholar] [CrossRef] [Green Version]
- Holzknecht, M.; Reinstadler, S.J. CRP: A potential target in reperfused STEMI? Reply to the letter: “Targeting CRP in microvascular obstruction after PCI”. Int. J. Cardiol. 2022, 355, 5. [Google Scholar] [CrossRef]
- Schenkel, P.C.; Tavares, A.M.V.; Fernandes, R.O.; Diniz, G.P.; Bertagnolli, M.; Araujo, A.S.D.R.; Barreto-Chaves, M.L.; Ribeiro, M.F.M.; Clausell, N.; Belló-Klein, A. Redox-sensitive prosurvival and proapoptotic protein expression in the myocardial remodeling post-infarction in rats. Mol. Cell Biochem. 2010, 341, 1–8. [Google Scholar] [CrossRef]
- Hafezi-Moghadam, A.; Simoncini, T.; Yang, Z.; Limbourg, F.; Plumier, J.-C.; Rebsamen, M.C.; Hsieh, C.-M.; Chui, D.-S.; Thomas, K.L.; Prorock, A.J.; et al. Acute cardiovascular protective effects of corticosteroids are mediated by non-transcriptional activation of endothelial nitric oxide synthase. Nat. Med. 2002, 8, 473–479. [Google Scholar] [CrossRef]
- Westman, P.C.; Lipinski, M.J.; Luger, D.; Waksman, R.; Bonow, R.O.; Wu, E.; Epstein, S.E. Inflammation as a Driver of Adverse Left Ventricular Remodeling After Acute Myocardial Infarction. J. Am. Coll. Cardiol. 2016, 67, 2050–2060. [Google Scholar] [CrossRef]
- Klatzmann, D.; Abbas, A.K. The promise of low-dose interleukin-2 therapy for autoimmune and inflammatory diseases. Nat. Rev. Immunol. 2015, 15, 283–294. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.X.; Sriranjan, R.S.; Lu, Y.; Hubsch, A.; Kaloyirou, F.; Vamvaka, E.; Helmy, J.; Kostapanos, M.; Klatzmann, D.; Tedgui, A.; et al. Low dose interleukin-2 in patients with stable ischaemic heart disease and acute coronary syndrome (LILACS). Eur. Heart J. 2020, 41 (Suppl. 2), ehaa946.1735. [Google Scholar] [CrossRef]
- Zhao, T.X.; Sriranjan, R.S.; Tuong, Z.K.; Lu, Y.; Sage, A.P.; Nus, M.; Hubsch, A.; Kaloyirou, F.; Vamvaka, E.; Helmy, J.; et al. Regulatory T-Cell Response to Low-Dose Interleukin-2 in Ischemic Heart Disease. NEJM Evid. 2022, 1. [Google Scholar] [CrossRef]
- Wu, X.; Iroegbu, C.D.; Peng, J.; Guo, J.; Yang, J.; Fan, C. Cell Death and Exosomes Regulation After Myocardial Infarction and Ischemia-Reperfusion. Front. Cell Dev. Biol. 2021, 9, 673677. [Google Scholar] [CrossRef]
- Jeremias, I.; Kupatt, C.; Martin-Villalba, A.; Habazettl, H.; Schenkel, J.; Boekstegers, P.; Debatin, K.-M. Involvement of CD95/Apo1/Fas in Cell Death After Myocardial Ischemia. Circulation 2000, 102, 915–920. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Del Re, D.P.; Amgalan, D.; Linkermann, A.; Liu, Q.; Kitsis, R.N. Fundamental Mechanisms of Regulated Cell Death and Implications for Heart Disease. Physiol. Rev. 2019, 99, 1765–1817. [Google Scholar] [CrossRef]
- Youle, R.J.; Strasser, A. The BCL-2 protein family: Opposing activities that mediate cell death. Nat. Rev. Mol. Cell Biol. 2008, 9, 47–59. [Google Scholar] [CrossRef]
- Sciarretta, S.; Yee, D.; Nagarajan, N.; Bianchi, F.; Saito, T.; Valenti, V.; Tong, M.; Del Re, D.P.; Vecchione, C.; Schirone, L.; et al. Trehalose-Induced Activation of Autophagy Improves Cardiac Remodeling After Myocardial Infarction. J. Am. Coll. Cardiol. 2018, 71, 1999–2010. [Google Scholar] [CrossRef]
- Demircan, G.; Kaplan, O.; Ozdas, S.B. Role of autophagy in the progress of coronary total occlusion. Bratisl. Med. J. 2018, 119, 103. [Google Scholar] [CrossRef] [Green Version]
- Jung, J.H.; Fu, X.; Yang, P.C. Exosomes Generated From iPSC-Derivatives: New Direction for Stem Cell Therapy in Human Heart Diseases. Circ. Res. 2017, 120, 407–417. [Google Scholar] [CrossRef]
- Kishore, R.; Khan, M. More Than Tiny Sacks: Stem Cell Exosomes as Cell-Free Modality for Cardiac Repair. Circ. Res. 2016, 118, 330–343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- LLai, R.C.; Arslan, F.; Lee, M.M.; Sze, N.S.K.; Choo, A.; Chen, T.S.; Salto-Tellez, M.; Timmers, L.; Lee, C.N.; El Oakley, R.M.; et al. Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury. Stem. Cell Res. 2010, 4, 214–222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arslan, F.; Lai, R.C.; Smeets, M.B.; Akeroyd, L.; Choo, A.; Aguor, E.N.E.; Timmers, L.; Van Rijen, H.V.; Doevendans, P.A.; Pasterkamp, G.; et al. Mesenchymal stem cell-derived exosomes increase ATP levels, decrease oxidative stress and activate PI3K/Akt pathway to enhance myocardial viability and prevent adverse remodeling after myocardial ischemia/reperfusion injury. Stem. Cell Res. 2013, 10, 301–312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oesterle, A.; Laufs, U.; Liao, J.K. Pleiotropic Effects of Statins on the Cardiovascular System. Circ. Res. 2017, 120, 229–243. [Google Scholar] [CrossRef]
- EPIC-STEMI: Effects of Routine Early Treatment with PCSK9 Inhibitor in STEMI Patients Undergoing Primary PCI. American College of Cardiology. Available online: https://www.acc.org/Latest-in-Cardiology/Articles/2022/09/16/18/24/http%3a%2f%2fwww.acc.org%2fLatest-in-Cardiology%2fArticles%2f2022%2f09%2f16%2f18%2f24%2fmon-315pm-EPIC-STEMI-TCT-2022 (accessed on 2 December 2022).
Trial Name | Study Design | Study Population | Estimated Enrollment Estimated Completion Date | Intervention | Target | Primary Outcome | Clinical Trials Identifier |
---|---|---|---|---|---|---|---|
CHANGAN | Phase IV, single center, double-blind, randomized, placebo-controlled | Patients with CAD and hs-CRP >1 mg/L | 35 participants Completed | Hydroxychloroquine | Broad immunosuppression | Change in fasting hs-CRP level | NCT02874287 |
Phase IV, multicenter, blind, placebo-controlled | Asymptomatic for atherosclerotic disease aged 30 to 60 years and exposed to air pollution | 200 participants 2023 | Montelukast | Leukotriene receptor antagonist | Subclinical atherosclerosis defined as changes in brachial flow-mediated dilation and carotid intima media thickness | NCT04762472 | |
SARIPET | Phase IV, single-center, open label | Patients with active rheumatoid naïve to biological DMARDs or refractory to a single biological other than anti-IL-6 drugs | 20 participants Unknown | Sarilumab | IL-6 receptor blocking monoclonal antibody | Change in carotid atheroma plaque assessed by ultrasonography | NCT04350216 |
PAC-MAN | Phase II, randomized, double-blind, placebo- controlled | Patients with stable CAD | 40 participants Unknown | Paclitaxel | Blocks cellular proliferation (antimicrotubule agents) | Reduction in plaque size measured by coronary CTA from baseline to 6–8 months | NCT04148833 |
ZEUS | Phase III, multicenter, double-blind, randomized, placebo-controlled | Patients with CKD stage 3 to 4, known ASCVD, and hs-CRP >2 mg/L | 6200 participants 2025 | Ziltivekimab | IL-6 blocking monoclonal antibody | Time to first occurrence of MACE | NCT05021835 |
Lp(a) HORIZON | Phase III, multicenter, double-blind, randomized, placebo-controlled | Patients with established CVD and Lp(a) ≥70 mg/dL | 7680 participants 2025 | Pelacarsen | Antisense oligonucleotide targeting Apo(a) | Time to first occurrence of expanded MACE in patients with Lp(a) ≥ 70 mg/dL or Lp(a) ≥ 90 mg/dL | NCT04023552 |
Phase II/III, multicenter, double-blind, randomized, placebo-controlled | Patients with multivessel CAD and hs-CRP >2 mg/L | 40 participants 2023 | Methotrexate delivered in LDL-like nanoparticles | Dihydrofolate reductase inhibitor | Change in plaque volume measured by CTA | NCT04616872 | |
GOLDILOX | Phase IIB, multicenter, double-blind, randomized, placebo-controlled | Patients aged ≥21 years with a history of MI and hs-CRP >1 mg/L | 400 participants 2023 | MEDI6570 | LOX-1 receptor blocking monoclonal antibody | Change in non-calcified plaque volume measured by CTA | NCT04610892 |
Trial Name | Study Design | Study Population | Estimated Enrollment Estimation Completion Date | Intervention | Target | Primary Outcome | Clinical Trials Identifier |
---|---|---|---|---|---|---|---|
PULSE-MI | Randomized, multicenter, double-blind, placebo-controlled clinical trial | Patients with STEMI | 400 participants 2027 | Methylprednisolone 250 mg IV in prehospital setting | Ischemia-reperfusion injury prevention and wide anti-inflammatory effect | Infarct size measured by late-gadolinium enhancement on CMR at 90-day | NCT05462730 |
IVORY | Phase II, randomized, double-blind, placebo-controlled, parallel group | Patients with ACS or UA who have hsCRP >2 mg/L | 60 participants 2024 | Low dose IL-2 | Induces expansion of regulatory T cells | Change in vascular inflammation measured by mean TBRmax in the index 18F-FDG PET/CT | NCT04241601 |
CLEVER-ACS trial | Phase II multicenter, double-blind, randomized, placebo-controlled | Patients with ACS undergoing PCI (randomization within 5 days after PCI) | 150 participants Completed | Everolimus (7.5 mg for 3 days, followed by 5 mg for 2 days) | Selective mTOR inhibitor | Change in myocardial infarct size from baseline as measured by MRI at 30-day follow-up | NCT01529554 |
_ | Phase II, multicenter, double-blind, randomized, placebo-controlled | Patients with STEMI undergoing PCI | 102 participants 2022 | RPH-104 | IL-1α/IL-1β inhibitor heterodimeric fusion protein | hsCRP AUC from baseline until day 4 | NCT04463251 |
anaRITA MI2 | Phase II multicenter, double-blind, randomized, placebo-controlled | Patients with STEMI | 558 participants Unknown | Rituximab | B-cell depletion with CD20 | LVEF at 6 months with cardiac magnetic resonnance | NCT05211401 |
_ | A Phase IIa, Placebo-controlled, Double Blind, Randomized Multicenter Pilot Study | Patients with STEMI | 82 patients Completed | Human monoclonal antibody (ATH3G10) | Decrease in phosphorylcholine mediated inflammation | Change in LVEDVi at 90-day | NCT03991143 |
_ | A randomized, open-label, controlled, multicenter, two group trial | Patients with STEMI | 202 patients 2022 | PentraSorb®-CRP apharesis performed at day 1, 2 and 3 post PCI | CRP apheresis | Infarct size visualized by CMR at 5 ± 2 days post PCI [47] | NCT04939805 |
_ | Randomized, double-blinded, placebo-controlled study | Patients with STEMI | 170 participants 2023 | Doxycyclin (200 mg po and then 100 mg × 2/day during 7 days) | MMP-2 blockage | LVESVi measured by CMR at 90-day | NCT03508232 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Delbaere, Q.; Chapet, N.; Huet, F.; Delmas, C.; Mewton, N.; Prunier, F.; Angoulvant, D.; Roubille, F. Anti-Inflammatory Drug Candidates for Prevention and Treatment of Cardiovascular Diseases. Pharmaceuticals 2023, 16, 78. https://doi.org/10.3390/ph16010078
Delbaere Q, Chapet N, Huet F, Delmas C, Mewton N, Prunier F, Angoulvant D, Roubille F. Anti-Inflammatory Drug Candidates for Prevention and Treatment of Cardiovascular Diseases. Pharmaceuticals. 2023; 16(1):78. https://doi.org/10.3390/ph16010078
Chicago/Turabian StyleDelbaere, Quentin, Nicolas Chapet, Fabien Huet, Clément Delmas, Nathan Mewton, Fabrice Prunier, Denis Angoulvant, and François Roubille. 2023. "Anti-Inflammatory Drug Candidates for Prevention and Treatment of Cardiovascular Diseases" Pharmaceuticals 16, no. 1: 78. https://doi.org/10.3390/ph16010078
APA StyleDelbaere, Q., Chapet, N., Huet, F., Delmas, C., Mewton, N., Prunier, F., Angoulvant, D., & Roubille, F. (2023). Anti-Inflammatory Drug Candidates for Prevention and Treatment of Cardiovascular Diseases. Pharmaceuticals, 16(1), 78. https://doi.org/10.3390/ph16010078