Automatic Production of [18F]F-DOPA Using the Raytest SynChrom R&D Module
Abstract
:1. Introduction
2. Results and Discussion
2.1. Recovery of the 18F Isotope from the Ion Exchange Column
2.2. 18F Isotope Labeling of the Precursor
2.3. Oxidation Using mCPBA
2.4. Hydrolysis
2.5. [18F]F-DOPA Crude Product Purification
3. Materials and Methods
3.1. General
3.2. Cyclotron Production of the Fluoride Isotope 18F
3.3. Automatic Radiosynthesis Using the Raytest Synchrom R&D Module
3.4. Quality Control
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Garnett, E.S.; Firnau, G.; Nahmias, C. Dopamine visualized in the basal ganglia of living man. Nature 1983, 305, 137–138. [Google Scholar] [CrossRef]
- Fischman, A.J. Role of [18F]-dopa-PET imaging in assessing movement disorders. Radiol. Clin. N. Am. 2005, 43, 93–106. [Google Scholar] [CrossRef] [PubMed]
- Darcourt, J.; Schiazza, A.; Sapin, N.; Dufour, M.; Ouvrier, M.J.; Benisvy, D.; Fontana, X.; Koulibaly, P.M. 18F-FDOPA PET for the diagnosis of parkinsonian syndromes. Q. J. Nucl. Med. Mol. Imaging 2014, 58, 355–365. [Google Scholar] [PubMed]
- Groves, A.M.; Win, T.; Haim, S.B.; Ell, P.J. Non-[18F]FDG PET in clinical oncology. Lancet Oncol. 2007, 8, 822–830. [Google Scholar] [CrossRef] [PubMed]
- Seibyl, J.P.; Chen, W.; Silverman, D.H. 3,4-Dihydroxy-6-[18F]fluoro-L-phenylalanine positron emission tomography in patients with central motor disorders and in evaluation of brain and other tumors. Semin. Nucl. Med. 2007, 37, 440–450. [Google Scholar] [CrossRef] [PubMed]
- Jager, P.L.; Chirakal, R.; Marriott, C.J.; Brouwers, A.H.; Koopmans, K.P.; Gulenchyn, K.Y. 6-L-18F-fluorodihydroxyphenylalanine PET in neuroendocrine tumors: Basic aspects and emerging clinical applications. J. Nucl. Med. 2008, 49, 573–586. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O'Brien, S.R.; States, L.J.; Zhuang, H. Neuroblastoma Shown on 18F-DOPA PET/CT Performed to Evaluate Congenital Hyperinsulinism. Clin. Nucl. Med. 2021, 46, 927–928. [Google Scholar] [CrossRef]
- Piccardo, A.; Lopci, E. Potential role of 18F-DOPA PET in neuroblastoma. Clin. Transl. Imaging 2016, 4, 79–86. [Google Scholar] [CrossRef]
- Fluorodopa (18F) (prepared by electrophilic substitution) injection. Eur. Pharmacopoeia 2008, 6, 990–992.
- Namavari, M.; Bishop, A.; Satyamurthy, N.; Vida, G.; Barrio, J.R. Regioselective radiofluorodestannylation with [18F]F2 and [18F]CH3COOF: A high yield synthesis of [18F]fluoro-L-dopa. Appl. Radiat. Isot. 1992, 43, 989–996. [Google Scholar] [CrossRef]
- Luxen, A.; Guillaume, M.; Melega, W.P.; Pike, V.W.; Solin, O.; Wagner, R. Production of 6-[18F]fluoro-L-dopa and its metabolism in vivo—A critical review. Int. J. Radiat. Appl. Instrum. Part B Nucl. Med. Biol. 1992, 19, 149–158. [Google Scholar] [CrossRef] [PubMed]
- Tredwell, M.; Gouverneur, V. 18F Labeling of Arenes. Angew. Chem. Int. Ed. 2012, 51, 11426–11437. [Google Scholar] [CrossRef] [PubMed]
- Hess, E.; Blessing, G.; Coenen, H.H.; Qaim, S. Improved target system for production of high purity [18F] fluorine via the 18O(p,n)18F reaction. Appl. Radiat. Isot. 2000, 52, 1431–1440. [Google Scholar] [CrossRef] [PubMed]
- Kuik, W.J.; Kema, I.P.; Brouwers, A.H.; Zijlma, R.; Neumann, K.D.; Dierckx, R.A.J.O.; DiMagno, S.G.; Elsinga, P.H. In Vivo Biodistribution of No-Carrier-Added 6-18F-Fluoro-3,4-Dihydroxy-L-Phenylalanine (18F-DOPA), Produced by a New Nucleophilic Substitution Approach, Compared with Carrier-Added 18F-DOPA, Prepared by Conventional Electrophilic Substitution. J. Nucl. Med. 2014, 56, 106–112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Libert, L.C.; Franci, X.; Plenevaux, A.R.; Ooi, T.; Maruoka, K.; Luxen, A.J.; Lemaire, C.F. Production at the Curie Level of No-Carrier-Added 6-18F-Fluoro-l-Dopa. J. Nucl. Med. 2013, 54, 1154–1161. [Google Scholar] [CrossRef] [Green Version]
- Wagner, F.M.; Ermert, J.; Coenen, H.H. Three-Step, “One-Pot” Radiosynthesis of 6-Fluoro-3,4-Dihydroxy-L-Phenylalanine by Isotopic Exchange. J. Nucl. Med. 2009, 50, 1724–1729. [Google Scholar] [CrossRef] [Green Version]
- Pretze, M.; Wängler, C.; Wängler, B. 6-[18F]Fluoro-L-DOPA: A Well-Established Neurotracer with Expanding Application Spectrum and Strongly Improved Radiosyntheses. BioMed Res. Int. 2014, 2014, 674063. [Google Scholar] [CrossRef] [Green Version]
- Mele’an, J.C.; Ermert, J.; Coenen, H.H. Enantiospecific synthesis of 2-[18F]fluoro-L-phenylalanine and 2-[18F]fluoro-L-tyrosine by isotopic exchange. Org. Biomol. Chem. 2011, 9, 765–769. [Google Scholar] [CrossRef]
- Pretze, M.; Franck, D.; Kunkel, F.; Foßhag, E.; Wängler, C.; Wängler, B. Evaluation of two nucleophilic syntheses routes for the automated synthesis of 6-[18F]fluoro-l-DOPA. Nucl. Med. Biol. 2017, 45, 35–42. [Google Scholar] [CrossRef]
- Sauvage, C.; Lazarova, N.; Mueller, M. 18F-L-FDOPA Automated Production via the Nucleophilic Route. J. Nucl. Med. 2015, 56 (Suppl. 3), 1011. [Google Scholar]
- Martin, R.; Baumgart, D.; Huebner, S.; Juettler, S.; Saul, S.; Clausnitzer, A.; Mollitor, J.; Smits, R.; Hoepping, A.; Mueller, M. Automated nucleophilic one-pot synthesis of F-18-L-DOPA with high specific activity using the GE TRACERlab MXFDG. J. Label. Compd. Radiopharm. 2013, 56, S126. [Google Scholar]
- Huang, Y.Y.; Poniger, S.; Tsai, C.L.; Tochon-Danguy, H.J.; Ackermann, U.; Yen, R.F. Three-step two-pot automated production of NCA [18F]FDOPA with FlexLab module. Appl. Radiat. Isot. 2020, 158, 108871. [Google Scholar] [CrossRef] [PubMed]
- Martin, R.; Baumgart, D.; Huebner, S.; Juettler, S.; Saul, S.; Clausnitzer, A.; Mollitor, J.; Smits, R.; Hoepping, A.; Mueller, M. First SPE method for routine production of nucleophilic L-[18F]FDOPA. J. Label Compd. Radiopharm. 2013, 56, S126. [Google Scholar]
Amount of TBAHCO3− (µL) | Amount of MeCN (µL) | Activity Remained on the Column 12 H after the End of the Synthesis (MBq) | Calculated Remaining Activity (MBq) | Total Drying Time after Two Azeotropic Distillations (Min) | Percentage Activity Decrease (%) |
---|---|---|---|---|---|
50 µL | 50 µL | 1.20 MBq | 10,700 MBq | 8 min | 13.4% |
100 µL | 100 µL | 0.45 MBq | 4000 MBq | 12 min | 10.4% |
150 µL | 150 µL | 0.37 MBq | 3300 MBq | 16 min | 12.1% |
200 µL | 200 µL | 0.25 MBq | 2300 MBq | 21 min | 14.1% |
EOB = 120 GBq, 80 °C, n = 3 |
Amount of Precursor (mg) | Amount of Solvent (µL) | Time (min) | RCY (%) |
---|---|---|---|
10 mg | 500 µL | 10 min | 70% |
30 mg | 1000 µL | 10 min | 10% |
TBAHCO3−, DMF, 110 °C, n = 3 |
Vial | Syringe | |
---|---|---|
RCY (%) | 50% | 65% |
20% | 70% | |
10% | 67% | |
40% | 72% | |
15% | 65% | |
TBAHCO3−, DMF, 10 mg precursor, 110 °C, n = 5 |
Method | Time (min) | Temperature (°C) | Amount of mCPBA (mg) | Solvent | Amount of Precursor (mg) |
---|---|---|---|---|---|
Sauvage [20] | 20 min | 60 °C | - | MeCN | - |
Martin [21] | 16 min | 55 °C | - | MeCN | - |
Pretze [19] | 20 min | 65 °C | 5 mg | CH3Cl | 7 mg |
Huang [22] | 9.5/5.5 min | 65/55 °C | 20 mg | MeCN | 30 mg |
This work | 20 min | 60 °C | 7 mg | MeCN | 10 mg |
Method | Time (min) | Temperature (°C) |
---|---|---|
Sauvage [20] | - | 40 °C |
Martin [21] | 20 min | 50 °C |
Pretze [19] | 20 min | 65 °C |
Huang [22] | 20 min | 50 °C |
This work | 20 min | 60 °C |
Vial/Component | Reagent | Volume |
---|---|---|
SC1 | 0.075M TBAHCO3− in MeCN | 100 µL + 100 µL |
SC2 syringe | MeCN | 250 µL |
SC3 syringe | Precursor (ABX 1336) in DMF | 10 mg + 500 µL |
SC4 | MeCN/H2O | 4 mL (4:1) |
OVERFLOW VIAL | MeCN/H2O | 16 mL (4:1) |
SC5 | H2O | 15 mL |
SC6 | MeCN | 2 mL |
SC7 | mCPBA in MeCN | 7 mg + 2 mL |
SC8 | HCl (30%) + containing 3% EtOH | 1 mL + 30 µL |
SC9 | H2O | 5 mL |
Trap 1 | Conditioned QMA | one |
Trap 2 | Conditioned C18ec | one |
Semipreparative HPLC | Hamilton PRP 10 μm 250 × 10 mm H2O, flow 4 mL/min | - |
QC Test | Specification (Acceptance Criteria) | QC Result | ||
---|---|---|---|---|
QC 1 | QC 2 | QC 3 | ||
Appearance | Clear, colorless solution | Comply | Comply | Comply |
pH | 4.0–5.5 | 4.8 | 5.1 | 5.0 |
Radionuclidic identification | Gamma photons have an energy of 497–526 keV | 514 keV | 516 keV | 512 keV |
Half life | 105–115 min | 109.5 | 109 | 110 |
Radiochemical purity (HPLC) 6-[18F]-DOPA | ≥95% the total radioactivity | 99.6% | 97.6% | 99.4% |
Radiochemical purity (TLC) 6-[18F]-DOPA | ≥95% the total radioactivity | 97.9% | 96.2% | 95.67% |
Enantiomeric purity L-form of 6-[18F]-DOPA | ≥96% the total radioactivity | 97.4% | 98.9% | 98.1% |
Chemical purity (HPLC) All chemical impurities Including total peak of 6-fluoro-L-DOPA | 2.5 mg/5 mL (0.5 mg/mL) | 0.0107 mg/mL | 0.018 mg/mL | 0.4408 mg/mL |
Residual TBA | <1.3 mg/5 mL (<0.26 mg/mL) | <0.26 mg/mL | <0.26 mg/mL | <0.26 mg/mL |
Residual solvents: | ||||
Ethanol (GC) | ≤50 mg/5 mL (≤10 mg/mL) | 1.063 mg/mL | 0.004 mg/mL | 0.2706 mg/mL |
Acetonitrile (GC) | ≤ 4.1 mg/5 mL (≤ 0.82 mg/mL) | 0.7854 mg/mL | 0.0023 mg/mL | 0.0029 mg/mL |
Methanol (GC) | ≤30 mg/5 mL (≤6 mg/mL) | 0.8294 mg/mL | 0.0028 mg/mL | 0.0008 mg/mL |
Bacterial endotoxins | <175 EU/5 mL (<35 EU/mL) | <0.250 EU/mL | <0.250 EU/mL | <0.250 EU/mL |
Filter integrity test | ≥3 Bar | 4.0 Bar | 4.2 Bar | 4.0 Bar |
Sterility * | Sterile | Comply | Comply | Comply |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Waśniowski, P.; Czuczejko, J.; Chuchra, M.; Wędrowski, M.; Marciniak, D.; Sobiak, S.; Małkowski, B. Automatic Production of [18F]F-DOPA Using the Raytest SynChrom R&D Module. Pharmaceuticals 2023, 16, 10. https://doi.org/10.3390/ph16010010
Waśniowski P, Czuczejko J, Chuchra M, Wędrowski M, Marciniak D, Sobiak S, Małkowski B. Automatic Production of [18F]F-DOPA Using the Raytest SynChrom R&D Module. Pharmaceuticals. 2023; 16(1):10. https://doi.org/10.3390/ph16010010
Chicago/Turabian StyleWaśniowski, Paweł, Jolanta Czuczejko, Michał Chuchra, Mateusz Wędrowski, Dawid Marciniak, Stanisław Sobiak, and Bogdan Małkowski. 2023. "Automatic Production of [18F]F-DOPA Using the Raytest SynChrom R&D Module" Pharmaceuticals 16, no. 1: 10. https://doi.org/10.3390/ph16010010
APA StyleWaśniowski, P., Czuczejko, J., Chuchra, M., Wędrowski, M., Marciniak, D., Sobiak, S., & Małkowski, B. (2023). Automatic Production of [18F]F-DOPA Using the Raytest SynChrom R&D Module. Pharmaceuticals, 16(1), 10. https://doi.org/10.3390/ph16010010