Antibacterial, Antiparasitic, and Cytotoxic Activities of Chemical Characterized Essential Oil of Chrysopogon zizanioides Roots
Abstract
:1. Introduction
2. Results
2.1. CZ-EO Chemical Composition
2.2. CZ-EO Antibacterial Activitiy against Periodontopathogenic Bacteria
2.3. CZ-EO Antileishmanial, Trypanocidal, and Cytotoxic Activities
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. CZ-EO Distillation
4.3. Identification of CZ-EO Compounds
4.4. Bacterial Strains and Antimicrobial Assays
4.5. Antileishmanial Assays
4.6. Trypanocidal Assay
4.7. Cytotoxicity Assay
4.8. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jiang, M.; Li, Z.N.; Zhu, G.X. Protective role of flavonoid baicalin from Scutellaria baicalensis in periodontal disease pathogenesis: A literature review. Complement. Ther. Med. 2018, 38, 11–18. [Google Scholar]
- Kinane, D.F. Causation and pathogenesis of periodontal disease. Periodontology 2000 2001, 25, 8–20. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S. Evidence-based update on diagnosis and management of gingivitis and periodontitis. Dent. Clin. N. Am. 2019, 63, 69–81. [Google Scholar] [CrossRef] [PubMed]
- Haffajee, A.D.; Socransky, S.S. Microbial etiological agents of destructive periodontal diseases. Periodontology 2000 1994, 5, 78–111. [Google Scholar] [CrossRef]
- Martinez-Hernandez, F.; Oria-Martinez, B.; Rendon-Franco, E.; Villalobos, G.; Munoz-Garzia, C.I. Trypanosoma cruzi, beyond the dogma of non-infection in birds. Infect. Genet. Evol. 2022, 99, 105239. [Google Scholar] [CrossRef]
- Garcia-Huertas, P.; Cardona-Castro, N. Advances in the treatment of Chagas disease: Promising new drugs, plants and targets. Biomed. Pharmacother. 2021, 142, 112020. [Google Scholar] [CrossRef]
- Glanzmann, N.; Antinarelli, L.M.R.; da Costa Nunes, I.K.; Pereira, H.M.G.; Coelho, E.A.F.; Coimbra, E.S.; da Silva, A.D. Synthesis and biological activity of novel 4-aminoquinoline/1,2,3-triazole hybrids against Leishmania amazonensis. Biomed. Pharmacother. 2021, 141, 111857. [Google Scholar] [CrossRef]
- Brustolin, A.A.; Franzoi, N.M.; Ramos-Milare, A.C.F.H.; Tanoshi, C.A.; Mota, C.A.; Demarchi, I.G.; Lonardoni, M.V.C.; Silveira, T.G.V. A standardized intraperitoneal Glucantime™ for experimental treatment of cutaneous leishmaniasis caused by Leishmania amazonensis in BALB/c mice. Exp. Parasitol. 2022, 236–237, 108259. [Google Scholar] [CrossRef]
- Oliveira, T.A.S.; Santiago, M.B.; Santos, V.H.P.; Silva, E.O.; Martins, C.H.G.; Crotti, A.E.M. Antibacterial activity of essential oils against oral pathogens. Chem. Biodivers. 2022, 19, e202200097. [Google Scholar] [CrossRef]
- Silva, C.E.L.; Oyama, J.; Ferreira, F.B.P.; Lalucci-Silva, M.P.P.; Lordani, T.V.A.; Silva, R.C.L.; Monich, M.S.T.; Teixeira, J.J.V.; Lonardoni, M.V.C. Effect of essential oils on Leishmania amazonensis: A systematic review. Parasitology 2020, 147, 1392–1407. [Google Scholar] [CrossRef]
- Fampa, P.; Florêncio, M.; Santana, R.C.; Rosa, D.; Soares, D.C.; Guedes, H.L.M.; Silva, A.C.; Chaves, D.S.A.; Pinto-da-Silva, L.H. Anti-Leishmania effects of volatile oils and their isolates. Rev. Bras. Farmacogn. 2021, 31, 561–578. [Google Scholar] [CrossRef]
- Morais, M.C.; Souza, J.V.; Bezerra-Filho, C.S.M.; Dolabella, S.S.; Sousa, D.P. Trypanocidal essential oils: A review. Molecules 2020, 25, 4568. [Google Scholar] [CrossRef]
- Ramirez-Rueda, R.Y.; Marinho, J.; Salvador, M.J. Bioguided identification of antimicrobial compounds from Chrysopogon zizaniodes (L.) Roberty root essential oil. Future Microbiol. 2019, 14, 1179–1189. [Google Scholar] [CrossRef]
- Vasudevan, C.N.S.; Neerakkal, I.M. GC-MS analysis and in silico activity prediction of phytocompounds in the roots of Chrysopogon zizanioides (L.) Roberty. Plant Sci. Today 2021, 8, 218–224. [Google Scholar]
- Lunz, K.; Stappen, I. Back to the roots—An overview of the chemical composition and bioactivity of selected root-essential oils. Molecules 2021, 26, 3155. [Google Scholar] [CrossRef]
- Sposito, L.; Oda, F.B.; Vieira, J.H.; Carvalho, F.A.; Ramos, M.A.D.; de Castro, R.C.; Crevelin, E.J.; Crotti, A.E.M.; Santos, A.G.; da Silva, P.B.; et al. In vitro and in vivo anti-Helicobacter pylori activity of Casearia sylvestris leaf derivatives. J. Ethnopharmacol. 2019, 233, 1–12. [Google Scholar] [CrossRef]
- Lemes, R.S.; Alves, C.C.F.; Estevam, E.B.B.; Santiago, M.B.; Martins, C.H.G.; Dos Santos, T.C.L.; Crotti, A.E.M.; Miranda, M.L.D. Chemical composition and antibacterial activity of essential oils from Citrus aurantifolia leaves and fruit peel against oral pathogenic bacteria. An. Acad. Bras. Cienc. 2018, 90, 1285–1292. [Google Scholar] [CrossRef]
- De Melo, N.I.; de Carvalho, C.E.; Fracarolli, L.; Cunha, W.R.; Veneziani, R.C.S.; Martins, C.H.G.; Crotti, A.E.M. Antimicrobial activity of the essential oil of Tetradenia riparia (Hochst.) Codd. (Lamiaceae) against cariogenic bacteria. Braz. J. Microbiol. 2015, 46, 519–525. [Google Scholar] [CrossRef] [Green Version]
- Tonuci, L.R.S.; de Merlo, N.I.; Dias, H.J.; Wakabayashi, K.A.L.; Aguiar, G.P.; Aguiar, D.P.; Mantovani, A.L.L.; Ramos, R.C.; Groppo, M.; Rodrigues, V.; et al. In vitro schistosomicidal effects of the essential oil of Tagetes erecta. Rev. Bras. Farmacogn. 2012, 22, 88–93. [Google Scholar] [CrossRef] [Green Version]
- Moreira, R.R.D.; dos Santos, A.G.; Carvalho, F.A.; Perego, C.H.; Crevelin, E.J.; Crotti, A.E.M.; Cogo, J.; Cardoso, M.L.C.; Nakamura, C.V. Antileishmanial activity of Melampodium divaricatum and Casearia sylvestris essential oils on Leishmania amazonensis. Rev. Inst. Med. Trop. São Paulo 2019, 61, e33. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry; Allured Publishing: Carol Stream, IL, USA, 2007; p. 804. [Google Scholar]
- Chahal, K.K.; Bhardwaj, U.; Kaushal, S.; Sandhu, A.K. Chemical composition and biological properties of Chrysopogon zizanioides (L.) Roberty syn. Vetiveria zizanioides (L.) Nash—A review. Indian J. Nat. Prod. Res. 2015, 6, 251–260. [Google Scholar]
- Champagnat, P.; Figueredo, G.; Chalchat, J.-C.; Carnat, A.P.; Bessière, J.-M.; Cabral, F.D. A study on the composition of commercial Vetiveria zizanioides oils from different geographical origins. J. Essent. Oil Res. 2006, 18, 416–422. [Google Scholar] [CrossRef]
- Barros, G.C.; Tresvenzol, L.M.F.; Cunha, L.C.; Ferri, P.H.; Paula, J.R.; Bara, M.T.F. Chemical composition, antibacterial activity and evaluation of acute toxicity of Vetiveria zizanoides L. Nash (Poaceae). Lat. Am. J. Pharm. 2009, 28, 531–537. [Google Scholar]
- Kannappan, A.; Gowrishankar, S.; Srinivasan, R.; Pandian, S.K.; Ravi, A.V. Antibiofilm activity of Vetiveria zizanioides root extract against methicillin-resistant Staphylococcus aureus. Microb. Pathogenes. 2017, 110, 313–324. [Google Scholar] [CrossRef] [PubMed]
- Hammer, K.A.; Carson, C.F.; Riley, T.V. Antimicrobial activity of essential oils and other plant extracts. J. Appl. Microbiol. 1999, 86, 985–990. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernandes, C.C.; Chrystal, P.; Pereira, A.C.; Colli, A.C.; Stenico, L.; Ribeiro, A.B.; Squarisi, I.S.; Candido, A.C.; Tavares, D.C.; Magalhaes, L.G.; et al. First report on chemical composition and biological properties of volatile oil from Psidium firmum O. Berg leaves. Quim Nova 2021, 44, 570–574. [Google Scholar] [CrossRef]
- Machado, K.E.; Filho, V.C.; Tessarolo, M.L.; Mallmann, R.; Meyre-Silva, C.; Cruz, A.B. Potent antibacterial activity of Eugenia umbeliflora. Pharm. Biol. 2005, 43, 636–639. [Google Scholar] [CrossRef]
- Alves, E.G.; Vinholis, A.H.C.; Casemiro, L.A.; Furtado, N.A.J.C.; Silva, M.L.A.; Cunha, W.R.; Martins, C.H.G. Comparative study of screening techniques for antibacterial activity evaluation of plant crude extracts and pure compounds. Quim Nova 2008, 31, 1224–1229. [Google Scholar] [CrossRef] [Green Version]
- Shruthi, N.; Nithyashree, R.; Elumalai, E.; Gupta, K.K. Eudesmol-A promising inhibitor for glucosyltransferase: Docking and molecular dynamics study. BioRxiv 2021. [Google Scholar] [CrossRef]
- Cabral, F.D.; Fernandes, C.C.; Willrich, G.B.; Crotti, A.E.M.; Souza, J.M.; Martins, C.H.G.; Miranda, M.L.D. In vitro antimicrobial activity of Spiranthera odoratissima A. St. Hil. Essential oils against foodborne pathogens and food spoilage bacteria. Aust. J. Crop Sci. 2020, 14, 333–338. [Google Scholar] [CrossRef]
- Da Silveira, S.M.; Cunha, A.; Scheuermann, G.N.; Secchi, F.L.; Vieira, C.R.W. Chemical composition and antimicrobial activity of essential oils from selected herbs cultivated in the South of Brazil against food spoilage and foodborne pathogens. Cienc. Rural 2012, 42, 1300–1306. [Google Scholar] [CrossRef] [Green Version]
- Andrade, M.A.; Azevedo, C.D.; Motta, F.N.; dos Santos, M.L.; Silva, C.L.; de Santana, J.M.; Bastos, I.M.D. Essential oils: In vitro activity against Leishmania amazonensis, cytotoxicity and chemical composition. BMC Complem. Altern. M 2016, 16, 444. [Google Scholar] [CrossRef] [Green Version]
- Cabral, F.D.; Fernandes, C.C.; Ribeiro, A.B.; Squarisi, I.S.; Tavares, D.C.; Candido, A.C.B.B.; Magalhães, L.G.; Souza, J.M.; Martins, C.H.G.; Miranda, M.L.D. Bioactivities of essential oils from different parts of Spiranthera odoratissima (Rutaceae). Rodriguésia 2020, 71, e00902019. [Google Scholar] [CrossRef]
- Estevam, E.B.B.; De Deus, I.P.B.; Da Silva, V.P.; Da Silva, E.A.J.; Alves, C.C.F.; Alves, J.M.; Cazal, C.M.; Magalhaes, L.G.; Pagotti, M.C.; Esperandim, V.R.; et al. In vitro antiparasitic activity and chemical composition of the essential oil from Protium ovatum leaves (Burceraceae). An. Acad. Bras. Cienc. 2017, 89, 3005–3013. [Google Scholar] [CrossRef] [Green Version]
- De Andrade, P.M.; de Melo, D.C.; Alcoba, A.E.T.; Júnior, W.G.F.; Pagotti, M.C.; Magalhães, L.G.; dos Santos, T.C.L.; Crotti, A.E.M.; Alves, C.C.F.; Miranda, M.L.D. Chemical composition and evaluation of antileishmanial and cytotoxic activities of the essential oil from leaves of Cryptocarya aschersoniana Mez. (Lauraceae Juss.). An. Acad. Bras. Cienc. 2018, 90, 2671–2678. [Google Scholar] [CrossRef]
- Monzote, L.; Herrera, I.; Satyal, P.; Setzer, W.N. In vitro evaluation of 52 commercially-available essential oils against Leishmania amazonensis. Molecules 2019, 24, 1248. [Google Scholar] [CrossRef] [Green Version]
- Kima, P.E. The amastigote forms of Leishmania are experts at exploiting host cell processes to establish infection and persist. Int. J. Parasitol. 2007, 37, 1087–1096. [Google Scholar] [CrossRef] [Green Version]
- Otoguro, K.; Iwatsuki, M.; Ishiyama, A.; Namatame, M.; Nishihara-Tukashima, A.; Kiyohara, H.; Hashimoto, T.; Asakawa, Y.; O’Mura, S.; Yamada, Y. In vitro antitrypanosomal activity of plant terpenes against Trypanosoma brucei. Phytochemistry 2011, 72, 2024–2030. [Google Scholar] [CrossRef]
- Bailen, M.; Martinez-Diaz, R.A.; Hoffmann, J.J.; Gonzalez-Coloma, A. Molecular diversity from arid-land plants: Valorization of terpenes and biotransformation products. Chem. Biodivers. 2020, 17, e1900663. [Google Scholar] [CrossRef]
- Meira, C.S.; Menezes, L.R.A.; dos Santos, T.B.; Macedo, T.S.; Fontes, J.N.; Costa, E.V.; Pinheiro, M.L.B.; da Silva, T.B.; Guimaraesa, E.T.; Soares, M.B.P. Chemical composition and antiparasitic activity of essential oils from leaves of Guatteria friesiana and Guatteria pogonopus (Annonaceae). J. Essent. Oil Res. 2017, 29, 156–162. [Google Scholar] [CrossRef]
- CLSI Standard M-11 A7; Methods for Antimicrobial Susceptibility Testing of Anaerobic Bacteria. Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2017.
- Sarker, S.D.; Nahar, L.; Kumarasamy, Y. Microtitre plate-based antibacterial assay incorporating resazurin as an indicator of cell growth, and its application in the in vitro antibacterial screening of phytochemicals. Methods 2007, 42, 321–324. [Google Scholar] [CrossRef]
- Alves, C.C.F.; Andrade, P.M.; Santos, T.C.L.; Santiago, M.B.; Pagotti, M.C.; Crotti, A.E.M.; Martins, C.H.G.; Magalhães, L.G.; Miranda, M.L.D. In vitro evaluation of anticaries, antimycobacterial, antileishmanial and cytotoxic activities of essential oils from Eremanthus erythropappus and of α-bisabolol, their major sesquiterpene. Aust. J. Crop Sci. 2020, 14, 236–243. [Google Scholar]
- Corral, M.J.; Gonzalez, E.; Cuquerella, M.; Alunda, J.M. Improvement of 96-well microplate assay for estimation of cell growth and inhibition of Leishmania with Alamar Blue. J. Microbiol. Meth. 2013, 94, 111–116. [Google Scholar] [CrossRef]
- Araújo, P.S.S.; Oliveira, S.S.C.; d’Avila-Levy, C.M.; Santos, A.L.S.; Branquinha, M.H. Susceptibility of promastigotes and intracellular amastigotes from distinct Leishmania species to the calpain inhibitor MDL28170. Parasitol. Res. 2018, 117, 2085–2094. [Google Scholar] [CrossRef]
- Casa, D.M.; Scariot, D.B.; Khalil, N.M.; Nakamura, C.V.; Mainardes, R.M. Bovine serum albumin nanoparticles containing amphotericin B were effective in treating murine cutaneous leishmaniasis and reduced the drug toxicity. Exp. Parasitol. 2018, 192, 12–18. [Google Scholar] [CrossRef]
- Rashed, K.; Ferreira, D.S.; Esperandim, V.R.; Marçal, M.G.; Sequeira, B.M.; Flauzino, L.G.B.; Cunha, W.R. In vitro trypanocidal activity of the Egyptian plant Schinopsis lorentizii against trypomastigote and amastigote forms of Trypanosoma cruzi. J. Appl. Pharm. Sci. 2016, 6, 55–60. [Google Scholar] [CrossRef] [Green Version]
- Pagotti, M.C.; Candido, A.C.B.; Marçal, M.G.; Vieira, T.M.; Groppo, M.; Silva, M.L.A.; Ferreira, D.S.; Esperandim, V.R.; Crotti, A.E.M.; Magalães, L.G. Trypanocidal activity of Dysphania ambrosioides, Lippia alba, and Tetradenia riparia essential oils against Trypanosoma cruzi. Chem. Biodiv. 2021, 18, e2100678. [Google Scholar] [CrossRef]
Compounds | RIa | %RAb | |
---|---|---|---|
Experimental | Literature [21] | ||
Naphthalene | 1175 | 1179 | 0.6 ± 0.2 |
β-cubebene | 1392 | 1390 | 1.8 ± 0.2 |
Isolongifolene | 1406 | 1402 | 2.4 ± 0.2 |
β-Gurjunene | 1434 | 1432 | 1.2 ± 0.1 |
α-Patchoulene | 1452 | 1456 | 3.0 ± 0.2 |
β-Cadinene | 1470 | 1473 | 3.6 ± 0.1 |
α-Muurolene | 1475 | 1480 | 6.0 ± 0.1 |
α-Amorphene | 1486 | 1485 | 1.2 ± 0.2 |
Valencene | 1493 | 1491 | 0.6 ± 0.2 |
α-Bulnesene | 1501 | 1505 | 4.4 ± 0.2 |
α-Elemol | 1546 | 1547 | 0.6 ± 0.2 |
β-Vatirenene | 1548 | 1554 | 0.6 ± 0.1 |
β-Eudesmol | 1552 | 1548 | 10.8 ± 0.3 |
Spathulenol | 1576 | 1576 | 4.0 ± 0.2 |
Guaiol | 1598 | 1595 | 3.2 ± 0.1 |
Humulane-1,6-dien-3-ol | 1618 | 1619 | 3.0 ± 0.3 |
Cubenol | 1640 | 1642 | 3.4 ± 0.1 |
Agarospirol | 1644 | 1639 | 3.0 ± 0.3 |
Cedren-13-ol | 1657 | 1657 | 3.6 ± 0.1 |
Patchouli alcohol | 1663 | 1659 | 5.6 ± 0.2 |
Khusimol | 1747 | 1747 | 30.0 ± 0.3 |
Nootkatone | 1802 | 1800 | 2.8 ± 0.1 |
Sesquiterpene hydrocarbons | 24.6 ± 0.5 | ||
Oxygenated sesquiterpenes | 70.4 ± 0.1 | ||
Not identified | 5.6 ± 0.0 |
Bacteria | CZ-EO | Chlorhexidine * |
---|---|---|
P. gingivalis ATCC 33277 | 62.5 ± 25.0/150.0 ± 58.0 | 7.4 ± 0.0/7.4 ± 0.0 |
P. gingivalis Clinical Isolate | 100.0 ± 0.0/250.0 ± 100.0 | 7.4 ± 0.0/14.8 ± 0.0 |
P. intermedia ATCC 49046 | 22.0 ± 6.25/400.0 ± 0.0 | 14.8 ± 0.0/14.8 ± 0.0 |
P. intermedia Clinical Isolate | 150.0 ± 58.0/400.0 ± 0.0 | 7.4 ± 0.0/14.8 ± 0.0 |
P. nigrescens ATCC 33563 | 62.5.0 ± 25.0/62.5 ± 25.0 | 7.4 ± 0.0/14.8 ± 0.0 |
F. nucleatum Clinical Isolate | 250.0 ± 100.0/400.0 ± 0.0 | 0.9 ± 0.0/14.8 ± 0.0 |
F. nucleatum ATCC 25586 | 50.0 ± 0.0/50.0.0 ± 0.0 | 3.7 ± 0.0/3.7 ± 0.0 |
P. melaninogenica ATCC 700524 | 50.0 ± 0.0/50.0 ± 0.0 | 3.7 ± 0.0/29.5 ± 0.0 |
A. actinomycetemcomitans ATCC 43717 | 22.0 ± 6.25/22.0 ± 6.25 | 7.4 ± 0.0/7.4 ± 0.0 |
% of Lysis ± S.D/Concentration (μg/mL) | IC50 (μg/mL) | |||||
---|---|---|---|---|---|---|
50 | 25 | 12.5 | 6.25 | 3.12 | ||
CZ-EO (promastigote form) | 100 ± 0.00 | 100 ± 0.00 | 65.87 ± 5.90 | 57.12 ± 6.69 | 45.82 ± 3.81 | 7.20 ± 1.14 |
CZ-EO (amastigote form) | 97.90 ± 0.16 | 68.41 ± 1.62 | 47.38 ± 2.00 | 36.50 ± 0.90 | 30.55 ± 0.80 | 16.21 ± 1.02 |
0.19 | 0.095 | 0.047 | 0.023 | 0.011 | ||
Amphotericin B * | 44.38 ± 0.53 | 36.89 ± 0.79 | 33.61 ± 0.62 | 29.02 ± 1.85 | 23.50 ± 1.58 | 0.25 ± 0.39 |
% of Lysis ± S.D/Concentration (μg/mL) | IC50 (μg/mL) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
200 | 100 | 50 | 25 | 12.5 | |||||||
CZ-EO (trypomastigote form) | 80.2 ± 6.1 | 91.6 ± 4.5 | 87.4 ± 1.2 | 92.0 ± 0.3 | 100.6 ± 0.5 | 11.2 ± 0.5 | |||||
Benznidazole * | 97.8 ± 1.0 | 95.2 ± 0.6 | 73.9 ± 4.3 | 75.0 ± 4.7 | 55.4 ± 1.0 | 9.9 ± 1.2 | |||||
6.25 | 12.5 | 25 | 50 | 100 | 200 | 400 | CC50(μg/mL) | ||||
CZ-EO (LLCMK2 cells) | 100 ± 0 | 100 ± 0 | 100 ± 0 | 100 ± 0 | 91.2 ± 6.0 | 86.7 ± 1.5 | 65.3 ± 2.5 | 565.4 ± 1.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oliveira, T.A.S.; Vieira, T.M.; Esperandim, V.R.; Martins, C.H.G.; Magalhães, L.G.; Miranda, M.L.D.; Crotti, A.E.M. Antibacterial, Antiparasitic, and Cytotoxic Activities of Chemical Characterized Essential Oil of Chrysopogon zizanioides Roots. Pharmaceuticals 2022, 15, 967. https://doi.org/10.3390/ph15080967
Oliveira TAS, Vieira TM, Esperandim VR, Martins CHG, Magalhães LG, Miranda MLD, Crotti AEM. Antibacterial, Antiparasitic, and Cytotoxic Activities of Chemical Characterized Essential Oil of Chrysopogon zizanioides Roots. Pharmaceuticals. 2022; 15(8):967. https://doi.org/10.3390/ph15080967
Chicago/Turabian StyleOliveira, Thaís A. S., Tatiana M. Vieira, Viviane R. Esperandim, Carlos H. G. Martins, Lizandra G. Magalhães, Mayker L. D. Miranda, and Antônio E. M. Crotti. 2022. "Antibacterial, Antiparasitic, and Cytotoxic Activities of Chemical Characterized Essential Oil of Chrysopogon zizanioides Roots" Pharmaceuticals 15, no. 8: 967. https://doi.org/10.3390/ph15080967
APA StyleOliveira, T. A. S., Vieira, T. M., Esperandim, V. R., Martins, C. H. G., Magalhães, L. G., Miranda, M. L. D., & Crotti, A. E. M. (2022). Antibacterial, Antiparasitic, and Cytotoxic Activities of Chemical Characterized Essential Oil of Chrysopogon zizanioides Roots. Pharmaceuticals, 15(8), 967. https://doi.org/10.3390/ph15080967