Anticariogenic Activity of Three Essential Oils from Brazilian Piperaceae
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Essential Oil Extraction
4.3. Identification of the EO Compounds
4.4. Bacterial Strains and Antimicrobial Assays
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hou, T.; Sana, S.S.; Li, H.; Xing, Y.; Nanda, A.; Netala, V.R.; Zhang, Z. Essential Oils and Its Antibacterial, Antifungal and Anti-Oxidant Activity Applications: A Review. Food Biosci. 2022, in press. [Google Scholar] [CrossRef]
- Boaro, C.S.F.; Vieira, M.A.R.; Campos, F.G.; Ferreira, G.; De-la-Cruz-Chacón, I.; Marques, M.O.M. Factors Influencing the Production and Chemical Composition of Essential Oils in Aromatic Plants from Brazil. In Essential Oil Research; Springer International Publishing: Cham, Switzerland, 2019; pp. 19–47. [Google Scholar]
- Valdivieso-Ugarte, M.; Gomez-Llorente, C.; Plaza-Díaz, J.; Gil, Á. Antimicrobial, Antioxidant, and Immunomodulatory Properties of Essential Oils: A Systematic Review. Nutrients 2019, 11, 2786. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guimarães, A.C.; Meireles, L.M.; Lemos, M.F.; Guimarães, M.C.C.; Endringer, D.C.; Fronza, M.; Scherer, R. Antibacterial Activity of Terpenes and Terpenoids Present in Essential Oils. Molecules 2019, 24, 2471. [Google Scholar] [CrossRef] [Green Version]
- Pandey, A.K.; Kumar, P.; Singh, P.; Tripathi, N.N.; Bajpai, V.K. Essential Oils: Sources of Antimicrobials and Food Preservatives. Front. Microbiol. 2017, 7, 2161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abranches, J.; Zeng, L.; Kajfasz, J.K.; Palmer, S.R.; Chakraborty, B.; Wen, Z.T.; Richards, V.P.; Brady, L.J.; Lemos, J.A. Biology of Oral Streptococci. Microbiol. Spectr. 2018, 6. [Google Scholar] [CrossRef] [PubMed]
- Selwitz, R.H.; Ismail, A.I.; Pitts, N.B. Dental Caries. Lancet 2007, 369, 51–59. [Google Scholar] [CrossRef]
- Bowen, W.H.; Koo, H. Biology of Streptococcus mutans-Derived Glucosyltransferases: Role in Extracellular Matrix Formation of Cariogenic Biofilms. Caries Res. 2011, 45, 69–86. [Google Scholar] [CrossRef] [PubMed]
- Jassoma, E.; Baeesa, L.; Sabbagh, H. The Antiplaque/Anticariogenic Efficacy of Salvadora persica (Miswak) Mouthrinse in Comparison to That of Chlorhexidine: A Systematic Review and Meta-Analysis. BMC Oral Health 2019, 19, 64. [Google Scholar] [CrossRef]
- Philip, N.; Bandara, H.M.H.N.; Leishman, S.J.; Walsh, L.J. Inhibitory Effects of Fruit Berry Extracts on Streptococcus mutans Biofilms. Eur. J. Oral Sci. 2019, 127, 122–129. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, T.A.S.; Santiago, M.B.; Santos, V.H.P.; Silva, E.O.; Martins, C.H.G.; Crotti, A.E.M. Antibacterial Activity of Essential Oils against Oral Pathogens. Chem. Biodivers. 2022, 19, e202200097. [Google Scholar] [CrossRef]
- Dos Santos, P.R.D.; Moreira, D.d.L.; Guimarães, E.F.; Kaplan, M.A.C. Essential Oil Analysis of 10 Piperaceae Species from the Brazilian Atlantic Forest. Phytochemistry 2001, 58, 547–551. [Google Scholar] [CrossRef]
- Alves, N.S.F.; Setzer, W.N.; da Silva, J.K.R. The Chemistry and Biological Activities of Peperomia pellucida (Piperaceae): A Critical Review. J. Ethnopharmacol. 2019, 232, 90–102. [Google Scholar] [CrossRef] [PubMed]
- Antas Pereira, R.; Jessé Ramos, Y.; Azevedo de Queiroz, G.; Franklin Guimarães, E.; Carina Antunes e Defaveri, A.; Lima Moreira, D. Chemodiversity of Essential Oils in Piper L. (Piperaceae) Species from Marambaia Island, Rio de Janeiro-RJ, Brazil. Rev. Virtual Química 2021, 13, 1203–1215. [Google Scholar] [CrossRef]
- Salehi, B.; Zakaria, Z.A.; Gyawali, R.; Ibrahim, S.A.; Rajkovic, J.; Shinwari, Z.K.; Khan, T.; Sharifi-Rad, J.; Ozleyen, A.; Turkdonmez, E.; et al. Piper Species: A Comprehensive Review on Their Phytochemistry, Biological Activities and Applications. Molecules 2019, 24, 1364. [Google Scholar] [CrossRef] [Green Version]
- Gamboa, F.; Muñoz, C.-C.; Numpaque, G.; Sequeda-Castañeda, L.G.; Gutierrez, S.J.; Tellez, N. Antimicrobial Activity of Piper marginatum Jacq and Ilex guayusa Loes on Microorganisms Associated with Periodontal Disease. Int. J. Microbiol. 2018, 2018, 4147383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th ed.; Allured Publishing Corporation: Carol Stream, IL, USA, 2007. [Google Scholar]
- Adams, R.P.; González Elizondo, M.S.; Elizondo, M.G.; Slinkman, E. DNA Fingerprinting and Terpenoid Analysis of Juniperus blancoi var. huehuentensis (Cupressaceae), a New Subalpine Variety from Durango, Mexico. Biochem. Syst. Ecol. 2006, 34, 205–211. [Google Scholar] [CrossRef]
- Caredda, A.; Marongiu, B.; Porcedda, S.; Soro, C. Supercritical Carbon Dioxide Extraction and Characterization of Laurus nobilis Essential Oil. J. Agric. Food Chem. 2002, 50, 1492–1496. [Google Scholar] [CrossRef]
- Andrade, E.H.A.; Carreira, L.M.M.; da Silva, M.H.L.; da Silva, J.D.; Bastos, C.N.; Sousa, P.J.C.; Guimarães, E.F.; Maia, J.G.S. Variability in Essential Oil Composition of Piper marginatum Sensu Lato. Chem. Biodivers. 2008, 5, 197–208. [Google Scholar] [CrossRef]
- Maia, J.G.S.; Andrade, E.H.A.; da Silva, A.C.M.; Oliveira, J.; Carreira, L.M.M.; Araújo, J.S. Leaf Volatile Oils from Four Brazilian Xylopia Species. Flavour Fragr. J. 2005, 20, 474–477. [Google Scholar] [CrossRef]
- Maccioni, S.; Baldini, R.; Cioni, P.L.; Tebano, M.; Flamini, G. In vivo Volatiles Emission and Essential Oils from Different Organs and Pollen of Cistus albidus from Caprione (Eastern Liguria, Italy). Flavour Fragr. J. 2007, 22, 61–65. [Google Scholar] [CrossRef]
- Javidnia, K.; Miri, R.; Kamalinejad, M.; Nasiri, A. Composition of the Essential Oil of Salvia mirzayanii Rech. f. Esfand from Iran. Flavour Fragr. J. 2002, 17, 465–467. [Google Scholar] [CrossRef]
- Adams, R.P. The Leaf Essential Oils and Chemotaxonomy of Juniperus sect. Juniperus. Biochem. Syst. Ecol. 1998, 26, 637–645. [Google Scholar] [CrossRef]
- Adams, R.P. Systematics of Multi-Seeded Eastern Hemisphere Juniperus Based on Leaf Essential Oils and RAPD DNA Fingerprinting. Biochem. Syst. Ecol. 1999, 27, 709–725. [Google Scholar] [CrossRef]
- Mevy, J.-P.; Bessiere, J.-M.; Greff, S.; Zombre, G.; Viano, J. Composition of the Volatile Oil from the Leaves of Ximenia americana L. Biochem. Syst. Ecol. 2006, 34, 549–553. [Google Scholar] [CrossRef]
- Dickens, J.C. Predator-Prey Interactions: Olfactory Adaptations of Generalist and Specialist Predators. Agric. For. Entomol. 1999, 1, 47–54. [Google Scholar] [CrossRef]
- da Silva, M.H.L.; Zoghbi, M.D.G.B.; Andrade, E.H.A.; Maia, J.G.S. The Essential Oils of Peperomia pellucida Kunth and P. circinnata Link Var. circinnata. Flavour Fragr. J. 1999, 14, 312–314. [Google Scholar] [CrossRef]
- Lucero, M.E.; Fredrickson, E.L.; Estell, R.E.; Morrison, A.A.; Richman, D.B. Volatile Composition of Gutierrezia sarothrae (Broom Snakeweed) as Determined by Steam Distillation and Solid Phase Microextraction. J. Essent. Oil Res. 2006, 18, 121–125. [Google Scholar] [CrossRef]
- Silva, C.; Moraes, M.; Camara, C.; Ribeiro, N.; Melo, J.; Lima, V.; Navarro, D. Chemical Composition and Acaricidal Activities of Indigofera suffruticosa Essential Oil against Two-Spotted Spider Mite. Quim. Nova 2019, 42, 313–318. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry; Allured Publishing Corporation: Carol Stream, IL, USA, 1995. [Google Scholar]
- Viña, A.; Murillo, E. Essential Oil Composition from Twelve Varieties of Basil (Ocimum spp) Grown in Colombia. J. Braz. Chem. Soc. 2003, 14, 744–749. [Google Scholar] [CrossRef]
- da Silva, J.K.R.; Silva, N.N.S.; Santana, J.F.S.; Andrade, E.H.A.; Maia, J.G.S.; Setzer, W.N. Phenylpropanoid-Rich Essential Oils of Piper Species from the Amazon and Their Antifungal and Anti-Cholinesterase Activities. Nat. Prod. Commun. 2016, 11, 1934578X1601101. [Google Scholar] [CrossRef] [Green Version]
- Ayres, V.F.S.; Oliveira, M.R.; Baldin, E.L.L.; Corrêa, G.M.; Guimarães, A.C.; Takeara, R. Chemical Composition and Insecticidal Activity of the Essential Oils of Piper marginatum, Piper callosum and Vitex agnus-castus. An. Acad. Bras. Cienc. 2021, 93, e20200616. [Google Scholar] [CrossRef] [PubMed]
- Alves, C.M.G.; Nogueira, J.N.; Luz, J.G.R.; Chaves, F.C.M.; Tavares-Dias, M. Essential Oil of Piper callosum, Piper hispidum and Piper marginatum (Piperaceae) Possesses in vitro Efficacy against Monogeneans of Colossoma macropomum (Tambaqui). Aquac. Res. 2021, 52, 6107–6116. [Google Scholar] [CrossRef]
- De Díaz, A.; Díaz, P.; Cardoso, H. Volatile Constituents of Peperomia subespatulata. Planta Med. 1988, 54, 92–93. [Google Scholar] [CrossRef] [PubMed]
- Verma, R.S.; Padalia, R.C.; Goswami, P.; Chauhan, A. Essential Oil Composition of Peperomia pellucida (L.) Kunth from India. J. Essent. Oil Res. 2015, 27, 89–95. [Google Scholar] [CrossRef]
- François, T.; Michel, J.D.P.; Vyry, W.N.A.; Fabrice, F.B.; Lambert, S.M.; Henri, A.Z.P.; Chantal, M. Composition and Antifungal Properties of Essential Oils from Five Plants Growing in the Mountainous Area of the West Cameroon. J. Essent. Oil Bear. Plants 2013, 16, 679–688. [Google Scholar] [CrossRef]
- Moreira, D.L.; de Souza, P.O.; Kaplan, M.A.C.; Guimarães, E.F. Essential Oil Analysis of Four Peperomia Species (Piperaceae). Acta Hortic. 1999, 500, 65–70. [Google Scholar] [CrossRef]
- de Lira, P.N.B.; da Silva, J.K.R.; Andrade, E.H.A.; Sousa, P.J.; Silva, N.N.S.; Maia, J.G.S. Essential Oil Composition of Three Peperomia Species from the Amazon, Brazil. Nat. Prod. Commun. 2009, 4, 427–430. [Google Scholar] [CrossRef] [Green Version]
- Macêdo, C.G.; Fonseca, M.Y.N.; Caldeira, A.D.; Castro, S.P.; Pacienza-Lima, W.; Borsodi, M.P.G.; Sartoratto, A.; da Silva, M.N.; Salgado, C.G.; Rossi-Bergmann, B.; et al. Leishmanicidal Activity of Piper marginatum Jacq. from Santarém-PA against Leishmania amazonensis. Exp. Parasitol. 2020, 210, 107847. [Google Scholar] [CrossRef]
- Autran, E.; Neves, I.; Da Silva, C.; Santos, G.; Camara, C.; Navarro, D. Chemical Composition, Oviposition Deterrent and Larvicidal Activities against Aedes aegypti of Essential Oils from Piper marginatum Jacq. (Piperaceae). Bioresour. Technol. 2009, 100, 2284–2288. [Google Scholar] [CrossRef]
- de Souza, M.T.; de Souza, M.T.; Bernardi, D.; Krinski, D.; de Melo, D.J.; da Costa Oliveira, D.; Rakes, M.; Zarbin, P.H.G.; de Noronha Sales Maia, B.H.L.; Zawadneak, M.A.C. Chemical Composition of Essential Oils of Selected Species of Piper and Their Insecticidal Activity against Drosophila suzukii and Trichopria anastrephae. Environ. Sci. Pollut. Res. 2020, 27, 13056–13065. [Google Scholar] [CrossRef]
- Formisano, C.; Delfine, S.; Oliviero, F.; Tenore, G.C.; Rigano, D.; Senatore, F. Correlation among Environmental Factors, Chemical Composition and Antioxidative Properties of Essential Oil and Extracts of Chamomile (Matricaria chamomilla L.) Collected in Molise (South-Central Italy). Ind. Crops Prod. 2015, 63, 256–263. [Google Scholar] [CrossRef]
- Goldbeck, J.C.; do Nascimento, J.E.; Jacob, R.G.; Fiorentini, Â.M.; da Silva, W.P. Bioactivity of Essential Oils from Eucalyptus globulus and Eucalyptus urograndis against Planktonic Cells and Biofilms of Streptococcus mutans. Ind. Crops Prod. 2014, 60, 304–309. [Google Scholar] [CrossRef]
- Gursoy, U.K.; Gursoy, M.; Gursoy, O.V.; Cakmakci, L.; Könönen, E.; Uitto, V.-J. Anti-Biofilm Properties of Satureja Hortensis L. Essential Oil against Periodontal Pathogens. Anaerobe 2009, 15, 164–167. [Google Scholar] [CrossRef]
- Ouhayoun, J.P. Penetrating the Plaque Biofilm: Impact of Essential Oil Mouthwash. J. Clin. Periodontol. 2003, 30, 10–12. [Google Scholar] [CrossRef] [PubMed]
- Salleh, W.M.N.H.W.; Ahmad, F.; Yen, K.H. Chemical Composition and Antimicrobial Activity of Essential Oil of Piper muricatum Blume (Piperaceae). J. Essent. Oil Bear. Plants 2014, 17, 1329–1334. [Google Scholar] [CrossRef]
- Leme, A.F.P.; Koo, H.; Bellato, C.M.; Bedi, G.; Cury, J.A. The Role of Sucrose in Cariogenic Dental Biofilm Formation-New Insight. J. Dent. Res. 2006, 85, 878–887. [Google Scholar] [CrossRef]
- Vieira, T.M.; Dias, H.J.; Medeiros, T.C.T.; Grundmann, C.O.; Groppo, M.; Heleno, V.C.G.; Martins, C.H.G.; Cunha, W.R.; Crotti, A.E.M.; Silva, E.O. Chemical Composition and Antimicrobial Activity of the Essential Oil of Artemisia absinthium Asteraceae Leaves. J. Essent. Oil Bear. Plants 2017, 20, 123–131. [Google Scholar] [CrossRef]
- Ramzi, H.; Ismaili, M.R.; Aberchane, M.; Zaanoun, S. Chemical Characterization and Acaricidal Activity of Thymus satureioides C. and Origanum elongatum E.M. (Lamiaceae) Essential Oils against Varroa destructor Anderson Trueman (Acari: Varroidae). Ind. Crops Prod. 2017, 108, 201–207. [Google Scholar] [CrossRef]
- Seneme, E.F.; dos Santos, D.C.; Silva, E.M.R.; Franco, Y.E.M.; Longato, G.B. Pharmacological and Therapeutic Potential of Myristicin: A Literature Review. Molecules 2021, 26, 5914. [Google Scholar] [CrossRef]
- Tajkarimi, M.M.; Ibrahim, S.A.; Cliver, D.O. Antimicrobial Herb and Spice Compounds in Food. Food Control 2010, 21, 1199–1218. [Google Scholar] [CrossRef]
- Vokk, R.; Lõugas, T.; Mets, K.; Kravets, M. Dill (Anethum graveolens L.) and Parsley (Petroselinum crispum (Mill.) Fuss) from Estonia: Seasonal Differences in Essential Oil Composition. Agron. Res. 2011, 9, 515–520. [Google Scholar]
- Alizadeh, A.; Abdollahzadeh, H. Essential Oil Constituents and Antimicrobial Activity of Pycnocycla bashagardiana Mozaff. from Iran. Nat. Prod. Res. 2017, 31, 2081–2084. [Google Scholar] [CrossRef] [PubMed]
- Rameshkumar, K.B.; Nandu, T.G.; Anu Aravind, A.P.; Mathew, S.P.; Shiburaj, S. Chemical Composition and FtsZ GTPase Inhibiting Activity of the Essential Oil of Piper sarmentosum from Andaman Islands, India. J. Essent. Oil Res. 2017, 29, 430–435. [Google Scholar] [CrossRef]
- Glamoclija, J.M.; Sokovic, M.D.; Šiljegovic, J.D.; Ristic, M.S.; Ciric, A.D.; Grubišic, D.V. Chemical Composition and Antimicrobial Activity of Echinophora spinosa L. (Apiaceae) Essential Oil. Rec. Nat. Prod. 2011, 5, 319–323. [Google Scholar]
- Angioni, A.; Barra, A.; Russo, M.T.; Coroneo, V.; Dessí, S.; Cabras, P. Chemical Composition of the Essential Oils of Juniperus from Ripe and Unripe Berries and Leaves and Their Antimicrobial Activity. J. Agric. Food Chem. 2003, 51, 3073–3078. [Google Scholar] [CrossRef]
- Ahn, C.; Lee, J.; Park, M.; Kim, J.; Yang, J.; Yoo, Y.; Jeung, E. Cytostatic Effects of Plant Essential Oils on Human Skin and Lung Cells. Exp. Ther. Med. 2020, 19, 2008–2018. [Google Scholar] [CrossRef] [Green Version]
- Moller, A.C.; Parra, C.; Said, B.; Werner, E.; Flores, S.; Villena, J.; Russo, A.; Caro, N.; Montenegro, I.; Madrid, A. Antioxidant and Anti-Proliferative Activity of Essential Oil and Main Components from Leaves of Aloysia polystachya Harvested in Central Chile. Molecules 2021, 26, 131. [Google Scholar] [CrossRef]
- Saleh, A.M.; Al-Qudah, M.A.; Nasr, A.; Rizvi, S.A.; Borai, A.; Daghistani, M. Comprehensive Analysis of the Chemical Composition and in vitro Cytotoxic Mechanisms of Pallines spinosa Flower and Leaf Essential Oils against Breast Cancer Cells. Cell. Physiol. Biochem. 2017, 42, 2043–2065. [Google Scholar] [CrossRef]
- van Den Dool, H.; Dec Kratz, P. A Generalization of the Retention Index System Including Linear Temperature Programmed Gas—Liquid Partition Chromatography. J. Chromatogr. A 1963, 11, 463–471. [Google Scholar] [CrossRef]
Compound | RIexp | RIlit | % RA PM-EO | % RA PC-EO | % RA PP-EO | Identification |
---|---|---|---|---|---|---|
α-thujene | 924 | 931 | - | 0.2 ± 0.09 | - | RL a MS |
α-pinene | 932 | 939 | 0.9 ± 0.09 | 19.2 ± 0.88 | - | RL a MS |
camphene | 948 | 953 | - | 0.6 ± 0.27 | - | RL a MS |
sabinene | 971 | 976 | - | 2.7 ± 0.92 | - | RL a MS |
β-pinene | 978 | 980 | 0.6 ± 0.05 | 14.3 ± 0.64 | - | RL a MS |
myrcene | 988 | 991 | 0.6 ± 0.07 | 0.9 ± 0.37 | - | RLa MS |
α-phellandrene | 1007 | 1005 | - | 0.2 ± 0.08 | - | RL a MS |
δ-3-carene | 1009 | 1011 | 4.6 ± 0.50 | - | - | RL b MS |
α-terpinene | 1016 | 1018 | - | 1.4 ± 0.57 | - | RL a MS |
p-cymene | 1024 | 1026 | - | 0.3 ± 0.09 | - | RL a MS |
limonene | 1028 | 1031 | - | 0.8 ± 0.32 | 0.2 ± 0.03 | RL a MS |
1,8-cineole | 1031 | 1033 | - | 2.3 ± 0.73 | - | RL a MS |
Z-β-ocimene | 1038 | 1040 | 4.2 ± 0.42 | - | - | RL a MS |
E-β-ocimene | 1047 | 1050 | 7.7 ± 0.84 | - | 0.5 ± 0.09 | RL a MS |
γ-terpinene | 1058 | 1062 | - | 3.5 ± 0.46 | - | RL a MS |
α-terpinolene | 1084 | 1088 | - | 0.8 ± 0.27 | - | RL a MS |
linalool | 1101 | 1098 | - | 0.1 ± 0.02 | - | RL a MS |
terpinen-4-ol | 1180 | 1179 | - | 0.6 ± 0.17 | - | RL a MS |
hexyl butanoate | 1192 | 1191 | - | - | 0.1 ± 0.04 | RL c MS |
α-terpineol | 1195 | 1197 | - | 0.4 ± 0.02 | - | RL d MS |
decanal | 1207 | 1207 | - | - | 1.3 ± 0.13 | RL e MS |
safrole | 1290 | 1285 | - | 2.3 ± 0.03 | - | RL c MS |
δ-elemene | 1332 | 1340 | 2.1 ± 0.17 | - | - | RL a MS |
α-copaene | 1371 | 1376 | - | 1.2 ± 0.28 | - | RL a MS |
β -bourbonene | 1379 | 1355 | - | - | 0.3 ± 0.06 | RL a MS |
β-elemene | 1393 | 1391 | 0.7 ± 0.05 | - | 0.5 ± 0.05 | RL a MS |
methyl eugenol | 1400 | 1403 | 0.7 ± 0.06 | 6.5 ± 1.13 | - | RL a MS |
dodecanal | 1411 | 1409 | - | - | 0.6 ± 0.03 | RL f MS |
E-caryophyllene | 1417 | 1418 | 5.5 ± 0.39 | 1.5 ± 0.34 | 13.2 ± 0.28 | RL a MS |
trans-α-bergamotene | 1433 | 1438 | - | - | 0.1 ± 0.03 | RL g MS |
croweacin | 1450 | 1452 | 5.2 ± 0.27 | - | - | RL h MS |
α-humulene | 1452 | 1454 | 0.7 ± 0.06 | 0.4 ± 0.09 | 0.8 ± 0.31 | RL a MS |
E-β-farnesene | 1457 | 1458 | - | - | 0.5 ± 0.02 | RL a MS |
γ-gurjenene | 1469 | 1473 | - | - | 2.9 ± 0.70 | RL i MS |
α-amorphene | 1471 | 1485 | 0.7 ± 0.06 | - | - | RL a MS |
germacrene-D | 1475 | 1480 | 10.8 ± 0.73 | 2.6 ± 0.63 | 6.8 ± 0.77 | RL a MS |
β-selinene | 1484 | 1485 | 2.4 ± 0.17 | - | - | RL i MS |
bicyclogermacrene | 1491 | 1494 | 1.0 ± 0.25 | - | 9.1 ± 0.26 | RL a MS |
α-muurolene | 1493 | 1499 | 1.4 ± 0.77 | 0.2 ± 0.04 | - | RL a MS |
Z-methyl isoeugenol | 1496 | 1532 | 0.6 ± 0.08 | - | - | RL a MS |
germacrene A | 1502 | 1503 | 0.7 ± 0.09 | - | 0.1 ± 0.06 | RL a MS |
γ-cadinene | 1512 | 1513 | - | - | 0.1 ± 0.05 | RL a MS |
myristicin | 1516 | 1520 | 5.3 ± 0.23 | - | - | RL a MS |
δ-cadinene | 1523 | 1524 | - | 0.9 ± 0.05 | - | RL a MS |
β-sesquiphellandrene | 1528 | 1524 | - | - | 0.8 ± 0.05 | RL j MS |
elemicin | 1542 | 1540 | 9.2 ± 0.76 | 3.1 ± 0.70 | - | RL l MS |
3,4-(methylenedioxy)propiophenone | 1543 | 1545 | 11.3 ± 0.03 | - | - | RL m MS |
E-nerolidol | 1564 | 1564 | - | - | 1.3 ± 0.77 | RL a MS |
spathulenol | 1572 | 1576 | 1.6 ± 0.07 | - | 0.4 ± 0.08 | RL a MS |
caryophyllene oxide | 1578 | 1581 | - | - | 0.4 ± 0.07 | RL a MS |
globulol | 1581 | 1584 | 0.6 ± 0.05 | - | - | RL n MS |
viridiflorol | 1588 | 1590 | 0.6 ± 0.06 | - | 15.1 ± 0.32 | RL i MS |
10-epi-γ-eudesmol | 1618 | 1621 | 0.7 ± 0.05 | - | - | RL o MS |
dillapiole | 1620 | 1622 | - | - | 40.6 ± 0.90 | RL i MS |
γ-eudesmol | 1629 | 1630 | - | 2.5 ± 0.77 | - | RL i MS |
isospathulenol | 1635 | 1639 | 0.9 ± 0.09 | - | - | RL p MS |
torreyol | 1642 | 1645 | 0.6 ± 0.05 | 1.0 ± 0.17 | - | RL q MS |
β-eudesmol | 1650 | 1649 | 4.5 ± 0.03 | - | - | RL i MS |
apiole | 1681 | 1680 | - | - | 1.1 ± 0.08 | RL i MS |
Monoterpene hydrocarbons | 18.6 | 44.9 | 0.7 | |||
Oxygenated monoterpenes | - | 3.4 | - | |||
Sesquiterpene hydrocarbons | 36.0 | 13.3 | 35.2 | |||
Oxygenated sesquiterpenes | 8.8 | 3.5 | 17.2 | |||
Phenylpropanoids | 31.6 | 32.4 | 41.7 | |||
Others | - | - | 2.0 | |||
Not identified | 5.0 | 2.5 | 3.2 |
Microorganism | PC-EO | PM-EO | PP-EO | CHD |
---|---|---|---|---|
Streptococcus salivarius ATCC 25975 | 500 | 200 | 500 | 0.74 |
Streptococcus sanguinis ATCC 1055 | 1000 | 225 | 250 | 0.74 |
Streptococcus sobrinus ATCC 33478 | 500 | 200 | 250 | 0.18 |
Streptococcus mitis ATCC 49456 | 500 | 75 | 125 | 1.47 |
Streptococcus mutans ATCC 25175 | 500 | 50 | 125 | 0.09 |
Enterococcus faecalis ATCC 4082 | 1000 | 500 | 1000 | 2.95 |
Lactobacillus casei ATCC 11578 | 500 | 50 | 125 | 0.37 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carvalho, Ê.S.; Ayres, V.F.S.; Oliveira, M.R.; Corrêa, G.M.; Takeara, R.; Guimarães, A.C.; Santiago, M.B.; Oliveira, T.A.S.; Martins, C.H.G.; Crotti, A.E.M.; et al. Anticariogenic Activity of Three Essential Oils from Brazilian Piperaceae. Pharmaceuticals 2022, 15, 972. https://doi.org/10.3390/ph15080972
Carvalho ÊS, Ayres VFS, Oliveira MR, Corrêa GM, Takeara R, Guimarães AC, Santiago MB, Oliveira TAS, Martins CHG, Crotti AEM, et al. Anticariogenic Activity of Three Essential Oils from Brazilian Piperaceae. Pharmaceuticals. 2022; 15(8):972. https://doi.org/10.3390/ph15080972
Chicago/Turabian StyleCarvalho, Êni S., Vanessa F. S. Ayres, Midiã R. Oliveira, Geone M. Corrêa, Renata Takeara, Anderson C. Guimarães, Mariana B. Santiago, Thaís A. S. Oliveira, Carlos H. G. Martins, Antônio E. M. Crotti, and et al. 2022. "Anticariogenic Activity of Three Essential Oils from Brazilian Piperaceae" Pharmaceuticals 15, no. 8: 972. https://doi.org/10.3390/ph15080972
APA StyleCarvalho, Ê. S., Ayres, V. F. S., Oliveira, M. R., Corrêa, G. M., Takeara, R., Guimarães, A. C., Santiago, M. B., Oliveira, T. A. S., Martins, C. H. G., Crotti, A. E. M., & Silva, E. O. (2022). Anticariogenic Activity of Three Essential Oils from Brazilian Piperaceae. Pharmaceuticals, 15(8), 972. https://doi.org/10.3390/ph15080972