Tryptophan Challenge in Healthy Controls and People with Schizophrenia: Acute Effects on Plasma Levels of Kynurenine, Kynurenic Acid and 5-Hydroxyindoleacetic Acid
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Study Participants
4.2. Study Design
4.3. TRP Challenge
4.4. Blood Collection
4.5. Kynurenine and KYNA Measurement
4.6. 5-HIAA Measurement
4.7. IFN-γ, TNF-α and IL-6 Measurement
4.8. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Brown, R.R. Metabolism and biology of tryptophan. Some clinical implications. Adv. Exp. Med. Biol. 1996, 398, 15–25. [Google Scholar] [PubMed]
- Palego, L.; Betti, L.; Rossi, A.; Giannaccini, G. Tryptophan biochemistry: Structural, nutritional, metabolic, and medical aspects in humans. J. Amino. Acids. 2016, 2016, 8952520. [Google Scholar] [CrossRef]
- Peters, J.C. Tryptophan nutrition and metabolism: An overview. Adv. Exp. Med. Biol. 1991, 294, 345–358. [Google Scholar] [PubMed]
- Fuller, R.W. Role of serotonin in therapy of depression and related disorders. J. Clin. Psychiatry 1991, 52, 52–57. [Google Scholar] [PubMed]
- Hindle, A.T. Recent developments in the physiology and pharmacology of 5-hydroxytryptamine. Br. J. Anaesth. 1994, 73, 395–407. [Google Scholar] [CrossRef] [PubMed]
- Young, S.N.; Teff, K.L. Tryptophan availability, 5HT synthesis and 5HT function. Prog. Neuropsychopharmacol. Biol. Psychiatry 1989, 13, 373–379. [Google Scholar] [CrossRef]
- Fernstrom, J.D.; Wurtman, R.J. Brain serotonin content: Physiological regulation by plasma neutral amino acids. Science 1972, 178, 414–416. [Google Scholar] [CrossRef] [PubMed]
- Green, A.R.; Curzon, G. The effect of tryptophan metabolites on brain 5-hydroxytryptamine metabolism. Biochem. Pharmacol. 1970, 19, 2061–2068. [Google Scholar] [CrossRef]
- Moir, A.T.; Eccleston, D. The effects of precursor loading in the cerebral metabolism of 5-hydroxyindoles. J. Neurochem. 1968, 15, 1093–1108. [Google Scholar] [CrossRef]
- Gál, E.M.; Young, R.B.; Sherman, A.D. Tryptophan loading: Consequent effects on the synthesis of kynurenine and 5-hydroxyindoles in rat brain. J. Neurochem. 1978, 31, 237–244. [Google Scholar] [CrossRef]
- Moroni, F. Tryptophan metabolism and brain function: Focus on kynurenine and other indole metabolites. Eur. J. Pharmacol. 1999, 375, 87–100. [Google Scholar] [CrossRef]
- Schwarcz, R.; Bruno, J.P.; Muchowski, P.J.; Wu, H.Q. Kynurenines in the mammalian brain: When physiology meets pathology. Nat. Rev. Neurosci. 2012, 13, 465–477. [Google Scholar] [CrossRef]
- Stone, T.W.; Darlington, L.G. The kynurenine pathway as a therapeutic target in cognitive and neurodegenerative disorders. Br. J. Pharmacol. 2013, 169, 1211–1227. [Google Scholar] [CrossRef] [PubMed]
- Mithaiwala, M.N.; Santana-Coelho, D.; Porter, G.A.; O’Connor, J.C. Neuroinflammation and the kynurenine pathway in CNS disease: Molecular mechanisms and therapeutic implications. Cells 2021, 10, 1548. [Google Scholar] [CrossRef]
- Fukui, S.; Schwarcz, R.; Rapoport, S.I.; Takada, Y.; Smith, Q.R. Blood-brain barrier transport of kynurenines: Implications for brain synthesis and metabolism. J. Neurochem. 1991, 56, 2007–2017. [Google Scholar] [CrossRef] [PubMed]
- Albuquerque, E.X.; Schwarcz, R. Kynurenic acid as an antagonist of alpha7 nicotinic acetylcholine receptors in the brain: Facts and challenges. Biochem. Pharmacol. 2013, 85, 1027–1032. [Google Scholar] [CrossRef] [PubMed]
- Moroni, F.; Cozzi, A.; Sili, M.; Mannaioni, G. Kynurenic acid: A metabolite with multiple actions and multiple targets in brain and periphery. J. Neural. Transm. 2012, 119, 133–139. [Google Scholar] [CrossRef]
- Wang, J.; Simonavicius, N.; Wu, X.; Swaminath, G.; Reagan, J.; Tian, H.; Ling, L. Kynurenic acid as a ligand for orphan G protein-coupled receptor GPR35. J. Biol. Chem. 2006, 281, 22021–22028. [Google Scholar] [CrossRef]
- Kapolka, N.J.; Taghon, G.J.; Rowe, J.B.; Morgan, W.M.; Enten, J.F.; Lambert, N.A.; Isom, D.G. DCyFIR: A high-throughput CRISPR platform for multiplexed G protein-coupled receptor profiling and ligand discovery. Proc. Natl. Acad. Sci. USA 2020, 117, 13117–13126. [Google Scholar] [CrossRef]
- DiNatale, B.C.; Murray, I.A.; Schroeder, J.C.; Flaveny, C.A.; Lahoti, T.S.; Laurenzana, E.M.; Omiecinski, C.J.; Perdew, G.H. Kynurenic acid is a potent endogenous aryl hydrocarbon receptor ligand that synergistically induces interleukin-6 in the presence of inflammatory signaling. Toxicol. Sci. 2010, 115, 89–97. [Google Scholar] [CrossRef] [PubMed]
- Lo, Y.C.; Lin, C.L.; Fang, W.Y.; Lorinczi, B.; Szatmari, I.; Chang, W.H.; Fulop, F.; Wu, S.N. Effective activation by kynurenic acid and Its aminoalkylated derivatives on M-Type K(+) current. Int. J. Mol. Sci. 2021, 22, 1300. [Google Scholar] [CrossRef]
- Flores-Barrera, E.; Thomases, D.R.; Cass, D.K.; Bhandari, A.; Schwarcz, R.; Bruno, J.P.; Tseng, K.Y. Preferential disruption of prefrontal GABAergic function by nanomolar concentrations of the alpha7nACh negative modulator kynurenic acid. J. Neurosci. 2017, 37, 7921–7929. [Google Scholar] [CrossRef]
- Stone, T.W. Relationships and interactions between ionotropic glutamate receptors and nicotinic receptors in the CNS. Neuroscience 2021, 468, 321–365. [Google Scholar] [CrossRef]
- Timofeeva, O.A.; Levin, E.D. Glutamate and nicotinic receptor interactions in working memory: Importance for the cognitive impairment of schizophrenia. Neuroscience 2011, 195, 21–36. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Paspalas, C.D.; Jin, L.E.; Picciotto, M.R.; Arnsten, A.F.; Wang, M. Nicotinic alpha7 receptors enhance NMDA cognitive circuits in dorsolateral prefrontal cortex. Proc. Natl. Acad. Sci. USA 2013, 110, 12078–12083. [Google Scholar] [CrossRef] [PubMed]
- Erhardt, S.; Blennow, K.; Nordin, C.; Skogh, E.; Lindstrom, L.H.; Engberg, G. Kynurenic acid levels are elevated in the cerebrospinal fluid of patients with schizophrenia. Neurosci. Lett. 2001, 313, 96–98. [Google Scholar] [CrossRef]
- Plitman, E.; Iwata, Y.; Caravaggio, F.; Nakajima, S.; Chung, J.K.; Gerretsen, P.; Kim, J.; Takeuchi, H.; Chakravarty, M.M.; Remington, G.; et al. Kynurenic acid in schizophrenia: A systematic review and meta-analysis. Schizophr. Bull. 2017, 43, 764–777. [Google Scholar] [CrossRef] [PubMed]
- Schwarcz, R.; Rassoulpour, A.; Wu, H.Q.; Medoff, D.; Tamminga, C.A.; Roberts, R.C. Increased cortical kynurenate content in schizophrenia. Biol. Psychiatry. 2001, 50, 521–530. [Google Scholar] [CrossRef]
- Schwarcz, R.; Erhardt, S. Kynurenic acid in brain function and dysfunction: Focus on the pathophysiology and treatment of schizophrenia. In Dimensions of Psychosis: Comprehensive Conceptualization and Treatments; Tamminga, C.A., Ivleva, E.I., Reininghaus, U., van Os, J., Eds.; Oxford University Press: Oxford, UK, 2020; pp. 323–331. [Google Scholar]
- Boado, R.J.; Li, J.Y.; Nagaya, M.; Zhang, C.; Pardridge, W.M. Selective expression of the large neutral amino acid transporter at the blood-brain barrier. Proc. Natl. Acad. Sci. USA 1999, 96, 12079–12084. [Google Scholar] [CrossRef]
- Sekine, A.; Okamoto, M.; Kanatani, Y.; Sano, M.; Shibata, K.; Fukuwatari, T. Amino acids inhibit kynurenic acid formation via suppression of kynurenine uptake or kynurenic acid synthesis in rat brain in vitro. Springerplus 2015, 4, 48. [Google Scholar] [CrossRef] [PubMed]
- Gál, E.M.; Sherman, A.D. L-kynurenine: Its synthesis and possible regulatory function in brain. Neurochem. Res. 1980, 5, 223–239. [Google Scholar] [CrossRef]
- Kita, T.; Morrison, P.F.; Heyes, M.P.; Markey, S.P. Effects of systemic and central nervous system localized inflammation on the contributions of metabolic precursors to the L-kynurenine and quinolinic acid pools in brain. J. Neurochem. 2002, 82, 258–268. [Google Scholar] [CrossRef]
- Walker, A.K.; Wing, E.E.; Banks, W.A.; Dantzer, R. Leucine competes with kynurenine for blood-to-brain transport and prevents lipopolysaccharide-induced depression-like behavior in mice. Mol. Psychiatry 2019, 24, 1523–1532. [Google Scholar] [CrossRef]
- Opitz, C.A.; Litzenburger, U.M.; Sahm, F.; Ott, M.; Tritschler, I.; Trump, S.; Schumacher, T.; Jestaedt, L.; Schrenk, D.; Weller, M.; et al. An endogenous tumour promoting ligand of the human aryl hydrocarbon receptor. Nature 2011, 478, 197–203. [Google Scholar] [CrossRef]
- Campbell, B.M.; Charych, E.; Lee, A.W.; Möller, T. Kynurenines in CNS disease: Regulation by inflammatory cytokines. Front. Neurosci. 2014, 8, 12. [Google Scholar] [CrossRef]
- Feng, T.; Tripathi, A.; Pillai, A. Inflammatory pathways in psychiatric disorders: The case of schizophrenia and depression. Curr. Behav. Neurosci. Rep. 2020, 7, 128–138. [Google Scholar] [CrossRef]
- Ribeiro-Santos, A.; Lucio Teixeira, A.; Salgado, J.V. Evidence for an immune role on cognition in schizophrenia: A systematic review. Curr. Neuropharmacol. 2014, 12, 273–280. [Google Scholar] [CrossRef]
- Cao, B.; Chen, Y.; Ren, Z.; Pan, Z.; McIntyre, R.S.; Wang, D. Dysregulation of kynurenine pathway and potential dynamic changes of kynurenine in schizophrenia: A systematic review and meta-analysis. Neurosci. Biobehav. Rev. 2021, 123, 203–214. [Google Scholar] [CrossRef]
- Skorobogatov, K.; De Picker, L.; Verkerk, R.; Coppens, V.; Leboyer, M.; Muller, N.; Morrens, M. Brain versus blood: A systematic review on the concordance between peripheral and central kynurenine pathway measures in psychiatric disorders. Front. Immunol. 2021, 12, 716980. [Google Scholar] [CrossRef]
- Tanaka, M.; Toth, F.; Polyak, H.; Szabo, A.; Mandi, Y.; Vecsei, L. Immune influencers in action: Metabolites and enzymes of the tryptophan-kynurenine metabolic pathway. Biomedicines 2021, 9, 734. [Google Scholar] [CrossRef]
- Brown, F.C.; White, J.B., Jr.; Kennedy, J.K. Urinary excretion of tryptophan metabolites by schizophrenic individuals. Am. J. Psychiatry 1960, 117, 63–65. [Google Scholar] [CrossRef] [PubMed]
- Faurbye, A.; Pind, K. Investigations on the tryptophane metabolism (via kynurenine) in schizophrenic patients. Acta Psychiatr. Scand. 1964, 40, 244–248. [Google Scholar] [CrossRef] [PubMed]
- Musajo, L.; Benassi, C.A. Aspects of disorders of the kynurenine pathway of tryptophan metabolism in man. Adv. Clin. Chem. 1964, 7, 63–135. [Google Scholar]
- Price, J.M.; Brown, R.R.; Peters, H.A. Tryptophan metabolism in porphyria, schizophrenia, and a variety of neurologic and psychiatric diseases. Neurology 1959, 9, 456–468. [Google Scholar] [CrossRef] [PubMed]
- Alfredsson, G.; Wiesel, F.A. Monoamine metabolites and amino acids in serum from schizophrenic patients before and during sulpiride treatment. Psychopharmacology 1989, 99, 322–327. [Google Scholar] [CrossRef]
- Barry, S.; Clarke, G.; Scully, P.; Dinan, T.G. Kynurenine pathway in psychosis: Evidence of increased tryptophan degradation. J. Psychopharmacol. 2009, 23, 287–294. [Google Scholar] [CrossRef]
- Benassi, C.A.; Benassi, C.; Allegri, G.; Ballarin, P. Tryptophan metabolism in schizophrenic patients. J. Neurochem. 1961, 7, 264–270. [Google Scholar] [CrossRef]
- Chiappelli, J.; Notarangelo, F.M.; Pocivavsek, A.; Thomas, M.A.R.; Rowland, L.M.; Schwarcz, R.; Hong, L.E. Influence of plasma cytokines on kynurenine and kynurenic acid in schizophrenia. Neuropsychopharmacology 2018, 43, 1675–1680. [Google Scholar] [CrossRef] [PubMed]
- Curto, M.; Lionetto, L.; Negro, A.; Capi, M.; Perugino, F.; Fazio, F.; Giamberardino, M.A.; Simmaco, M.; Nicoletti, F.; Martelletti, P. Altered serum levels of kynurenine metabolites in patients affected by cluster headache. J. Headache Pain 2015, 17, 27. [Google Scholar] [CrossRef]
- Dietz, A.G.; Goldman, S.A.; Nedergaard, M. Glial cells in schizophrenia: A unified hypothesis. Lancet Psychiatry 2020, 7, 272–281. [Google Scholar] [CrossRef]
- Joaquim, H.P.G.; Costa, A.C.; Gattaz, W.F.; Talib, L.L. Kynurenine is correlated with IL-1beta in plasma of schizophrenia patients. J. Neural. Transm. 2018, 125, 869–873. [Google Scholar] [CrossRef] [PubMed]
- Myint, A.M.; Schwarz, M.J.; Verkerk, R.; Mueller, H.H.; Zach, J.; Scharpe, S.; Steinbusch, H.W.; Leonard, B.E.; Kim, Y.K. Reversal of imbalance between kynurenic acid and 3-hydroxykynurenine by antipsychotics in medication-naive and medication-free schizophrenic patients. Brain. Behav. Immun. 2011, 25, 1576–1581. [Google Scholar] [CrossRef] [PubMed]
- Ravikumar, A.; Deepadevi, K.V.; Arun, P.; Manojkumar, V.; Kurup, P.A. Tryptophan and tyrosine catabolic pattern in neuropsychiatric disorders. Neurol. India 2000, 48, 231–238. [Google Scholar] [PubMed]
- Szymona, K.; Zdzisinska, B.; Karakula-Juchnowicz, H.; Kocki, T.; Kandefer-Szerszen, M.; Flis, M.; Rosa, W.; Urbanska, E.M. Correlations of kynurenic Acid, 3-hydroxykynurenine, sIL-2R, IFN-alpha, and IL-4 with clinical symptoms during acute relapse of schizophrenia. Neurotox. Res. 2017, 32, 17–26. [Google Scholar] [CrossRef] [PubMed]
- Wurfel, B.E.; Drevets, W.C.; Bliss, S.A.; McMillin, J.R.; Suzuki, H.; Ford, B.N.; Morris, H.M.; Teague, T.K.; Dantzer, R.; Savitz, J.B. Serum kynurenic acid is reduced in affective psychosis. Transl. Psychiatry 2017, 7, e1115. [Google Scholar] [CrossRef]
- Yao, J.K.; Dougherty, G.G., Jr.; Reddy, R.D.; Keshavan, M.S.; Montrose, D.M.; Matson, W.R.; Rozen, S.; Krishnan, R.R.; McEvoy, J.; Kaddurah-Daouk, R. Altered interactions of tryptophan metabolites in first-episode neuroleptic-naive patients with schizophrenia. Mol. Psychiatry 2010, 15, 938–953. [Google Scholar] [CrossRef]
- Badawy, A.A.; Dougherty, D.M. Assessment of the human kynurenine pathway: Comparisons and clinical implications of ethnic and gender differences in plasma tryptophan, kynurenine metabolites, and enzyme expressions at baseline and after acute tryptophan loading and depletion. Int. J. Tryptophan. Res. 2016, 9, 31–49. [Google Scholar] [CrossRef]
- Domino, E.F.; Krause, R.R. Free and bound serum tryptophan in drug-free normal controls and chronic schizophrenic patients. Biol. Psychiatry 1974, 8, 265–279. [Google Scholar]
- Green, A.R.; Aronson, J.K.; Curzon, G.; Woods, H.F. Metabolism of an oral tryptophan load. I: Effects of dose and pretreatment with tryptophan. Br. J. Clin. Pharmacol. 1980, 10, 603–610. [Google Scholar] [CrossRef] [PubMed]
- Moller, S.E. Pharmacokinetics of tryptophan, renal handling of kynurenine and the effect of nicotinamide on its appearance in plasma and urine following L-tryptophan loading of healthy subjects. Eur. J. Clin. Pharmacol. 1981, 21, 137–142. [Google Scholar] [CrossRef]
- Marx, W.; McGuinness, A.J.; Rocks, T.; Ruusunen, A.; Cleminson, J.; Walker, A.J.; Gomes-da-Costa, S.; Lane, M.; Sanches, M.; Diaz, A.P.; et al. The kynurenine pathway in major depressive disorder, bipolar disorder, and schizophrenia: A meta-analysis of 101 studies. Mol. Psychiatry 2021, 26, 4158–4178. [Google Scholar] [CrossRef] [PubMed]
- Morrens, M.; De Picker, L.; Kampen, J.K.; Coppens, V. Blood-based kynurenine pathway alterations in schizophrenia spectrum disorders: A meta-analysis. Schizophr. Res. 2020, 223, 43–52. [Google Scholar] [CrossRef]
- Yılmaz, C.; Gökmen, V. Determination of tryptophan derivatives in kynurenine pathway in fermented foods using liquid chromatography tandem mass spectrometry. Food. Chem. 2018, 243, 420–427. [Google Scholar] [CrossRef] [PubMed]
- Ellinger, A. Die Entstehung der Kynurensäure. Z. Physiol. Chem. 1904, 43, 325–337. [Google Scholar] [CrossRef]
- Kotake, Y.; Iwao, J. Studien über den intermediären Stoffwechsel des Tryptophans. I. Űber das Kynurenin, ein intermediäres Stoffwechselprodukt des Tryptophans. Z. Physiol. Chem. 1931, 195, 139–147. [Google Scholar] [CrossRef]
- Lexchin, J.L.; Cude-Simpson, K.D.; Stancer, H.C. Brain and blood indole metabolites after peripheral administration of(14)C-5-HT in rat. Neurochem. Res. 1977, 2, 39–50. [Google Scholar] [CrossRef]
- Sathyasaikumar, K.V.; Stachowski, E.K.; Wonodi, I.; Roberts, R.C.; Rassoulpour, A.; McMahon, R.P.; Schwarcz, R. Impaired kynurenine pathway metabolism in the prefrontal cortex of individuals with schizophrenia. Schizophr. Bull. 2011, 37, 1147–1156. [Google Scholar] [CrossRef]
- Tuckwell, H.C.; Koziol, J.A. On the concentration of 5-hydroxyindoleacetic acid in schizophrenia: A meta-analysis. Psychiatry. Res. 1996, 59, 239–244. [Google Scholar] [CrossRef]
- Pedraz-Petrozzi, B.; Elyamany, O.; Rummel, C.; Mulert, C. Effects of inflammation on the kynurenine pathway in schizophrenia—A systematic review. J. Neuroinflamm. 2020, 17, 56. [Google Scholar] [CrossRef] [PubMed]
- Hildebrandt, C.S.; Helmbold, K.; Linden, M.; Langen, K.J.; Filss, C.P.; Runions, K.C.; Stewart, R.M.; Rao, P.; Moore, J.K.; Mahfouda, S.; et al. No detectable effects of acute tryptophan depletion on short-term immune system cytokine levels in healthy adults. World. J. Biol. Psychiatry 2019, 20, 416–423. [Google Scholar] [CrossRef]
- Huether, G.; Thomke, F.; Adler, L. Administration of tryptophan-enriched diets to pregnant rats retards the development of the serotonergic system in their offspring. Brain. Res. Dev. Brain. Res. 1992, 68, 175–181. [Google Scholar] [CrossRef]
- Mackay, G.M.; Forrest, C.M.; Stoy, N.; Christofides, J.; Egerton, M.; Stone, T.W.; Darlington, L.G. Tryptophan metabolism and oxidative stress in patients with chronic brain injury. Eur. J. Neurol. 2006, 13, 30–42. [Google Scholar] [CrossRef]
- Riederer, P. The distribution and metabolism of L-tryptophan in healthy probands under dietary conditions. Int. J. Clin. Pharmacol. Ther. Toxicol. 1980, 18, 31–36. [Google Scholar]
- Wieselgren, I.M.; Lindstrom, L.H. CSF levels of HVA and 5-HIAA in drug-free schizophrenic patients and healthy controls: A prospective study focused on their predictive value for outcome in schizophrenia. Psychiatry Res. 1998, 81, 101–110. [Google Scholar] [CrossRef]
- Linderholm, K.R.; Skogh, E.; Olsson, S.K.; Dahl, M.L.; Holtze, M.; Engberg, G.; Samuelsson, M.; Erhardt, S. Increased levels of kynurenine and kynurenic acid in the CSF of patients with schizophrenia. Schizophr. Bull. 2012, 38, 426–432. [Google Scholar] [CrossRef]
- Miller, C.L.; Llenos, I.C.; Dulay, J.R.; Weis, S. Upregulation of the initiating step of the kynurenine pathway in postmortem anterior cingulate cortex from individuals with schizophrenia and bipolar disorder. Brain. Res. 2006, 1073–1074, 25–37. [Google Scholar] [CrossRef]
- Wonodi, I.; Stine, O.C.; Sathyasaikumar, K.V.; Roberts, R.C.; Mitchell, B.D.; Hong, L.E.; Kajii, Y.; Thaker, G.K.; Schwarcz, R. Downregulated kynurenine 3-monooxygenase gene expression and enzyme activity in schizophrenia and genetic association with schizophrenia endophenotypes. Arch. Gen. Psychiatry 2011, 68, 665–674. [Google Scholar] [CrossRef]
- Pollak, T.A.; Drndarski, S.; Stone, J.M.; David, A.S.; McGuire, P.; Abbott, N.J. The blood-brain barrier in psychosis. Lancet Psychiatry 2018, 5, 79–92. [Google Scholar] [CrossRef]
- Chang, C.Y.; Luo, D.Z.; Pei, J.C.; Kuo, M.C.; Hsieh, Y.C.; Lai, W.S. Not just a bystander: The rmerging role of astrocytes and research tools in studying cognitive dysfunctions in schizophrenia. Int. J. Mol. Sci. 2021, 22, 5343. [Google Scholar] [CrossRef]
- Schwarcz, R.; Pellicciari, R. Manipulation of brain kynurenines: Glial targets, neuronal effects, and clinical opportunities. J. Pharmacol. Exp. Ther. 2002, 303, 1–10. [Google Scholar] [CrossRef]
- Gramsbergen, J.B.; Hodgkins, P.S.; Rassoulpour, A.; Turski, W.A.; Guidetti, P.; Schwarcz, R. Brain-specific modulation of kynurenic acid synthesis in the rat. J. Neurochem. 1997, 69, 290–298. [Google Scholar] [CrossRef]
- Wonodi, I.; Schwarcz, R. Cortical kynurenine pathway metabolism: A novel target for cognitive enhancement in Schizophrenia. Schizophr. Bull. 2010, 36, 211–218. [Google Scholar] [CrossRef]
- Imbeault, S.; Gubert Olive, M.; Jungholm, O.; Erhardt, S.; Wigstrom, H.; Engberg, G.; Jardemark, K. Blockade of KAT II facilitates LTP in kynurenine 3-monooxygenase depleted mice. Int. J. Tryptophan. Res. 2021, 14, 11786469211041368. [Google Scholar] [CrossRef]
- Kozak, R.; Campbell, B.M.; Strick, C.A.; Horner, W.; Hoffmann, W.E.; Kiss, T.; Chapin, D.S.; McGinnis, D.; Abbott, A.L.; Roberts, B.M.; et al. Reduction of brain kynurenic acid improves cognitive function. J. Neurosci. 2014, 34, 10592–10602. [Google Scholar] [CrossRef]
- Pocivavsek, A.; Wu, H.Q.; Potter, M.C.; Elmer, G.I.; Pellicciari, R.; Schwarcz, R. Fluctuations in endogenous kynurenic acid control hippocampal glutamate and memory. Neuropsychopharmacology 2011, 36, 2357–2367. [Google Scholar] [CrossRef] [PubMed]
- Pocivavsek, A.; Elmer, G.I.; Schwarcz, R. Inhibition of kynurenine aminotransferase II attenuates hippocampus-dependent memory deficit in adult rats treated prenatally with kynurenine. Hippocampus 2019, 29, 73–77. [Google Scholar] [CrossRef]
- Marszalek-Grabska, M.; Walczak, K.; Gawel, K.; Wicha-Komsta, K.; Wnorowska, S.; Wnorowski, A.; Turski, W.A. Kynurenine emerges from the shadows—Current knowledge on its fate and function. Pharmacol. Ther. 2021, 225, 107845. [Google Scholar] [CrossRef] [PubMed]
- First, M.B.; Spitzer, R.L.; Gibbon, M.; Williams, J. Structured Clinical Interview for DSM-IV-TR Axis Disorders, Research Version, Patient Edition (SCID-I/P); Biometrics Research; New York State Psychiatric Institute: New York, NY, USA, 2002. [Google Scholar]
- Acworth, I.; Cunningham, M.L. The measurement of monoamine neurotransmitters in microdialysis perfusates using HPLC-ECD. Methods Mol. Med. 1999, 22, 219–236. [Google Scholar]
IFN-γ (pg/mL) | ||||
HC Placebo | HC TRP | SZ Placebo | SZ TRP | |
Baseline | 15.2 ± 4.6 | 14.8 ± 3.2 | 11.5 ± 0.5 | 11.3 ± 0.5 |
30 min | 11.3 ± 0.8 | 11.4 ± 0.8 | 11.3 ± 0.4 | 10.6 ± 0.4 |
60 min | 11.9 ± 1.1 | 11.2 ± 0.7 | 11.7 ± 0.6 | 11.3 ± 0.4 |
90 min | 16.9 ± 5.4 | 11.8 ± 0.8 | 11.3 ± 0.5 | 11.4 ± 0.4 |
240 min | 11.2 ± 1.0 | 10.7 ± 0.7 | 11.1 ± 0.4 | 10.9 ± 0.3 |
TNF-α (pg/mL) | ||||
HC Placebo | HC TRP | SZ Placebo | SZ TRP | |
Baseline | 12.4 ± 2.2 | 13.9 ± 2.2 | 12.9 ± 1.3 | 16.6 ± 4.3 |
30 min | 11.4 ± 1.1 | 11.7 ± 1.3 | 14.0 ± 2.0 | 13.3 ± 1.2 |
60 min | 11.4 ± 1.0 | 11.3 ± 0.9 | 13.1 ± 1.3 | 13.1 ± 1.4 |
90 min | 14.0 ± 2.4 | 11.7 ± 1.1 | 12.9 ± 1.0 | 14.4 ± 1.8 |
240 min | 11.3 ± 1.2 | 11.3 ± 1.0 | 12.1 ± 0.8 | 16.0 ± 3.1 |
IL-6 (pg/mL) | ||||
HC Placebo | HC TRP | SZ Placebo | SZ TRP | |
Baseline | 2.1 ± 0.2 | 2.4 ± 0.4 | 4.0 ± 1.2 | 3.1 ± 0.8 |
30 min | 2.9 ± 0.8 | 3.1 ± 0.6 | 4.2 ± 1.2 | 3.0 ± 0.9 |
60 min | 3.0 ± 0.8 | 3.0 ± 0.6 | 4.3 ± 1.2 | 3.0 ± 0.7 |
90 min | 3.9 ± 1.2 | 4.8 ± 2.1 | 4.5 ± 1.2 | 3.7 ± 1.0 |
240 min | 4.1 ± 1.8 | 3.1 ± 0.8 | 5.3 ± 2.0 | 5.2 ± 2.0 |
HC (n = 16) | SZ (n = 22) | |
---|---|---|
Mean age (years) | 34.9 ± 9.6 | 34.0 ± 11.1 |
Median age (min, max) | 31.0 (21.7, 49.1) | 29.9 (19.6, 53.3) |
Male/female (n) | 9/7 (56%, 44%) | 13/9 (59%,41%) |
Race (n) | ||
White | 2 (12.5%) | 7 (31.8%) |
Black | 12 (75%) | 14 (63.6%) |
Asian | 1 (6.25%) | 0 |
Mixed | 1 (6.25%) | 1 (4.6%) |
Medications (n) | ||
Clozapine | 8 | |
Olanzapine | 2 | |
Paliperidone/Risperidone | 5 | |
Aripiprazole | 4 | |
Quetiapine | 2 | |
Thiothixene | 1 | |
Antidepressant | 8 | |
Anticholinergic | 7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sathyasaikumar, K.V.; Notarangelo, F.M.; Kelly, D.L.; Rowland, L.M.; Hare, S.M.; Chen, S.; Mo, C.; Buchanan, R.W.; Schwarcz, R. Tryptophan Challenge in Healthy Controls and People with Schizophrenia: Acute Effects on Plasma Levels of Kynurenine, Kynurenic Acid and 5-Hydroxyindoleacetic Acid. Pharmaceuticals 2022, 15, 1003. https://doi.org/10.3390/ph15081003
Sathyasaikumar KV, Notarangelo FM, Kelly DL, Rowland LM, Hare SM, Chen S, Mo C, Buchanan RW, Schwarcz R. Tryptophan Challenge in Healthy Controls and People with Schizophrenia: Acute Effects on Plasma Levels of Kynurenine, Kynurenic Acid and 5-Hydroxyindoleacetic Acid. Pharmaceuticals. 2022; 15(8):1003. https://doi.org/10.3390/ph15081003
Chicago/Turabian StyleSathyasaikumar, Korrapati V., Francesca M. Notarangelo, Deanna L. Kelly, Laura M. Rowland, Stephanie M. Hare, Shuo Chen, Chen Mo, Robert W. Buchanan, and Robert Schwarcz. 2022. "Tryptophan Challenge in Healthy Controls and People with Schizophrenia: Acute Effects on Plasma Levels of Kynurenine, Kynurenic Acid and 5-Hydroxyindoleacetic Acid" Pharmaceuticals 15, no. 8: 1003. https://doi.org/10.3390/ph15081003
APA StyleSathyasaikumar, K. V., Notarangelo, F. M., Kelly, D. L., Rowland, L. M., Hare, S. M., Chen, S., Mo, C., Buchanan, R. W., & Schwarcz, R. (2022). Tryptophan Challenge in Healthy Controls and People with Schizophrenia: Acute Effects on Plasma Levels of Kynurenine, Kynurenic Acid and 5-Hydroxyindoleacetic Acid. Pharmaceuticals, 15(8), 1003. https://doi.org/10.3390/ph15081003