In Silico Prediction of Plasmodium falciparum Cytoadherence Inhibitors That Disrupt Interaction between gC1qR-DBLβ12 Complex
Abstract
:1. Introduction
2. Results
2.1. Molecular Dynamics (MD) Simulation Analysis of DBLβ12 and gC1qR: Pre- and Post-Complexation State
2.2. Alanine Scanning Mutagenesis (ASM) Analyses of DBLβ12 and gC1qR
2.3. Docking of the Virtual Database
2.4. Molecular Investigation of the Top-Hits to Disrupt Protein–Protein Interactions
2.5. Alanine and Resistance Scan of the Top-Ranked Hits
2.6. ADMET Profiling of Compounds
2.7. MAIP Analysis
3. Discussion
4. Materials and Methods
4.1. Molecular Dynamics Simulation Protocol Applied for the Generation of DBLβ12-gC1qR Complex
4.2. Alanine Scanning Mutagenesis (ASM)
4.3. Virtual Database Preparation
4.4. Molecular Docking and Virtual Screening
4.5. Affinity and Resistance Scan
4.6. ADMET Profiling
4.7. MAIP Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. World Malaria Report 2021; World Health Organization: Geneva, Switzerland, 2016; pp. 1–23. ISBN 2013206534. Available online: https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2021 (accessed on 20 March 2022).
- Varo, R.; Crowley, V.M.; Sitoe, A.; Madrid, L.; Serghides, L.; Kain, K.C.; Bassat, Q. Adjunctive therapy for severe malaria: A review and critical appraisal. Malar. J. 2018, 17, 1–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Färnert, A.; Wyss, K.; Dashti, S.; Naucler, P. Duration of residency in a non-endemic area and risk of severe malaria in African immigrants. Clin. Microbiol. Infect. 2015, 21, 494–501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fowkes, F.J.I.; Boeuf, P.; Beeson, J.G. Immunity to malaria in an era of declining malaria transmission. Parasitology 2016, 143, 139–153. [Google Scholar] [CrossRef]
- Conrad, M.D.; Rosenthal, P.J. Antimalarial drug resistance in Africa: The calm before the storm? Lancet Infect. Dis. 2019, 19, e338–e351. [Google Scholar] [CrossRef]
- World Health Organization (WHO). WHO Malaria Policy Advisory Group (MPAG) Meeting: Meeting Report; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- Shamshad, H.; Bakri, R.; Mirza, A.Z. Dihydrofolate reductase, thymidylate synthase, and serine hydroxy methyltransferase: Successful targets against some infectious diseases. Mol. Biol. Rep. 2022, 1–33. [Google Scholar] [CrossRef]
- Storm, J.; Jespersen, J.S.; Seydel, K.B.; Szestak, T.; Mbewe, M.; Chisala, N.V.; Phula, P.; Wang, C.W.; Taylor, T.E.; Moxon, C.A.; et al. Cerebral malaria is associated with differential cytoadherence to brain endothelial cells. EMBO Mol. Med. 2019, 11, e9164. [Google Scholar] [CrossRef] [PubMed]
- Salanti, A.; Staalsoe, T.; Lavstsen, T.; Jensen, A.T.R.; Sowa, M.P.K.; Arnot, D.E.; Hviid, L.; Theander, T.G. Selective upregulation of a single distinctly structured var gene in chondroitin sulphate A-adhering Plasmodium falciparum involved in pregnancy-associated malaria. Mol. Microbiol. 2003, 49, 179–191. [Google Scholar] [CrossRef] [PubMed]
- Biswas, A.K.; Hafiz, A.; Banerjee, B.; Kim, K.S.; Datta, K.; Chitnis, C.E. Plasmodium falciparum uses gC1qR/HABP1/p32 as a receptor to bind to vascular endothelium and for platelet-mediated clumping. PLoS Pathog. 2007, 3, 1271–1280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mayor, A.; Hafiz, A.; Bassat, Q.; Rovira-Vallbona, E.; Sanz, S.; Machevo, S.; Aguilar, R.; Cisteró, P.; Sigaúque, B.; Menéndez, C.; et al. Association of severe malaria outcomes with platelet-mediated clumping and adhesion to a novel host receptor. PLoS ONE 2011, 6, e19422. [Google Scholar] [CrossRef] [Green Version]
- Magallón-Tejada, A.; Machevo, S.; Cisteró, P.; Lavstsen, T.; Aide, P.; Rubio, M.; Jiménez, A.; Turner, L.; Valmaseda, A.; Gupta, H.; et al. Cytoadhesion to gC1qR through Plasmodium falciparum Erythrocyte Membrane Protein 1 in Severe Malaria. PLoS Pathog. 2016, 12, e1006011. [Google Scholar] [CrossRef] [Green Version]
- Bakri, R.; Rehan, M.; Shamshad, H.; Hafiz, A. Computational insights into the interaction between cytoadherence receptor gC1qR and the DBLβ12 domain of a plasmodium falciparum PfEMP1 ligand. Life 2021, 11, 993. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Zhou, Q.; He, J.; Jiang, Z.; Peng, C.; Tong, R.; Shi, J. Recent advances in the development of protein–protein interactions modulators: Mechanisms and clinical trials. Signal Transduct. Target. Ther. 2020, 5, 157. [Google Scholar] [CrossRef] [PubMed]
- Ran, X.; Gestwicki, J.E. Pevzner Inhibitors of Protein-Protein Interactions (PPIs): An Analysis of Scaffold. Physiol. Behav. 2017, 176, 139–148. [Google Scholar] [CrossRef]
- Meng, X.Y.; Zhang, H.X.; Mezei, M.; Cui, M. Molecular Docking: A Powerful Approach for Structure-Based Drug Discovery. Curr. Comput.-Aided Drug Des. 2011, 7, 146–157. [Google Scholar] [CrossRef]
- Mujawar, S.N.-A. Insilico Drug Prediction and Validation of Lead Candidates on Plasmodium Falciparum Erythrocyte Membrane Protein 1(Pfemp1) Against Malaria. Int. J. Comput. Biol. 2015, 5, 28. [Google Scholar] [CrossRef]
- Higueruelo, A.P.; Jubb, H.; Blundell, T.L. Database update TIMBAL v2: Update of a database holding small molecules modulating protein—Protein interactions. Database 2013, 2013, bat039. [Google Scholar] [CrossRef]
- Kenneth Morrow, J.; Zhang, S. Computational Prediction of Protein Hot Spot Residues. Curr. Drug Metab. 2012, 18, 1255–1265. [Google Scholar] [CrossRef]
- Junaid, M.; Li, C.D.; Shah, M.; Khan, A.; Guo, H.; Wei, D.Q. Extraction of molecular features for the drug discovery targeting protein-protein interaction of Helicobacter pylori CagA and tumor suppressor protein ASSP2. Proteins Struct. Funct. Bioinform. 2019, 87, 837–849. [Google Scholar] [CrossRef]
- Kortemme, T.; David, E.; Kim, D.B. Computational Alanine Scanning of Protein-Protein Interfaces. Sci. STKE 2004, 2004, pl2. [Google Scholar] [CrossRef] [Green Version]
- Chemical Computing Group ULC. Molecular Operating Environment; Chemical Computing Group ULC: Montreal, QC, Canada, 2013. [Google Scholar]
- Sukhwal, A.; Sowdhamini, R. PPcheck: A webserver for the quantitative analysis of protein-protein interfaces and prediction of residue hotspots. Bioinform. Biol. Insights 2015, 9, 141–151. [Google Scholar] [CrossRef]
- Krüger, D.M.; Garzón, J.I.; Chacón, P.; Gohlke, H. DrugScorePPI knowledge-based potentials used as scoring and objective function in protein-protein docking. PLoS ONE 2014, 9, e89466. [Google Scholar] [CrossRef] [Green Version]
- National Library of Medicine. Available online: https://pubchem.ncbi.nlm.nih.gov (accessed on 3 April 2022).
- Pires, D.E.V.; Blundell, T.L.; Ascher, D.B. pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J. Med. Chem. 2015, 58, 4066–4072. [Google Scholar] [CrossRef] [PubMed]
- Bosc, N.; Felix, E.; Arcila, R.; Mendez, D.; Saunders, M.R.; Green, D.V.S.; Ochoada, J.; Shelat, A.A.; Martin, E.J.; Iyer, P.; et al. MAIP: A web service for predicting blood-stage malaria inhibitors. J. Cheminform. 2021, 13, 13. [Google Scholar] [CrossRef] [PubMed]
- Shamshad, H.; Saeed, M.; Ul-Haq, Z.; Halim, S.A.; Gul, S.; Mirza, A.Z. Relative assessment of different statistical instruments and measures for the prediction of promising outcomes using docking, virtual screening and ADMET analysis against HIV-RT. J. Biomol. Struct. Dyn. 2021, 1–13. [Google Scholar] [CrossRef]
- Shin, W.-H.; Kumazawa, K.; Imai, K.; Hirokawa, T.; Kihara, D. Current Challenges and Opportunities in Designing Protein-Protein Interaction Targeted Drugs. Adv. Appl. Bioinform. Chem. 2020, 13, 11–25. Available online: https://pubmed.ncbi.nlm.nih.gov/33209039 (accessed on 1 March 2022). [CrossRef]
- Choi, J.; Yun, J.S.; Song, H.; Kim, N.H.; Kim, H.S.; Yook, J.I. Exploring the chemical space of protein–protein interaction inhibitors through machine learning. Sci. Rep. 2021, 11, 13369. [Google Scholar] [CrossRef]
- Cheng, S.-S.; Yang, G.-J.; Wang, W.; Leung, C.-H.; Ma, D.-L. The design and development of covalent protein-protein interaction inhibitors for cancer treatment. J. Hematol. Oncol. 2020, 13, 26. [Google Scholar] [CrossRef]
- Abraham, M.J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J.C.; Hess, B.; Lindah, E. Gromacs: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015, 1–2, 19–25. [Google Scholar] [CrossRef] [Green Version]
- Turner, P. XMGRACE; Version 5.1. 19; Center for Coastal and Land-Margin Research; Oregon Graduate Institute of Science and Technology: Beaverton, OR, USA, 2008. [Google Scholar]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. Model. 1996, 14, 33–38. [Google Scholar] [CrossRef]
- Higueruelo, A.P.; Schreyer, A.; Bickerton, G.R.J.; Pitt, W.R.; Groom, C.R.; Blundell, T.L. Atomic interactions and profile of small molecules disrupting protein-protein interfaces: The TIMBAL database. Chem. Biol. Drug Des. 2009, 74, 457–467. [Google Scholar] [CrossRef]
- BIOVIA, Dassault Systèmes. BIOVIA Discovery Studio Visualizer; Version 2020; Dassault Systems: San Diego, CA, USA, 2019. [Google Scholar]
Compounds Name | ChEMBL Code | LogP | Rotatable Bonds | H-Bond (Acceptor) | H-Bond (Donors) | Binding Score |
---|---|---|---|---|---|---|
Compound 1 | 1241020 | −1.91 | 89 | 34 | 34 | −14.34 |
Compound 2 | 1269294 | −3.2 | 50 | 27 | 12 | −13.36 |
Compound 3 | 1938611 | −17.42 | 68 | 54 | 22 | −13.24 |
Compound 4 | 58763 | −6.27 | 23 | 12 | 12 | −9.88 |
Compound 5 | 310965 | 4.96 | 10 | 7 | 3 | −9.35 |
Compound 6 | 327274 | 4.38 | 15 | 6 | 4 | −9.13 |
Performance Metrics | MMV Test Set | PubChem | St. Jude Screening Set |
---|---|---|---|
ROC AUC score | 0.67 | 0.69 | 0.81 |
EF [1%] | 3.5 (60) | 7.0 (56) | 12.1 (71) |
EF [10%] | 2.1 (41) | 2.8 (47) | 4.8 (36) |
EF [50%] | 1.4 (23) | 1.5 (34) | 1.8 (15) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hafiz, A.; Bakri, R.; Alsaad, M.; Fetni, O.M.; Alsubaihi, L.I.; Shamshad, H. In Silico Prediction of Plasmodium falciparum Cytoadherence Inhibitors That Disrupt Interaction between gC1qR-DBLβ12 Complex. Pharmaceuticals 2022, 15, 691. https://doi.org/10.3390/ph15060691
Hafiz A, Bakri R, Alsaad M, Fetni OM, Alsubaihi LI, Shamshad H. In Silico Prediction of Plasmodium falciparum Cytoadherence Inhibitors That Disrupt Interaction between gC1qR-DBLβ12 Complex. Pharmaceuticals. 2022; 15(6):691. https://doi.org/10.3390/ph15060691
Chicago/Turabian StyleHafiz, Abdul, Rowaida Bakri, Mohammad Alsaad, Obadah M. Fetni, Lojain I. Alsubaihi, and Hina Shamshad. 2022. "In Silico Prediction of Plasmodium falciparum Cytoadherence Inhibitors That Disrupt Interaction between gC1qR-DBLβ12 Complex" Pharmaceuticals 15, no. 6: 691. https://doi.org/10.3390/ph15060691
APA StyleHafiz, A., Bakri, R., Alsaad, M., Fetni, O. M., Alsubaihi, L. I., & Shamshad, H. (2022). In Silico Prediction of Plasmodium falciparum Cytoadherence Inhibitors That Disrupt Interaction between gC1qR-DBLβ12 Complex. Pharmaceuticals, 15(6), 691. https://doi.org/10.3390/ph15060691