Development and Validation of Analytical Methods for Radiochemical Purity of 177Lu-PSMA-1
Abstract
:1. Introduction
2. Results
2.1. Validation of the Analytical Method: Radiochemical Identity
2.2. Validation of the Analytical Method (HPLC and TLC): Radiochemical Purity
2.2.1. Specificity
- HPLC method:
- TLC method:
2.2.2. Accuracy
- HPLC method:
- TLC method:
2.2.3. Precision: Repeatability and Intermediate Precision
- HPLC method:
- TLC method:
2.2.4. Linearity
- HPLC method:
- TLC method:
2.2.5. Robustness
- HPLC method:
- TLC method:
2.2.6. Quantification Limit (LoQ)
- For the HPLC method: LoQ = 33.8 kBq (Signal/Noise = 12.7:1).
- For the TLC method: LoQ = 61.8 kBq (Signal/Noise = 10.8:1).
2.2.7. Range
3. Discussion
4. Materials and Methods
4.1. Reagents and Equipment
4.2. Synthesis Development
4.3. Validation of the Analytical Method—Radiochemical Identity
4.4. Validation of the Analytical Method—Radiochemical Purity
4.4.1. Specificity
4.4.2. Accuracy
- 100% of main solution or 50 µL of 177Lu-PSMA-1;
- 90% of main solution, i.e., 45 µL of 177Lu-PSMA-1 and 5 µL of free 177Lu;
- 80% of main solution, i.e., 40 µL of 177Lu-PSMA-1 and 10 µL of free 177Lu;
- 70% of main solution, i.e., 35 µL of 177Lu-PSMA-1 and 15 µL of free 177Lu;
- 60% of main solution, i.e., 30 µL of 177Lu-PSMA-1 and 20 µL of free 177Lu.
4.4.3. Precision, Repeatability and Intermediate Precision
4.4.4. Linearity
- y was the concentration of our sample or the number of counts,
- a was the slope of the line,
- x was the area under the curve of the active substance peak
- and b was the intersection of the line with the y-axis.
4.4.5. Robustness
- Condition A: increase HPLC flow rate to 1 mL/min (instead of 0.6 mL/min).
- Condition B: HPLC mobile phase modification.
- Solvent A = H20 + 0.01% TFA (instead of 0.1% TFA).
- Solvent B = ACN + 0.01% TFA (instead of 0.1% TFA).
- Condition A: mobile phase with 100% of Methanol solution.
- Condition B: mobile phase with 100% of 1M ammonium acetate.
4.4.6. Quantification Limit (LoQ)
4.4.7. Range
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- National Estimates of Cancer Incidence and Mortality in Metropolitan France between 1990 and 2018. Available online: https://www.santepubliquefrance.fr/content/download/190600/document_file/192747_synthese-globale-en-bat.pdf (accessed on 15 January 2022).
- Carlsson, S.V.; Vickers, A.J. Screening for Prostate Cancer. Med. Clin. N. Am. 2020, 104, 1051–1062. [Google Scholar] [CrossRef] [PubMed]
- Wilt, T.J.; Ullman, K.E.; Linskens, E.J.; MacDonald, R.; Brasure, M.; Ester, E.; Nelson, V.A.; Saha, J.; Sultan, S.; Dahm, P. Therapies for Clinically Localized Prostate Cancer: A Comparative Effectiveness Review. J. Urol. 2021, 205, 967–976. [Google Scholar] [CrossRef] [PubMed]
- Lowrance, W.T.; Breau, R.H.; Chou, R.; Chapin, B.F.; Crispino, T.; Dreicer, R.; Jarrard, D.F.; Kibel, A.S.; Morgan, T.M.; Morgans, A.K.; et al. Advanced Prostate Cancer: AUA/ASTRO/SUO Guideline PART I. J. Urol. 2021, 205, 14–21. [Google Scholar] [CrossRef]
- Lowrance, W.T.; Breau, R.H.; Chou, R.; Chapin, B.F.; Crispino, T.; Dreicer, R.; Jarrard, D.F.; Kibel, A.S.; Morgan, T.M.; Morgans, A.K.; et al. Advanced Prostate Cancer: AUA/ASTRO/SUO Guideline PART II. J. Urol. 2021, 205, 22–29. Available online: https://www.auajournals.org/doi/10.1097/JU.0000000000001376 (accessed on 15 June 2021). [CrossRef]
- Hupe, M.C.; Philippi, C.; Roth, D.; Kümpers, C.; Ribbat-Idel, J.; Becker, F.; Joerg, V.; Duensing, S.; Lubczyk, V.H.; Kirfel, J.; et al. Expression of Prostate-Specific Membrane Antigen (PSMA) on Biopsies is an Independent Risk Stratifier of Prostate Cancer Patients at Time of Initial Diagnosis. Front. Oncol. 2018, 8, 623. [Google Scholar] [CrossRef]
- Van de Wiele, C.; Sathekge, M.; de Spiegeleer, B.; De Jonghe, P.J.; Debruyne, P.R.; Borms, M.; Beels, L.; Maes, A. PSMA Expression on Neovasculature of Solid Tumors. Histol. Histopathol. 2020, 35, 919–927. [Google Scholar] [CrossRef]
- Schwarzenboeck, S.M.; Rauscher, I.; Bluemel, C.; Fendler, W.P.; Rowe, S.P.; Pomper, M.G.; Asfhar-Oromieh, A.; Herrmann, K.; Eiber, M. PSMA Ligands for PET Imaging of Prostate Cancer. J. Nucl. Med. 2017, 58, 1545–1552. [Google Scholar] [CrossRef] [Green Version]
- Chatalic, K.L.S.; Heskamp, S.; Konijnenberg, M.; Molkenboer-Kuenen, J.D.M.; Franssen, G.M.; Groningen, M.C.C.; Schottelius, M.; Wester, H.-J.; van Weerden, W.M.; Boerman, O.C.; et al. Towards Personalized Treatment of Prostate Cancer: PSMA I&T, a Promising Prostate-Specific Membrane Antigen-Targeted Theranostic Agent. Theranostics 2016, 6, 849–861. [Google Scholar] [CrossRef]
- Emmett, L. Changing the Goal Posts: Prostate-Specific Membrane Antigen Targeted Theranostics in Prostate Cancer. Semin. Oncol. Nurs. 2020, 36, 151052. [Google Scholar] [CrossRef]
- Okamoto, S.; Thieme, A.; Allmann, J.; D’Alessandria, C.; Maurer, T.; Retz, M.; Tauber, R.; Heck, M.M.; Wester, H.-J.; Tamaki, N.; et al. Radiation Dosimetry for 177 Lu-PSMA I&T in Metastatic Castration-Resistant Prostate Cancer: Absorbed Dose in Normal Organs and Tumor Lesions. J. Nucl. Med. 2017, 58, 445–450. [Google Scholar] [CrossRef] [Green Version]
- Fendler, W.P.; Rahbar, K.; Herrmann, K.; Kratochwil, C.; Eiber, M. 177Lu-PSMA Radioligand Therapy for Prostate Cancer. J. Nucl. Med. 2017, 58, 1196–1200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baum, R.P.; Kulkarni, H.R.; Schuchardt, C.; Singh, A.; Wirtz, M.; Wiessalla, S.; Schottelius, M.; Mueller, D.; Klette, I.; Wester, H.-J. 177 Lu-Labeled Prostate-Specific Membrane Antigen Radioligand Therapy of Metastatic Castration-Resistant Prostate Cancer: Safety and Efficacy. J. Nucl. Med. 2016, 57, 1006–1013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kratochwil, C.; Fendler, W.P.; Eiber, M.; Baum, R.; Bozkurt, M.F.; Czernin, J.; Delgado Bolton, R.C.; Ezziddin, S.; Forrer, F.; Hicks, R.J.; et al. EANM Procedure Guidelines for Radionuclide Therapy with 177Lu-Labelled PSMA-Ligands (177Lu-PSMA-RLT). Eur. J. Nucl. Med. Mol. Imaging 2019, 46, 2536–2544. [Google Scholar] [CrossRef] [PubMed]
- Gillings, N.; Todde, S.; Behe, M.; Decristoforo, C.; Elsinga, P.; Ferrari, V.; Hjelstuen, O.; Peitl, P.K.; Koziorowski, J.; Laverman, P.; et al. EANM Guideline on the Validation of Analytical Methods for Radiopharmaceuticals. EJNMMI Radiopharm. Chem. 2020, 5, 7. [Google Scholar] [CrossRef] [PubMed]
- Farn, S.-S.; Yeh, Y.-H.; Li, C.-C.; Yang, C.-S.; Chen, J.-T.; Yu, C.-S.; Lin, W.-J. Development and Validation of a Reversed-Phase HPLC Method for Analysis of Radiochemical Purity in [123I] IBZM. Appl. Radiat. Isot. 2017, 127, 61–67. [Google Scholar] [CrossRef]
- Guide for the Elaboration of Monographs on Radio-Pharmaceutical Preparations. EDQM Edition 2018, European Directorate for the Quality of Medicines & HealthCare. Available online: https://www.edqm.eu/documents/52006/66555/07-elaboration-monographs-radio-pharmaceutical-preparations-october-2018.pdf/50c9d3d8-ec14-10b9-40b7-ceedd94e3afb?t=1623146155879 (accessed on 15 January 2022).
- Katzschmann, I.; Marx, H.; Kopka, K.; Hennrich, U. Development and Validation of a GMP-Compliant High-Pressure Liquid Chromatography Method for the Determination of the Chemical and Radiochemical Purity of [18F]PSMA-1007, a PET Tracer for the Imaging of Prostate Cancer. Pharmaceuticals 2021, 14, 188. [Google Scholar] [CrossRef]
- Kubíček, V.; Havlíčková, J.; Kotek, J.; Tircsó, G.; Hermann, P.; Tóth, É.; Lukeš, I. Gallium(III) Complexes of DOTA and DOTA−Monoamide: Kinetic and Thermodynamic Studies. Inorg. Chem. 2010, 49, 10960–10969. [Google Scholar] [CrossRef]
- Uğur, A.; ElÇİ, Ş.G.; Yüksel, D. Validation of HPLC Method for the Determination of Chemical and Radiochemical Purity of a 68Ga-Labelled EuK-Sub-Kf-(3-Iodo-y-) DOTAGA. Turk. J. Chem. 2021, 45, 26–34. [Google Scholar] [CrossRef]
- Migliari, S.; Sammartano, A.; Scarlattei, M.; Baldari, G.; Silva, C.; Ruffini, L. A Rapid and Specific HPLC Method to Determine Chemical and Radiochemical Purity of [68Ga]Ga-DOTA-Pentixafor (PET) Tracer: Development and Validation. Curr. Radiopharm. 2021, 14, 121–130. [Google Scholar] [CrossRef]
- van Andel, L.; Aalbersberg, E.A.; Geluk-Jonker, M.M.; Stokkel, M.P.M.; Beijnen, J.H.; Hendrikx, J.J.M.A. The Development and Validation of a High Performance Liquid Chromatography Method to Determine the Radiochemical Purity of [177Lu]Lu-HA-DOTA-TATE in Pharmaceutical Preparations. J. Chromatogr. B 2021, 1171, 122605. [Google Scholar] [CrossRef]
- Radzik, M.; Pijarowska-Kruszyna, J.; Jaroń, A.; Maurin, M.; Decristoforo, C.; Mikołajczak, R.; Garnuszek, P. Development and Validation of the HPLC Method for Quality Control of Radiolabelled DOTA-TATE and DOTA-TOC Preparations. Nucl. Med. Biol. 2021, 93, 63–73. [Google Scholar] [CrossRef]
- Li, C.-C.; Farn, S.-S.; Yeh, Y.-H.; Lin, W.-J.; Shen, L.-H. Development and Validation of an Anion-Exchange HPLC Method for the Determination of Fluoride Content and Radiochemical Purity in [18F]NaF. Nucl. Med. Biol. 2011, 38, 605–612. [Google Scholar] [CrossRef]
- Migliari, S.; Sammartano, A.; Scarlattei, M.; Serreli, G.; Ghetti, C.; Cidda, C.; Baldari, G.; Ortenzia, O.; Ruffini, L. Development and Validation of a High-Pressure Liquid Chromatography Method for the Determination of Chemical Purity and Radiochemical Purity of a [68 Ga]-Labeled Glu-Urea-Lys(Ahx)-HBED-CC (Positron Emission Tomography) Tracer. ACS Omega 2017, 2, 7120–7126. [Google Scholar] [CrossRef]
- ICH. Q2 (R1) Validation of Analytical Procedures: Text and Methodology; European Medicines Agency: London, UK, 2005. [Google Scholar]
177Lu-PSMA-1 Retention Time (min) | Free 177Lu Retention Time (min) | Peak Area: Counts per Second (cps) | Tailing Factor (TF) | Plate Count (N) | Resolution (Rs) | |
---|---|---|---|---|---|---|
Mean | 17.32 | 2.32 | 108 895 | 1.25 | 6725.70 | 17.73 |
Standard deviation | 0.35 | 0.35 | 9270 | 0.08 | 153.60 | 0.44 |
Variation coefficient (%) | 0.05 | 0.38 | 8.51 | 1.18 | 2.28 | 2.50 |
177Lu-PSMA-1 Retardation Factor | Free 177Lu Retardation Factor | Resolution (Rs) | |
---|---|---|---|
Mean | 0.930 | 0.142 | 3.060 |
Standard deviation | 0.020 | 0.001 | 0.400 |
Variation coefficient (%) | 1.730 | 0.700 | 13.600 |
% 177Lu-PSMA-1 | Recovered RCP | Theoretical RCP | % Recovery |
---|---|---|---|
100 | 99.72 | 99.72 | 100.00 |
90 | 90.29 | 89.75 | 100.61 |
80 | 80.57 | 79.78 | 101.00 |
70 | 70.81 | 69.80 | 101.44 |
60 | 60.83 | 59.83 | 101.67 |
% 177Lu-PSMA-1 | Recovered RCP | Theoretical RCP | % Recovery |
---|---|---|---|
100 | 99.42 | 99.42 | 100.00 |
90 | 89.75 | 89.47 | 100.30 |
80 | 80.07 | 79.53 | 100.67 |
70 | 69.68 | 69.59 | 100.12 |
60 | 58.74 | 59.65 | 98.47 |
HPLC Method (n = 6) | Radiochemical Purity (RCP) ± SD (%) | RSD (%) | Retention Time Mean ± SD (min) | RSD (%) |
Repeatability | 98.52 ± 0.15 | 0.15 | 17.53 ± 0.04 | 0.24 |
HPLC Method (n = 9) | RCP (%) Mean ± SD | RSD (%) | Retention Time Mean ± SD (min) | RSD (%) |
Intermediate precision: 3 series (Analyst 1 + Analyst 2 + Analyst 3) | 98.79 ± 0.72 | 0.73 | 17.31 ± 1.18 | 0.12 |
TLC Method (n = 6) | Radiochemical Purity (RCP) ± SD (%) | RSD (%) | Retardation Factor Mean ± SD | RSD (%) |
Repeatability | 99.84 ± 0.03 | 0.03 | 0.93 ± 0.01 | 1.26 |
TLC Method (n = 9) | RCP (%) Mean ± SD | RSD (%) | Retardation Time Mean ± SD (min) | RSD (%) |
Intermediate precision: 3 series (Analyst 1 + Analyst 2 + Analyst 3) | 99.12 ± 0.89 | 0.90 | 0.92 ± 0.03 | 2.99 |
Test | Acceptance Criteria | HPLC Results | TLC Results |
---|---|---|---|
% Recovery | 90% < % recovery < 110% | 100.00% to 101.67% | 98.47–100.67% |
Specificity | Resolution factor (Rs) > 2 | 17.73 | 3.060 |
Linearity | R2 > 0.99 | 0.9978 | 0.9997 |
Intermediate Precision | RCP: RSD < 2% | 0.73 | 0.90 |
Retardation time: RSD < 2% | 0.12 | 2.99 | |
Repeatability | RCP: RSD < 2% | 0.15 | 0.03 |
Retardation time: RSD < 2% | 0.24 | 1.26 | |
Robustness | RSD < 2% | 0.06% (condition A) 0.30% (condition B) | 0.51 |
Quantification limit (LoQ) | Signal-to-noise ratio ≥ 10 | 33.8 kBq (12.7:1) | 61.8 kBq (10.8:1) |
Range | Reported value | 2.5 to 500 MBq/mL |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Orhon, P.; Desruet, M.-D.; Piquemal, M.; De Leiris, N.; Djaileb, L.; Vuillez, J.-P.; Bedouch, P.; Leenhardt, J. Development and Validation of Analytical Methods for Radiochemical Purity of 177Lu-PSMA-1. Pharmaceuticals 2022, 15, 522. https://doi.org/10.3390/ph15050522
Orhon P, Desruet M-D, Piquemal M, De Leiris N, Djaileb L, Vuillez J-P, Bedouch P, Leenhardt J. Development and Validation of Analytical Methods for Radiochemical Purity of 177Lu-PSMA-1. Pharmaceuticals. 2022; 15(5):522. https://doi.org/10.3390/ph15050522
Chicago/Turabian StyleOrhon, Pauline, Marie-Dominique Desruet, Marie Piquemal, Nicolas De Leiris, Loïc Djaileb, Jean-Philippe Vuillez, Pierrick Bedouch, and Julien Leenhardt. 2022. "Development and Validation of Analytical Methods for Radiochemical Purity of 177Lu-PSMA-1" Pharmaceuticals 15, no. 5: 522. https://doi.org/10.3390/ph15050522
APA StyleOrhon, P., Desruet, M. -D., Piquemal, M., De Leiris, N., Djaileb, L., Vuillez, J. -P., Bedouch, P., & Leenhardt, J. (2022). Development and Validation of Analytical Methods for Radiochemical Purity of 177Lu-PSMA-1. Pharmaceuticals, 15(5), 522. https://doi.org/10.3390/ph15050522