Multicomponent Synthesis of Unsaturated γ-Lactam Derivatives. Applications as Antiproliferative Agents through the Bioisosterism Approach: Carbonyl vs. Phosphoryl Group
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Biological Results
3. Material and Methods
3.1. Chemistry
3.1.1. General Experimental Information
3.1.2. Compound Purity Analysis
3.1.3. Representative Experimental Procedures and Characterization Data for Compounds 4, 8, 9, 12 and 13
Representative Procedure for the Multicomponent Reaction of Amines 1, Aldehydes 2 and Acetylenes 3
Representative Procedure for the Multicomponent Reaction of Amines 1, Aldehydes 2 and Phosphorated Pyruvate Derivatives 10
Representative Procedure for the Hydrolysis of 3-Amino 3-Pyrrolin-2-Ones 4: Synthesis of 3-Hydroxy 3-Pyrrolin-2-Ones 13
3.2. Biology
3.2.1. Materials
3.2.2. Cell Culture
3.2.3. Cytotoxicity Assays
3.2.4. Evaluation of Cytotoxicity Mechanisms
3.2.5. Visualization of Cell Growth and Morphology
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- United Nations, Department of Economic and Social Affairs, Population Division. World Population Prospects 2019: Highlights (ST/ESA/SER.A/423); United Nations, Department of Economic and Social Affairs, Population Division: New York, NY, USA, 2019. [Google Scholar]
- Légaré, J. Population Aging: Economic and Social Consequences. In International Encyclopedia of the Social & Behavioral Sciences, 2nd ed.; Elsevier: Oxford, UK, 2015; pp. 540–544. [Google Scholar]
- Ferlay, J.; Soerjomataram, I.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D.M.; Forman, D.; Bray, F. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer 2015, 136, E359–E386. [Google Scholar] [CrossRef] [PubMed]
- Dickens, E.; Ahmed, S. Principles of cancer treatment by chemotherapy. Surgery 2018, 36, 134–138. [Google Scholar]
- Cree, I.A.; Charlton, P. Molecular chess? Hallmarks of anti-cancer drug resistance. BMC Cancer 2017, 17, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Housman, G.; Byler, S.; Heerboth, S.; Lapinska, K.; Longacre, M.; Snyder, N.; Sarkar, S. Drug resistance in cancer: An overview. Cancers 2014, 6, 1769–1792. [Google Scholar] [CrossRef] [Green Version]
- Caruano, J.; Muccioli, G.G.; Robiette, R. Biologically active γ-lactams: Synthesis and natural sources. Org. Biomol. Chem. 2016, 14, 10134–10156. [Google Scholar] [CrossRef]
- Schümann, J.; Hertweck, C. Molecular Basis of Cytochalasan Biosynthesis in Fungi: Gene Cluster Analysis and Evidence for the Involvement of a PKS-NRPS Hybrid Synthase by RNA Silencing. J. Am. Chem. Soc. 2007, 129, 9564–9565. [Google Scholar] [CrossRef]
- Albrecht, D.; Basler, B.; Bach, T. Preparation and Intramolecular [2+2]-Photocycloaddition of 1,5-Dihydropyrrol-2-ones and 5,6-Dihydro-1H-pyridin-2-ones with C-, N-, and O-linked Alkenyl Side Chains at the 4-Position. J. Org. Chem. 2008, 73, 2345–2356. [Google Scholar] [CrossRef]
- Chatzimpaloglou, A.; Kolosov, M.; Eckols, T.K.; Tweardy, D.J.; Sarli, V. Synthetic and Biological Studies of Phaeosphaerides. J. Org. Chem. 2014, 79, 4043–4054. [Google Scholar] [CrossRef]
- Melekhina, V.G.; Komogortsev, A.N.; Lichitsky, B.V.; Mityanov, V.S.; Fakhrutdinov, A.N.; Dudinov, A.A.; Migulin, V.A.; Nelyubina, Y.V.; Melnikova, E.K.; Krayushkin, M.M. One-pot synthesis of substituted pyrrolo [3,4-b]pyridine-4,5-diones based on the reaction of N-(1-(4-hydroxy-6-methyl-2-oxo-2H-pyran-3-yl)-2-oxo-2-arylethyl)acetamide with amines. Beilstein J. Org. Chem. 2019, 15, 2840–2846. [Google Scholar] [CrossRef]
- Peifer, C.; Selig, R.; Kinkel, K.; Ott, D.; Totzke, F.; Schaechtele, C.; Heidenreich, R.; Roecken, M.; Schollmeyer, D.; Laufer, S. Design, Synthesis, and Biological Evaluation of Novel 3-Aryl-4-(1H-indole-3yl)-1,5-dihydro-2H-pyrrole-2-ones as Vascular Endothelial Growth Factor Receptor (VEGF-R) Inhibitors. J. Med. Chem. 2008, 51, 3814–3824. [Google Scholar] [CrossRef]
- Choi, E.; Lee, C.; Cho, M.; Seo, J.J.; Yang, J.S.; Oh, S.J.; Lee, K.; Park, S.K.; Kim, H.M.; Kwon, H.J.; et al. Property-Based Optimization of Hydroxamate-Based γ-Lactam HDAC Inhibitors to Improve Their Metabolic Stability and Pharmacokinetic Profiles. J. Med. Chem. 2012, 55, 10766–10770. [Google Scholar] [CrossRef] [PubMed]
- Kirpotina, L.N.; Schepetkin, I.A.; Khlebnikov, A.I.; Ruban, O.I.; Ge, Y.; Ye, R.D.; Kominsky, D.J.; Quinn, M.T. 4-Aroyl-3-hydroxy-5-phenyl-1H-pyrrol-2(5H)-ones as N-formyl peptide receptor 1 (FPR1) antagonists. Biochem. Pharmacol. 2017, 142, 120–132. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Lu, C.; Chen, M.; Chen, K.; Wu, Y.; Wu, S. Cytotoxic Polyketides Containing Tetramic Acid Moieties Isolated from the Fungus Myceliophthora Thermophila: Elucidation of the Relationship between Cytotoxicity and Stereoconfiguration. Chem. Eur. J. 2007, 13, 6985–6991. [Google Scholar] [CrossRef] [PubMed]
- Janecka, A.; Wyre, A.; Gach, K.; Fichna, J.; Janecki, T. Natural and synthetic α-methylenelactones and α-methylenelactams with anticancer potential. Drug Discov. Today 2012, 17, 561–572. [Google Scholar] [CrossRef]
- Singh, S.B.; Goetz, M.A.; Jones, E.T.; Bills, G.F.; Giacobbe, R.A.; Herranz, L.; Stevens-Miles, S.; Williams, D.L. Oteromycin: A Novel Antagonist of Endothelin Receptor. J. Org. Chem. 1995, 60, 7040–7042. [Google Scholar] [CrossRef]
- Hazuda, D.; Blau, C.U.; Felock, P.; Hastings, J.; Pramanik, B.; Wolfe, A.; Bushman, F.; Farnet, C.; Goetz, M.; Williams, M.; et al. Isolation and Characterization of Novel Human Immunodeficiency Virus Integrase Inhibitors from Fungal Metabolites. Antivir. Chem. Chemother. 1999, 10, 63–70. [Google Scholar] [CrossRef] [Green Version]
- He, H.; Yang, H.Y.; Bigelis, R.; Solum, E.H.; Greenstein, M.; Carter, G.T. Pyrrocidines A and B, new antibiotics produced by a filamentous fungus. Tetrahedron Lett. 2002, 43, 1633–1636. [Google Scholar] [CrossRef]
- Zhuang, C.; Miao, Z.; Zhu, L.; Dong, G.; Guo, Z.; Wang, S.; Zhang, Y.; Wu, Y.; Yao, J.; Sheng, C.; et al. Discovery, Synthesis, and Biological Evaluation of Orally Active Pyrrolidone Derivatives as Novel Inhibitors of p53–MDM2 Protein–Protein Interaction. J. Med. Chem. 2012, 55, 9630–9642. [Google Scholar] [CrossRef]
- Huang, W.; Dong, Z.; Wang, F.; Peng, H.; Liu, J.-Y.; Zhang, J.-T. A Small Molecule Compound Targeting STAT3 DNA-Binding Domain Inhibits Cancer Cell Proliferation, Migration, and Invasion. ACS Chem. Biol. 2014, 9, 1188–1196. [Google Scholar] [CrossRef] [Green Version]
- Koz’minykh, V.O.; Igidov, N.M.; Zykova, S.S.; Kolla, V.E.; Shuklina, N.S.; Odegova, T. Synthesis and pharmacological activity of 3-hydroxy-1,5-diaryl-4-pivaloyl-2,5-dihydro-2-pyrrolone. Pharm. Chem. J. 2002, 36, 188–191. [Google Scholar] [CrossRef]
- Tarnavsky, S.S.; Dubinina, G.G.; Golovach, S.M.; Yarmoluk, S.M. Antitumor activity among derivatives of the 3-chloro-4-(3-hydroxyanilino)-2,5-dihydropyrrole-2,5-dione. Biopolym. Cell. 2003, 19, 548–552. [Google Scholar] [CrossRef] [Green Version]
- Sánchez, C.; Zhu, L.; Braña, A.F.; Salas, A.P.; Rohr, J.; Méndez, C.; Salas, J.A. Combinatorial biosynthesis of antitumor indolocarbazole compounds. Proc. Nat. Acad. Sci. USA 2005, 102, 461–466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, W.; Wang, Z.; Han, X.; Liu, J.; Wang, W. In vitro cytotoxicity screening to identify novel anti-osteosarcoma therapeutics targeting pyruvate dehydrogenase kinase 2. Bioorg. Med. Chem. Lett. 2019, 29, 126665. [Google Scholar] [CrossRef] [PubMed]
- Joksimović, N.; Petronijević, J.; Janković, N.; Baskić, D.; Popović, S.; Todorović, D.; Matić, S.; Bogdanović, G.A.; Vraneš, M.; Tot, A.; et al. Synthesis, characterization, anticancer evaluation and mechanisms of cytotoxic activity of novel 3-hydroxy-3-pyrrolin-2-ones bearing thenoyl fragment: DNA, BSA interactions and molecular docking study. Bioorg. Chem. 2019, 88, 102954. [Google Scholar] [CrossRef]
- Arencibia, J.M.; Fröhner, W.; Krupa, M.; Pastor-Flores, D.; Merker, P.; Oellerich, T.; Neimanis, S.; Schmithals, C.; Köberle, V.; Süß, E.; et al. An Allosteric Inhibitor Scaffold Targeting the PIF-Pocket of Atypical Protein Kinase C Isoforms. ACS Chem. Biol. 2017, 12, 564–573. [Google Scholar] [CrossRef]
- Yang, D.; Huang, C.; Liao, H.; Zhang, H.; Wu, S.; Zhu, Q.; Zhou, Z.-Z. Discovery of Dihydropyrrol-2-ones as Novel G0/G1-Phase Arresting Agents Inducing Apoptosis. ACS Omega 2019, 4, 17556–17560. [Google Scholar] [CrossRef] [Green Version]
- del Corte, X.; López-Francés, A.; Maestro, A.; Villate-Beitia, I.; Sainz-Ramos, M.; Martínez de Marigorta, E.; Pedraz, J.; Palacios, F.; Vicario, J. A Multicomponent Protocol for the Synthesis of Highly Functionalized γ-Lactam Derivatives and Their Applications as Antiproliferative Agents. Pharmaceuticals 2021, 14, 782. [Google Scholar] [CrossRef]
- Palacios, F.; Vicario, J.; Aparicio, D. An efficient synthesis of achiral and chiral cyclic dehydro-α-amino acid derivatives through nucleophilic addition of Amines to β,γ-unsaturated α-keto esters. Eur. J. Org. Chem. 2006, 2006, 2843–2850. [Google Scholar] [CrossRef]
- del Corte, X.; Maestro, A.; Vicario, J.; Martínez de Marigorta, E.; Palacios, F. Brønsted-Acid-Catalyzed Asymmetric Three-Component Reaction of Amines, Aldehydes, and Pyruvate Derivatives. Enantioselective Synthesis of Highly Functionalized γ-Lactam Derivatives. Org. Lett. 2018, 20, 317–320. [Google Scholar] [CrossRef]
- del Corte, X.; López-Francés, A.; Maestro, A.; Martinez de Marigorta, E.; Palacios, F.; Vicario, J. Brønsted Acid Catalyzed Multicomponent Synthesis of Phosphorated and Fluorinated γ-Lactam Derivatives. J. Org. Chem. 2020, 85, 14369–14383. [Google Scholar] [CrossRef]
- del Corte, X.; Martinez de Marigorta, E.; Palacios, F.; Vicario, J. A Brønsted Acid-Catalyzed Multicomponent Reaction for the Synthesis of Highly Functionalized γ-Lactam Derivatives. Molecules 2019, 24, 2951. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knapp, J.M.; Kurth, M.J.; Shaw, J.T.; Younai, A. Diversity-Oriented Synthesis; Trabocchi, A., Ed.; Wiley: New York, NY, USA, 2013; pp. 29–57. [Google Scholar]
- Schreiber, S.L. Target-oriented and diversity-oriented organic synthesis in drug discovery. Science 2000, 287, 1964–1969. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hall, D.G.; Rybak, T.; Verdelet, T. Multicomponent Hetero-[4 + 2] Cycloaddition/Allylboration Reaction: From Natural Product Synthesis to Drug Discovery. Acc. Chem. Res. 2016, 49, 2489–2500. [Google Scholar] [CrossRef]
- de Moliner, F.; Kielland, N.; Lavilla, R.; Vendrell, M. Modern Synthetic Avenues for the Preparation of Functional Fluorophores. Angew. Chem. Int. Ed. 2017, 56, 3758–3769. [Google Scholar] [CrossRef] [PubMed]
- Gein, V.L.; Popov, A.V.; Kolla, V.E.; Popova, N.A. Synthesis and biological activity of 1,5-diaryl-3-alkylamino-4-carboxymethyl-2,5-dihydropyrrol-2-ones and 1,5-diaryl-4-carboxymethyl-tetrahydropyrrol-2,3-diones. Pharmazie 1993, 48, 107–109. [Google Scholar] [CrossRef] [PubMed]
- Gein, V.L.; Popov, A.V.; Kolla, V.E.; Popova, N.A.; Potemkin, K.D. Synthesis and biological activity of 1,5-diaryl-3-arylamino-4-carboxymethyl-2,5-dihydro-2-pyrrolones and 1,5-diaryl-4-carboxymethyltetrahydropyrrole-2, 3-diones. Pharm. Chem. J. 1993, 27, 343–346. [Google Scholar] [CrossRef]
- Khalaf, A.I.; Waigh, R.D.; Drummond, A.J.; Pringle, B.; McGroarty, I.; Skellern, G.G.; Suckling, C.J. Distamycin Analogues with Enhanced Lipophilicity: Synthesis and Antimicrobial Activity. J. Med. Chem. 2004, 47, 2133–2156. [Google Scholar] [CrossRef]
- Ye, Y.; Fang, F.; Li, Y. Synthesis and anti-biofilm activities of dihydro-pyrrol-2-one derivatives on Pseudomonas aeruginosa. Bioorg. Med. Chem. Lett. 2015, 25, 597–601. [Google Scholar] [CrossRef]
- Zhu, Q.; Gao, L.; Chen, Z.; Zheng, S.; Shu, H.; Li, J.; Jiang, H.; Liu, S. A novel class of small-molecule caspase-3 inhibitors prepared by multicomponent reactions. Eur. J. Med. Chem. 2012, 54, 232–238. [Google Scholar] [CrossRef]
- Li, B.; Wever, W.J.; Walsh, C.T.; Bowers, A.A. Dithiolopyrrolones: Biosynthesis, synthesis, and activity of a unique class of disulfide-containing antibiotics. Nat. Prod. Rep. 2014, 31, 905–923. [Google Scholar] [CrossRef] [Green Version]
- Ma, K.; Wang, P.; Fu, W.; Zhou, L.; Chu, Y.; Ye, D.; Wan, X. Rational design of 2-pyrrolinones as inhibitors of HIV-1 integrase. Bioorg. Med. Chem. Lett. 2011, 21, 6724–6727. [Google Scholar] [CrossRef] [PubMed]
- Pace, P.; Spieser, S.A.H.; Summa, V. 4-Hydroxy-5-pyrrolinone-3-carboxamide HIV-1 integrase inhibitors. Bioorg. Med. Chem. Lett. 2008, 18, 3865–3869. [Google Scholar] [CrossRef] [PubMed]
- Gein, V.L.; Kasimova, N.N.; Voronina, E.V.; Gein, L.F. Synthesis and antimicrobial activity of 5-aryl-4-acyl-1-(N,N-dimethylaminoethyl)-3-hydroxy-3-pyrrolin-2-ones. Pharm. Chem. J. 2001, 35, 151–154. [Google Scholar] [CrossRef]
- Gein, V.L.; Kasimova, N.N.; Panina, M.A.; Voronina, E.V. Synthesis and antibacterial activity of 1-(5-aryl-4-benzoyl-3-hydroxy-2-oxo-3-pyrrolin-1-yl)-2-(3-benzoylmethylene-2-oxopiperazin-1-yl)ethanes. Pharm. Chem. J. 2006, 40, 410–412. [Google Scholar] [CrossRef]
- Gein, V.L.; Pitirimova, S.G.; Voronina, E.V.; Porseva, N.Y.; Pantsurkin, V.I. Synthesis and antibacterial activity of 1-substituted 5-aryl-4-aroyl-3-hydroxy-3-pyrrolin-2-ones. Pharm. Chem. J. 1997, 31, 603–605. [Google Scholar] [CrossRef]
- Feng, Z.; Li, X.; Zheng, G.; Huang, L. Synthesis and activity in enhancing long-term potentiation (LTP) of Clausenamide stereoisomers. Bioorg. Med. Chem. Lett. 2009, 19, 2112–2115. [Google Scholar] [CrossRef]
- Gein, V.L.; Shumilovskikh, E.V.; Andreichikov, Y.S.; Saraeva, R.F.; Korobchenko, L.V.; Vladyko, G.V.; Boreko, E.I. Synthesis of 4-substituted 1-methyl-5-aryl- and 1,5-diaryltetrahydropyrrole-2,3-diones and their antiviral action. Pharm. Chem. J. 1991, 25, 884–887. [Google Scholar] [CrossRef]
- Horsman, G.P.; Zechel, D.L. Phosphonate biochemistry. Chem. Rev. 2017, 117, 5704–5783. [Google Scholar] [CrossRef]
- Mucha, A.; Kafarski, P.; Berlicki, L. Remarkable Potential of the Aminophosphonate/Phosphinate Structural Motif in Medicinal Chemistry. J. Med. Chem. 2011, 54, 5955–5980. [Google Scholar] [CrossRef]
- Karl, D.M. Phosphorus, the Staff of Life. Nature 2000, 406, 31–33. [Google Scholar] [CrossRef]
- Engel, R. Handbook of Organophosphorus Chemistry; M. Dekker Inc.: New York, NY, USA, 1992. [Google Scholar]
- Kafarski, P.; Lejezak, B. Biological activity of aminophosphonic acids. Phosphorus Sulfur Silicon Relat. Elem. 1991, 63, 193–215. [Google Scholar] [CrossRef]
- Hoagland, R.E. Biologically Active Natural Products; Culter, H.G., Ed.; ACS Symposium Series 380; American Chemical Society: Washington, DC, USA, 1988; p. 182. [Google Scholar]
- Recio, R.; Vengut-Climent, E.; Mouillac, B.; Orcel, H.; López-Lázaro, M.; Calderón-Montaño, J.M.; Álvarez, E.; Khiar, N.; Fernández, I. Design, synthesis and biological studies of a library of NK1-Receptor Ligands Based on a 5-arylthiosubstituted 2-amino-4,6-diaryl-3-cyano-4H-pyran core: Switch from antagonist to agonist effect by chemical modification. Eur. J. Med. Chem. 2017, 138, 644–660. [Google Scholar] [CrossRef] [PubMed]
- Müller, K.; Faeh, C.; Diederich, F. Fluorine in pharmaceuticals: Looking beyond intuition. Science 2007, 317, 1881–1886. [Google Scholar] [CrossRef] [Green Version]
- Shah, P.; Westwell, A.D. The role of fluorine in medicinal chemistry. J. Enzyme Inhib. Med. Chem. 2007, 22, 527–540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bégué, J.P.; Bonnet-Delpon, D. Bioorganic and Medicinal Chemistry of Fluorine; Wiley: Hoboken, NJ, USA, 2007. [Google Scholar]
- Liew, S.K.; Malagobadan, S.; Arshad, N.M.; Nagoor, N.H. A Review of the Structure-Activity Relationship of Natural and Synthetic Antimetastatic Compounds. Biomolecules 2020, 10, 138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elford, H.L.; Van’t Riet, B. Phenols and Polyphenols as Antioxidants and Anticancer Agents. In Eicosanoids and Other Bioactive Lipids in Cancer and Radiation Injury. Developments in Oncology; Honn, K.V., Marnett, L.J., Nigam, S., Walden, T.L., Eds.; Springer: Boston, MA, USA, 1991; Volume 67. [Google Scholar]
- Trabbic, C.J.; George, S.M.; Alexander, E.M.; Du, S.; Offenbacher, J.M.; Crissman, E.J.; Overmeyer, J.H.; Maltese, W.A.; Erhardt, P.W. Synthesis and biological evaluation of isomeric methoxy substitutions on anti-cancer indolyl-pyridinyl-propenones: Effects on potency and mode of activity. Eur. J. Med. Chem. 2016, 122, 79–91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Metwally, K.; Khalil, A.; Sallam, A.; Pratsinis, H.; Kletas, D.; El Sayed, K. Structure–activity relationship investigation of methoxy substitution on anticancer pyrimido[4,5-c]quinolin-1(2H)-ones. Med. Chem. Res. 2013, 22, 4481–4491. [Google Scholar] [CrossRef]
- Patani, G.A.; Lavoie, E.J. Bioisosterism: A Rational Approach in Drug Design. Chem. Rev. 1996, 96, 3147–3176. [Google Scholar] [CrossRef]
- Ridaforolimus. Drugs R D 2010, 10, 165–178. [CrossRef]
- Rivera, V.M.; Squillace, R.M.; Miller, D.; Berk, L.; Wardwell, S.D.; Ning, Y.; Pollock, R.; Narasimhan, N.I.; Iuliucci, J.D.; Wang, F.; et al. Ridaforolimus (AP23573; MK-8669), a Potent mTOR Inhibitor, Has Broad Antitumor Activity and Can Be Optimally Administered Using Intermittent Dosing Regimens. Mol. Cancer Ther. 2011, 10, 1059–1071. [Google Scholar] [CrossRef] [Green Version]
- Markham, A. Brigatinib: First Global Approval. Drugs 2017, 77, 1131–1135. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.-S.; Liu, S.; Zou, D.; Thomas, M.; Wang, Y.; Zhou, T.; Romero, J.; Kohlmann, A.; Li, F.; Qi, J.; et al. Discovery of Brigatinib (AP26113), a Phosphine Oxide-Containing, Potent, Orally Active Inhibitor of Anaplastic Lymphoma Kinase. J. Med. Chem. 2016, 59, 4948–4964. [Google Scholar] [CrossRef] [PubMed]
Entry | Cmpd. | IC50 (μM) | ||
---|---|---|---|---|
A549 (Lung) | SKOV3 (Ovarian) | MRC5 | ||
1 | 4a | 11.70 ± 1.02 | >50 | >50 |
2 | 4b | 14.26 ± 1.80 | >50 | >50 |
3 | 4c | 2.42 ± 0.15 | >50 | >50 |
4 | 4d | 3.34 ± 0.29 | 48.45 ± 2.90 | >50 |
5 | 4e | 1.67 ± 0.49 | >50 | >50 |
6 | 4f | 42.58 ± 2.55 | 30.27 ± 1.03 | >50 |
7 | 4g | 7.64 ± 0.17 | >50 | >50 |
8 | 4h | 1.98 ± 0.18 | 10.37 ± 1.41 | 10.01 ± 1.79 |
9 | 4i | 10.71 ± 1.35 | 21.91 ± 1.53 | 17.37 ± 1.68 |
10 | 4j | 13.03 ± 1.48 | 43.93 ± 1.66 | 30.93 ± 6.16 |
11 | 4k | 11.39 ± 1.49 | >50 | >50 |
12 | 4l | 0.11 ± 0.016 | 1.23 ± 0.31 | 12.64 ± 2.09 |
13 | 4m | 6.02 ± 1.01 | >50 | >50 |
14 | 8a | 2.97 ± 0.29 | 6.95 ± 0.59 | >50 |
15 | 8b | 32.38 ± 1.58 | 16.62 ± 0.19 | 21.42 ± 2.7 |
16 | 9 | 12.45 ± 0.71 | >50 | >50 |
17 | Doxorubicin | <0.1 | 0.13 ± 0.098 | >50 |
Entry | Cmpd. | IC50 (μM) | ||
---|---|---|---|---|
A549 (Lung) | SKOV3 (Ovarian) | MRC5 | ||
1 | 13a | 15.73 ± 1.27 | >50 | >50 |
2 | 13b | 13.05 ± 0.56 | >50 | >50 |
3 | 13c | 4.50 ± 0.18 | >50 | >50 |
4 | 13d | 19.13 ± 3.00 | >50 | >50 |
5 | 13e | 17.64 ± 3.76 | >50 | >50 |
6 | 13f | 15.96 ± 1.97 | >50 | >50 |
7 | 13g | 13.30 ± 2.19 | 10.36 ± 0.35 | >50 |
17 | Doxorubicin | <0.1 | 0.13 ± 0.098 | >50 |
Entry | Cmpd. | IC50 (μM) | ||
---|---|---|---|---|
A549 (Lung) | SKOV3 (Ovarian) | MRC5 | ||
1 | 12a | 3.11 ± 0.31 | >50 | >50 |
2 | 12b | 4.56 ± 0.44 | >50 | >50 |
3 | 12c | 16.03 ± 1.49 | >50 | >50 |
4 | 12d | >50 | >50 | n.d. |
5 | 12e | 6.60 ± 0.58 | >50 | >50 |
6 | 12f | 23.29 ± 2.40 | >50 | >50 |
7 | 12g | 8.27 ± 0.91 | >50 | >50 |
8 | 12h | 24.20 ± 0.81 | >50 | >50 |
9 | 12i | 5.36 ± 0.28 | 11.56 ± 3.36 | >50 |
10 | 12j | 5.91 ± 0.69 | 15.55 ± 1.60 | >50 |
11 | 12k | >50 | >50 | n.d. |
12 | 12l | 11.86 ± 1.35 | >50 | >50 |
13 | 12m | 3.72 ± 0.32 | >50 | >50 |
14 | 12n | 5.50 ± 1.35 | >50 | >50 |
15 | 12o | 1.46 ± 0.19 | 21.97 ± 3.42 | >50 |
16 | 12p | 20.34 ± 0.79 | >50 | >50 |
17 | Doxorubicin | <0.1 | 0.13 ± 0.098 | >50 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
del Corte, X.; López-Francés, A.; Villate-Beitia, I.; Sainz-Ramos, M.; Martínez de Marigorta, E.; Palacios, F.; Alonso, C.; de los Santos, J.M.; Pedraz, J.L.; Vicario, J. Multicomponent Synthesis of Unsaturated γ-Lactam Derivatives. Applications as Antiproliferative Agents through the Bioisosterism Approach: Carbonyl vs. Phosphoryl Group. Pharmaceuticals 2022, 15, 511. https://doi.org/10.3390/ph15050511
del Corte X, López-Francés A, Villate-Beitia I, Sainz-Ramos M, Martínez de Marigorta E, Palacios F, Alonso C, de los Santos JM, Pedraz JL, Vicario J. Multicomponent Synthesis of Unsaturated γ-Lactam Derivatives. Applications as Antiproliferative Agents through the Bioisosterism Approach: Carbonyl vs. Phosphoryl Group. Pharmaceuticals. 2022; 15(5):511. https://doi.org/10.3390/ph15050511
Chicago/Turabian Styledel Corte, Xabier, Adrián López-Francés, Ilia Villate-Beitia, Myriam Sainz-Ramos, Edorta Martínez de Marigorta, Francisco Palacios, Concepción Alonso, Jesús M. de los Santos, José Luis Pedraz, and Javier Vicario. 2022. "Multicomponent Synthesis of Unsaturated γ-Lactam Derivatives. Applications as Antiproliferative Agents through the Bioisosterism Approach: Carbonyl vs. Phosphoryl Group" Pharmaceuticals 15, no. 5: 511. https://doi.org/10.3390/ph15050511
APA Styledel Corte, X., López-Francés, A., Villate-Beitia, I., Sainz-Ramos, M., Martínez de Marigorta, E., Palacios, F., Alonso, C., de los Santos, J. M., Pedraz, J. L., & Vicario, J. (2022). Multicomponent Synthesis of Unsaturated γ-Lactam Derivatives. Applications as Antiproliferative Agents through the Bioisosterism Approach: Carbonyl vs. Phosphoryl Group. Pharmaceuticals, 15(5), 511. https://doi.org/10.3390/ph15050511