Antiplasmodial Activity of Vachellia xanthophloea (Benth.) P.J.H. Hurter (African Fever Tree) and Its Constituents
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Biological Activity
3. Materials and Methods
3.1. General Procedures
3.2. Plant Material and Preparation of the Extract
3.3. Isolation of the Compounds from the V. xanthophloea Leaf
3.4. Antimalarial Assay
3.4.1. The Parasites
3.4.2. Assessment of the In Vitro Antiplasmodial Activity
3.4.3. In Vitro Cytotoxicity Assay
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Boatwright, J.S.; Van der Bank, M.; Maurin, O. Name changes in African Acacia species: Plant name changes. Veld Flora 2014, 100, 33. [Google Scholar]
- Kyalangalilwa, B.; Boatwright, J.S.; Daru, B.H.; Maurin, O.; van der Bank, M. Phylogenetic position and revised classification of Acacia sl (Fabaceae: Mimosoideae) in Africa, including new combinations in Vachellia and Senegalia. Bot. J. Linn. Soc. 2013, 172, 500–523. [Google Scholar] [CrossRef] [Green Version]
- Pooley, E. Complete Field Guide to Trees of Natal, Zululand & Transkei; Natal Flora Publications Trust: Durban, South Africa, 1993. [Google Scholar]
- Coates Palgrave, K.; Drummond, R. Trees of Southern Africa; C. Struik Publishers: Cape Town, South Africa, 1977. [Google Scholar]
- Hutchings, A.; Scott, A.H.; Lewis, G.; Cunningham, A.B. Zulu Medicinal Plants: An Inventory; University of Natal Press: Pietermaritzburg, South Africa, 1996; p. 124. [Google Scholar]
- Watt, J.M.; Breyer-Brandwijk, M.G. The Medicinal and Poisonous Plants of Southern and Eastern Africa; E. and S. Livingstone LTD.: London, UK, 1962; p. 552. [Google Scholar]
- Fowler, D.G. Zambian Plants Used as Traditional Fever Cures; University of Chicago Press: Chicago, IL, USA, 2011; p. 5. [Google Scholar]
- Muthaura, C.N.; Keriko, J.M.; Mutai, C.; Yenesew, A.; Gathirwa, J.W.; Irungu, B.N.; Nyangacha, R.; Mungai, G.M.; Derese, S. Antiplasmodial potential of traditional phytotherapy of some remedies used in treatment of malaria in Meru-Tharaka Nithi County of Kenya. J. Ethnopharmacol. 2015, 175, 315–323. [Google Scholar] [CrossRef] [PubMed]
- Nandkumar, N.; Ojewole, J.A.O. Studies on the antiplasmodial properties of some South African medicinal plants used as antimalarial remedies in Zulu folk medicine. Methods Finds Exp. Clin. Pharmacol. 2002, 24, 397–401. [Google Scholar] [CrossRef] [PubMed]
- Lall, N.; Meyer, J.J.M. In vitro inhibition of drug-resistant and drug-sensitive strains of Mycobacterium tuberculosis by ethnobotanically selected South African plants. J. Ethnopharmacol. 1999, 66, 347–354. [Google Scholar] [CrossRef]
- Muthee, J.K.; Gakuya, D.W.; Mbaria, J.M.; Kareru, P.G.; Mulei, C.M.; Njonge, F.K. Ethnobotanical study of anthelmintic and other medicinal plants traditionally used in Loitoktok district of Kenya. J. Ethnopharmacol. 2011, 135, 15–21. [Google Scholar] [CrossRef]
- Smith, G.F.; Crouch, N.R. Mesembs in the muthimarket: Lithops lesliei as an ethnomedicinal plant. Br. Cactus Succul. J. 1999, 17, 133–137. [Google Scholar]
- Prozesky, E.A.; Meyer, J.J.M.; Louw, A.I. In vitro antiplasmodial activity and cytotoxicity of ethnobotanically selected South African plants. J. Ethnopharmacol. 2001, 76, 239–245. [Google Scholar] [CrossRef]
- Tajuddeen, N.; Swart, T.; Hoppe, H.C.; van Heerden, F.R. Antiplasmodial and cytotoxic activities of extract and compounds from Ozoroa obovata (Oliv.) R. & A. Fern. var. obovata. Chem. Biodivers. 2021, 18, e2100240. [Google Scholar] [CrossRef]
- Tajuddeen, N.; Swart, T.; Hoppe, H.C.; van Heerden, F.R. Antiplasmodial and cytotoxic flavonoids from Pappea capensis (Eckl. & Zeyh.) Leaves. Molecules 2021, 26, 3875. [Google Scholar] [CrossRef]
- Tajuddeen, N.; Swart, T.; Hoppe, H.C.; van Heerden, F.R. Phytochemical and antiplasmodial investigation of Gardenia thunbergia L. f. leaves. Nat. Prod. Res. 2021. [Google Scholar] [CrossRef] [PubMed]
- Mabry, T.; Markham, K.; Thomas, M. The Systematic Identification of Flavonoids; Springer: New York, NY, USA, 1970. [Google Scholar]
- Lemmich, E.; Adewunmi, C.O.; Furu, P.; Kristensen, A.; Larsen, L.; Olsen, C.E. 5-Deoxyflavones from Parkia clappertoniana. Phytochemistry 1996, 42, 1011–1013. [Google Scholar] [CrossRef]
- Lin, L.-C.; Chiou, C.T.; Cheng, J.J. 5-Deoxyflavones with cytotoxic activity from Mimosa diplotricha. J. Nat. Prod. 2011, 74, 2001–2004. [Google Scholar] [CrossRef]
- Krenn, L.; Miron, A.; Pemp, E.; Petr, U.; Kopp, B. Flavonoids from Achillea nobilis L. Z. Naturforsch. C 2003, 58, 11–16. [Google Scholar] [CrossRef] [PubMed]
- Peng, Z.F.; Strack, D.; Baumert, A.; Subramaniam, R.; Goh, N.K.; Chia, T.F.; Tan, S.N.; Chia, L.S. Antioxidant flavonoids from leaves of Polygonum hydropiper L. Phytochemistry 2003, 62, 219–228. [Google Scholar] [CrossRef]
- Agrawal, P.; Agarwal, S.; Rastogi, R.; Österdahal, B.-G. Dihydroflavanonols from Cedrus deodara, a 13C NMR study. Planta Med. 1981, 43, 82–85. [Google Scholar] [CrossRef]
- Davis, A.L.; Cai, Y.; Davies, A.P.; Lewis, J.R. H-1 and C-13 NMR assignments of some green tea polyphenols. Magn. Reson. Chem. 1996, 34, 887–890. [Google Scholar] [CrossRef]
- Ma, X.F.; Wu, L.H.; Ito, Y.; Tian, W.X. Application of preparative high-speed counter-current chromatography for separation of methyl gallate from Acer truncatum Bunge. J. Chromatogr. A 2005, 1076, 212–215. [Google Scholar] [CrossRef]
- Tajuddeen, N.; Sallau, M.S.; Musa, A.M.; Habila, D.J.; Yahaya, S.M. Flavonoids with antimicrobial activity from the stem bark of Commiphora pedunculata (Kotschy & Peyr.) Engl. Nat. Prod. Res. 2014, 28, 1915–1918. [Google Scholar] [CrossRef]
- Teles, Y.C.F.; Rebello Horta, C.C.; Agra, M.d.F.; Siheri, W.; Boyd, M.; Igoli, J.O.; Gray, A.I.; Vanderlei de Souza, M.d.F. New sulphated flavonoids from Wissadula periplocifolia (L.) C. Presl (Malvaceae). Molecules 2015, 20, 20161–20172. [Google Scholar] [CrossRef] [Green Version]
- Cowan, S.; Stewart, M.; Abbiw, D.K.; Latif, Z.; Sarker, S.D.; Nash, R.J. Lignans from Strophanthus gratus. Fitoterapia 2001, 72, 80–82. [Google Scholar] [CrossRef]
- Khachik, F.; Englert, G.; Daitch, C.E.; Beecher, G.R.; Tonucci, L.H.; Lusby, W.R. Isolation and structural elucidation of the geometrical-isomers of lutein and zeaxanthin in extracts from human plasma. J. Chromatogr. B Biomed. Appl. 1992, 582, 153–166. [Google Scholar] [CrossRef]
- Koay, Y.C.; Wong, K.C.; Osman, H.; Eldeen, I.M.S.; Asmawi, M.Z. Chemical constituents and biological activities of Strobilanthes crispus L. Rec. Nat. Prod. 2013, 7, 59–64. [Google Scholar]
- Pongprayoon, U.; Baeckström, P.; Jacobsson, U.; Lindström, M.; Bohlin, L. Antispasmodic activity of β-damascenone and E-phytol isolated from Ipomoea pes-caprae. Planta Med. 1992, 58, 19–21. [Google Scholar] [CrossRef] [PubMed]
- Muhaisen, H.M.H.; Ilyas, M.; Mushfiq, M.; Parveen, M.; Basudan, O.A. Flavonoids from Acacia tortilis. J. Chem. Res. 2002, 276–278. [Google Scholar] [CrossRef]
- Dongmo, A.B.; Miyamoto, T.; Yoshikawa, K.; Arihara, S.; Lacaille-Dubois, M.-A. Flavonoids from Acacia pennata and their cyclooxygenase (COX-1 and COX-2) inhibitory activities. Planta Med. 2007, 73, 1202–1207. [Google Scholar] [CrossRef]
- Kalaivani, T.; Rajasekaran, C.; Mathew, L. Free radical scavenging, cytotoxic, and haemolytic activities of an active antioxidant compound ethyl gallate from leaves of Acacia nilotica (L.) Wild. Ex. Delile Subsp Indica (Benth.) Brenan. J. Food Sci. 2011, 76, T144–T149. [Google Scholar] [CrossRef]
- Sanchez, E.; Heredia, N.; Camacho-Corona, M.d.R.; Garcia, S. Isolation, characterization and mode of antimicrobial action against Vibrio cholerae of methyl gallate isolated from Acacia farnesiana. J. Appl. Microbiol. 2013, 115, 1307–1316. [Google Scholar] [CrossRef]
- Tung, Y.-T.; Wu, J.-H.; Kuo, Y.-H.; Chang, S.-T. Antioxidant activities of natural phenolic compounds from Acacia confusa bark. Bioresour. Technol. 2007, 98, 1120–1123. [Google Scholar] [CrossRef]
- Seigler, D.S. Phytochemistry of Acacia–sensu lato. Biochem. Syst. Ecol. 2003, 31, 845–873. [Google Scholar] [CrossRef]
- Ma, C.-Y.; Musoke, S.F.; Tan, G.T.; Sydara, K.; Bouamanivong, S.; Southavong, B.; Soejarto, D.D.; Fong, H.H.; Zhang, H.-J. Study of antimalarial activity of chemical constituents from Diospyros quaesita. Chem. Biodivers. 2008, 5, 2442–2448. [Google Scholar] [CrossRef] [PubMed]
- Boniface, P.K.; Ferreira, E.I. Flavonoids as efficient scaffolds: Recent trends for malaria, leishmaniasis, Chagas disease, and dengue. Phytother. Res. 2019, 33, 2473–2517. [Google Scholar] [CrossRef] [PubMed]
- Horgen, F.D.; Madulid, D.A.; Angerhofer, C.K.; Pezzuto, J.M.; Soejarto, D.D.; Farnsworth, N.R. Isolation of gallic acid esters as antiplasmodial constituents of Swintonia foxworthyi (Anacardiaceae). Phytomedicine 1997, 4, 353–356. [Google Scholar] [CrossRef]
- Zofou, D.; Tematio, E.L.; Ntie-Kang, F.; Tene, M.; Ngemenya, M.N.; Tane, P.; Titanji, V.P.K. New antimalarial hits from Dacryodes edulis (Burseraceae)–Part I: Isolation, in vitro activity, in silico “drug-likeness” and pharmacokinetic profiles. PLoS ONE 2013, 8, e79544. [Google Scholar] [CrossRef] [Green Version]
- Tajuddeen, N.; Van Heerden, F.R. Antiplasmodial natural products: An update. Malar. J. 2019, 18, 404. [Google Scholar] [CrossRef] [Green Version]
- Lehane, A.M.; Saliba, K.J. Common dietary flavonoids inhibit the growth of the intraerythrocytic malaria parasite. BMC Res. Notes 2008, 1, 26. [Google Scholar] [CrossRef] [Green Version]
- Ginsburg, H.; Deharo, E. A call for using natural compounds in the development of new antimalarial treatments-an introduction. Malar. J. 2011, 10 (Suppl. 1), 1–7. [Google Scholar] [CrossRef] [Green Version]
- Wall, M.E.; Wani, M.C.; Brown, D.M.; Fullas, F.; Olwald, J.B.; Josephson, F.F.; Thornton, N.M.; Pezzuto, J.M.; Beecher, C.W.W.; Farnsworth, N.R.; et al. Effect of tannins on screening of plant extracts for enzyme inhibitory activity and techniques for their removal. Phytomedicine 1996, 3, 281–285. [Google Scholar] [CrossRef]
- Trager, W.; Jensen, J.B. Human malaria parasites in continuous culture. Science 1976, 193, 673–675. [Google Scholar] [CrossRef]
- Makler, M.T.; Ries, J.M.; Williams, J.A.; Bancroft, J.E.; Piper, R.C.; Gibbins, B.L.; Hinrichs, D.J. Parasite lactate-dehydrogenase as an assay for Plasmodium falciparum drug-sensitivity. Am. J. Trop. Med. Hyg. 1993, 48, 739–741. [Google Scholar] [CrossRef]
Position | 1 | 3 | ||
---|---|---|---|---|
δH | δC | δH | δC | |
2 | 155.7 | 156.6 | ||
3 | 141.3 | 138.6 | ||
4 | 173.4 | 180.3 | ||
5 | 8.00 (d, J = 9.0 Hz) | 121.0 | 161.5 | |
6 | 7.03 (d, J = 9.0 Hz) | 109.8 | 6.20 (d, J = 2.0 Hz) | 99.7 |
7 | 156.1 | 166.2 | ||
8 | 136.8 | 6.33 (d, J = 2.0 Hz) | 94.7 | |
9 | 149.9 | 158.2 | ||
10 | 119.6 | 105.8 | ||
1′ | 111.4 | 109.4 | ||
2′ | 151.9 | 151.0 | ||
3′ | 6.64, (s) | 97.7 | 6.60, (s) | 101.5 |
4′ | 152.7 | 153.4 | ||
5′ | 143.0 | 142.5 | ||
6′ | 7.32, (s) | 110.9 | 7.02, (s) | 113.0 |
OCH3-3 | 3.80, (s) | 60.4 | 3.73, (s) | 60.7 |
OCH3-7 | 3.98, (s) | 56.6 | ||
OCH3-8 | 3.95, (s) | 61.5 | ||
OCH3-2′ | 3.97, (s) | 56.3 | ||
OCH3-4′ | 3.85, (s) | 56.7 | 3.88, (s) | 55.4 |
OCH3-5′ | 3.86, (s) | 56.8 | 3.83, (s) | 56.4 |
Compound | IC50 (µg/mL) | Viability % ± SD at 50 μg/mL | Viability % ± SD at 10 μg/mL |
---|---|---|---|
V. xanthophloea | 10.6 | - | - |
Methyl gallate (9) | 1.2 ± 0.07 (6.52 µM) | 17.7 ± 1.5 | 26.9 ± 0.7 |
3-O-Methylquercetin (4) | Nd | 21.9 ± 1.5 | 82.9 ± 3.0 |
Mixture (1:1) of 3,7,8,2′,4′,5′-hexamethoxyflavone (1) and 2′-hydroxy-3,7,8,4′,5′-pentamethoxyflavone (2) | Nd | 14.1 ± 0.7 | 73.0 ± 0.7 |
Kaempferol (10) | 25.0 (87.3 µM) | - | - |
Dihydroquercetin (6) | 27.6 (90.71 µM) | - | - |
Mixture (1:1) of 3-O-methylquercetin (4) and methyl gallate (9) | 4.6 | - | - |
Chloroquine | 0.014 µM | - | - |
Compound | Viability % ± SD at 50 μg/mL | Viability % ± SD at 10 μg/mL |
---|---|---|
V. xanthophloea | * 41% | # 98% |
Methyl gallate (9) | 2.0 ± 0.2 | 68.6 ± 2.0 |
3-O-Methylquercetin (4) | 4.5 ± 0.1 | 57.9 ± 5.2 |
Mixture (1:1) of 3,7,8,2′,4′,5′-hexamethoxyflavone (1) and 2′-hydroxy-3,7,8,4′,5′-pentamethoxyflavone (2) | 7.1 ± 0.4 | 63.1 ± 4.3 |
Emetine | IC50 = 0.033 µM | IC50 = 0.04 µM |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tajuddeen, N.; Swart, T.; Hoppe, H.C.; van Heerden, F.R. Antiplasmodial Activity of Vachellia xanthophloea (Benth.) P.J.H. Hurter (African Fever Tree) and Its Constituents. Pharmaceuticals 2022, 15, 470. https://doi.org/10.3390/ph15040470
Tajuddeen N, Swart T, Hoppe HC, van Heerden FR. Antiplasmodial Activity of Vachellia xanthophloea (Benth.) P.J.H. Hurter (African Fever Tree) and Its Constituents. Pharmaceuticals. 2022; 15(4):470. https://doi.org/10.3390/ph15040470
Chicago/Turabian StyleTajuddeen, Nasir, Tarryn Swart, Heinrich C. Hoppe, and Fanie R. van Heerden. 2022. "Antiplasmodial Activity of Vachellia xanthophloea (Benth.) P.J.H. Hurter (African Fever Tree) and Its Constituents" Pharmaceuticals 15, no. 4: 470. https://doi.org/10.3390/ph15040470
APA StyleTajuddeen, N., Swart, T., Hoppe, H. C., & van Heerden, F. R. (2022). Antiplasmodial Activity of Vachellia xanthophloea (Benth.) P.J.H. Hurter (African Fever Tree) and Its Constituents. Pharmaceuticals, 15(4), 470. https://doi.org/10.3390/ph15040470