A Current Overview of Cyclodextrin-Based Nanocarriers for Enhanced Antifungal Delivery
Abstract
:1. Introduction
2. CDs as Solubilizers, Penetration Enhancers, and Stabilizers
2.1. Cyclodextrin as a Solubilizer
2.2. Cyclodextrin as a Permeation Enhancer
2.3. Cyclodextrin as Stabilizer
3. CD-Based Nanocarriers in Enhanced Antifungal Delivery
3.1. Oral Drug Delivery
3.2. Oral Local Drug Delivery
3.3. Vaginal Drug Delivery
3.4. Pulmonary Drug Delivery
3.5. Ocular Drug Delivery
3.6. Dermal Drug Delivery
3.7. Parenteral Drug Delivery
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mendonça, A.; Santos, H.; Franco-Duarte, R.; Sampaio, P. Fungal infections diagnosis-past, present and future. Res. Microbiol. 2022, 173, 103915. [Google Scholar] [CrossRef] [PubMed]
- Reddy, G.K.K.; Padmavathi, A.R.; Nancharaiah, Y. Fungal infections: Pathogenesis, antifungals and alternate treatment approaches. Curr. Res. Microb. Sci. 2022, 3, 100137. [Google Scholar] [CrossRef] [PubMed]
- Perlroth, J.; Choi, B.; Spellberg, B. Nosocomial fungal infections: Epidemiology, diagnosis, and treatment. Med. Mycol. 2007, 45, 321–346. [Google Scholar] [CrossRef]
- Janbon, G.; Quintin, J.; Lanternier, F.; d’Enfert, C. Studying fungal pathogens of humans and fungal infections: Fungal diversity and diversity of approaches. Microbes Infect. 2019, 21, 237–245. [Google Scholar] [CrossRef] [PubMed]
- Ruhnke, M. Antifungal stewardship in invasive Candida infections. Clin. Microbiol. Infect. 2014, 20, 11–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dorgan, E.; Denning, D.W.; McMullan, R. Burden of fungal disease in Ireland. J. Med. Microbiol. 2015, 64, 423–426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sardi, J.D.C.O.; Pitangui, N.D.S.; Rodríguez-Arellanes, G.; Taylor, M.L.; Fusco-Almeida, A.M.; Mendes-Giannini, M.J.S. Highlights in pathogenic fungal biofilms. Rev. Iberoam. Micol. 2014, 31, 22–29. [Google Scholar] [CrossRef]
- Richardson, M.; Lass-Flörl, C. Changing epidemiology of systemic fungal infections. Clin. Microbiol. Infect. 2008, 14 (Suppl. S4), 5–24. [Google Scholar] [CrossRef] [Green Version]
- Brown, G.D.; Denning, D.W.; Gow, N.A.; Levitz, S.M.; Netea, M.G.; White, T.C. Hidden killers: Human fungal infections. Sci. Transl. Med. 2012, 4, 165rv113. [Google Scholar] [CrossRef] [Green Version]
- Lee, P.P.; Lau, Y.-L. Cellular and molecular defects underlying invasive fungal infections-revelations from endemic mycoses. Front. Immunol. 2017, 8, 735. [Google Scholar] [CrossRef]
- Hokken, M.W.; Zwaan, B.; Melchers, W.; Verweij, P. Facilitators of adaptation and antifungal resistance mechanisms in clinically relevant fungi. Fungal Genet. Biol. 2019, 132, 103254. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.C.; Sorrell, T.C. Antifungal agents. Med. J. Aust. 2007, 187, 404–409. [Google Scholar] [CrossRef] [PubMed]
- Newland, J.G.; Abdel-Rahman, S.M. Update on terbinafine with a focus on dermatophytoses. Clin. Cosmet. Investig. Dermatol. 2009, 2, 49–63. [Google Scholar] [PubMed] [Green Version]
- Prasad, R.; Shah, A.H.; Rawal, M.K. Antifungals: Mechanism of Action and Drug Resistance; Springer: Berlin/Heidelberg, Germany, 2016; Volume 892, pp. 327–349. [Google Scholar]
- Chang, Y.-L.; Yu, S.-J.; Heitman, J.; Wellington, M.; Chen, Y.-L. New facets of antifungal therapy. Virulence 2017, 8, 222–236. [Google Scholar] [CrossRef] [Green Version]
- Souza, A.C.; Amaral, A.C. Antifungal therapy for systemic mycosis and the nanobiotechnology era: Improving efficacy, biodistribution and toxicity. Front. Microbiol. 2017, 8, 336. [Google Scholar] [CrossRef] [Green Version]
- Loftsson, T.; Brewster, M.E. Pharmaceutical applications of cyclodextrins. 1. Drug solubilization and stabilization. J. Pharm. Sci. 1996, 85, 1017–1025. [Google Scholar] [CrossRef]
- Jansook, P.; Brewster, M.E.; Loftsson, T. Cyclodextrin-Enhanced Drug Delivery through Mucous Membranes; John Wiley & Sons: Hoboken, NJ, USA, 2011; pp. 145–158. [Google Scholar]
- Mennini, N.; Cirri, M.; Maestrelli, F.; Mura, P. Comparison of liposomal and NLC (nanostructured lipid carrier) formulations for improving the transdermal delivery of oxaprozin: Effect of cyclodextrin complexation. Int. J. Pharm. 2016, 515, 684–691. [Google Scholar] [CrossRef]
- Gökbulut, E.; Vural, İ.; Aşıkoğlu, M.; Özdemir, N. Floating drug delivery system of itraconazole: Formulation, in vitro and in vivo studies. J. Drug Deliv. Sci. Technol. 2019, 49, 491–501. [Google Scholar] [CrossRef]
- Deshkar, S.S.; Palve, V.K. Formulation and development of thermosensitive cyclodextrin-based in situ gel of voriconazole for vaginal delivery. J. Drug Deliv. Sci. Technol. 2019, 49, 277–285. [Google Scholar] [CrossRef]
- Loftsson, T.; Duchêne, D. Cyclodextrins and their pharmaceutical applications. Int. J. Pharm. 2007, 329, 1–11. [Google Scholar] [CrossRef]
- Szejtli, J. Introduction and general overview of cyclodextrin chemistry. Chem. Rev. 1998, 98, 1743–1754. [Google Scholar] [CrossRef] [PubMed]
- Saokham, P.; Muankaew, C.; Jansook, P.; Loftsson, T. Solubility of cyclodextrins and drug/cyclodextrin complexes. Molecules 2018, 23, 1161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jansook, P.; Ogawa, N.; Loftsson, T. Cyclodextrins: Structure, physicochemical properties and pharmaceutical applications. Int. J. Pharm. 2018, 535, 272–284. [Google Scholar] [CrossRef]
- Loftsson, T.; Jarho, P.; Masson, M.; Jarvinen, T. Cyclodextrins in drug delivery. Expert Opin. Drug Deliv. 2005, 2, 335–351. [Google Scholar] [CrossRef] [PubMed]
- Loftsson, T.; Brewster, M.E. Pharmaceutical applications of cyclodextrins: Basic science and product development. J. Pharm. Pharmacol. 2010, 62, 1607–1621. [Google Scholar] [CrossRef] [PubMed]
- Legrand, F.-X.; Sauthier, M.; Flahaut, C.; Hachani, J.; Elfakir, C.; Fourmentin, S.; Tilloy, S.; Monflier, E. Aqueous hydroformylation reaction mediated by randomly methylated β-cyclodextrin: How substitution degree influences catalytic activity and selectivity. J. Mol. Catal. A Chem. 2009, 303, 72–77. [Google Scholar] [CrossRef]
- Armstrong, D.W.; Faulkner, J.R.; Han, S.M. Use of hydroxypropyl- and hydroxyethyl-derivatized β-cyclodextrins for the thin-layer chromatographic separation of enantiomers and diastereomers. J. Chromatogr. A 1988, 452, 323–330. [Google Scholar] [CrossRef] [PubMed]
- Duchěne, D.; Wouessidjewe, D. Pharmaceutical uses of cyclodextrins and derivatives. Drug Dev. Ind. Pharm. 1990, 16, 2487–2499. [Google Scholar] [CrossRef]
- Davis, M.E.; Brewster, M.E. Cyclodextrin-based pharmaceutics: Past, present and future. Nat. Rev. Drug Discov. 2004, 3, 1023–1035. [Google Scholar] [CrossRef]
- Tenjarla, S.; Puranajoti, P.; Kasina, R.; Mandal, T. Preparation characterization evaluation of miconazole-cyclodextrin complexes for improved oral topical delivery. J. Pharm. Sci. 1998, 87, 425–429. [Google Scholar] [CrossRef] [PubMed]
- dos Santos, J.-F.R.; Torres-Labandeira, J.-J.; Matthijs, N.; Coenye, T.; Concheiro, A.; Alvarez-Lorenzo, C. Functionalization of acrylic hydrogels with α-, β- or γ-cyclodextrin modulates protein adsorption and antifungal delivery. Acta Biomater. 2010, 6, 3919–3926. [Google Scholar] [CrossRef] [PubMed]
- Nava-Ortiz, C.A.B.; Burillo, G.; Concheiro, A.; Bucio, E.; Matthijs, N.; Nelis, H.; Coenye, T.; Alvarez-Lorenzo, C. Cyclodextrin-functionalized biomaterials loaded with miconazole prevent Candida albicans biofilm formation in vitro. Acta Biomater. 2010, 6, 1398–1404. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.-H.; Cai, Z. Investigation of inclusion complex of miconazole nitrate with β-cyclodextrin. Carbohydr. Polym. 2008, 72, 255–260. [Google Scholar] [CrossRef]
- Jansook, P.; Prajapati, M.; Pruksakorn, P.; Loftsson, T. Antifungal activity of econazole nitrate/cyclodextrin complex: Effect of pH and formation of complex aggregates. Int. J. Pharm. 2020, 574, 118896. [Google Scholar] [CrossRef]
- Díaz-Tomé, V.; Luaces-Rodríguez, A.; Silva-Rodríguez, J.; Blanco-Dorado, S.; García-Quintanilla, L.; Llovo-Taboada, J.; Blanco-Méndez, J.; García-Otero, X.; Varela-Fernández, R.; Herranz, M.; et al. Ophthalmic econazole hydrogels for the treatment of fungal keratitis. J. Pharm. Sci. 2018, 107, 1342–1351. [Google Scholar] [CrossRef] [PubMed]
- Hedayati, N.; Montazer, M.; Mahmoudirad, M.; Toliyat, T. Ketoconazole and ketoconazole/β-cyclodextrin performance on cotton wound dressing as fungal skin treatment. Carbohydr. Polym. 2020, 240, 116267. [Google Scholar] [CrossRef]
- Zoppi, A.; Buhlman, N.; Cerutti, J.P.; Longhi, M.R.; Aiassa, V. Influence of proline and β-cyclodextrin in ketoconazole physicochemical and microbiological performance. J. Mol. Struct. 2019, 1176, 470–477. [Google Scholar] [CrossRef]
- Chaudhari, P.; Naik, R.; Mallela, L.S.; Roy, S.; Birangal, S.; Ghate, V.; Kunhanna, S.B.; Lewis, S.A. A supramolecular thermosensitive gel of ketoconazole for ocular applications: In silico, in vitro, and ex vivo studies. Int. J. Pharm. 2022, 613, 121409. [Google Scholar] [CrossRef]
- Al-Marzouqi, A.H.; Shehatta, I.; Jobe, B.; Dowaidar, A. Phase solubility and inclusion complex of itraconazole with β-cyclodextrin using supercritical carbon dioxide. J. Pharm. Sci. 2006, 95, 292–304. [Google Scholar] [CrossRef]
- Peeters, J.; Neeskens, P.; Tollenaere, J.P.; Van Remoortere, P.; Brewster, M.E. Characterization of the interaction of 2-hydroxypropyl-β-cyclodextrin with itraconazole at pH 2, 4, and 7. J. Pharm. Sci. 2002, 91, 1414–1422. [Google Scholar] [CrossRef]
- Díaz-Tomé, V.; García-Otero, X.; Varela-Fernández, R.; Martín-Pastor, M.; Conde-Penedo, A.; Aguiar, P.; González-Barcia, M.; Fernández-Ferreiro, A.; Otero-Espinar, F.J. In situ forming and mucoadhesive ophthalmic voriconazole/HPβCD hydrogels for the treatment of fungal keratitis. Int. J. Pharm. 2021, 597, 120318. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Yu, Z.; Cai, Z.; Yu, L.; Lv, Y. Voriconazole composited polyvinyl alcohol/hydroxypropyl-β-cyclodextrin nanofibers for ophthalmic delivery. PLoS ONE 2016, 11, e0167961. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suvarna, P.; Chaudhari, P.; Birangal, S.; Mallela, L.S.; Roy, S.; Koteshwara, A.; Aranjani, J.M.; Lewis, S.A. Voriconazole-cyclodextrin supramolecular ternary complex-loaded ocular films for management of fungal keratitis. Mol. Pharm. 2022, 19, 258–273. [Google Scholar] [CrossRef] [PubMed]
- Tang, P.; Wang, L.; Ma, X.; Xu, K.; Xiong, X.; Liao, X.; Li, H. Characterization and in vitro evaluation of the complexes of posaconazole with β- and 2,6-di-o-methyl-β-cyclodextrin. AAPS Pharm. Sci. Tech. 2017, 18, 104–114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, P.; Ma, X.; Wu, D.; Li, S.; Xu, K.; Tang, B.; Li, H. Posaconazole/hydroxypropyl-β-cyclodextrin host–guest system: Improving dissolution while maintaining antifungal activity. Carbohydr. Polym. 2016, 142, 16–23. [Google Scholar] [CrossRef]
- Maw, P.D.; Jansook, P. Cyclodextrin-based pickering nanoemulsions containing amphotericin B: Part I. evaluation of oil/cyclodextrin and amphotericin B/cyclodextrin inclusion complexes. J. Drug Deliv. Sci. Technol. 2022, 68, 103118. [Google Scholar] [CrossRef]
- Rajagopalan, N.; Chen, S.C.; Chow, W.S. A study of the inclusion complex of amphotericin-B with γ-cyclodextrin. Int. J. Pharm. 1986, 29, 161–168. [Google Scholar] [CrossRef]
- Ruiz, H.K.; Serrano, D.R.; Dea-Ayuela, M.A.; Bilbao-Ramos, P.E.; Bolás-Fernández, F.; Torrado, J.J.; Molero, G. New amphotericin B-gamma cyclodextrin formulation for topical use with synergistic activity against diverse fungal species and Leishmania spp. Int. J. Pharm. 2014, 473, 148–157. [Google Scholar] [CrossRef]
- Wang, J.; Jin, Z.; Xu, X. Gamma-cyclodextrin on enhancement of water solubility and store stability of nystatin. J. Incl. Phenom. Macrocycl. Chem. 2014, 78, 145–150. [Google Scholar] [CrossRef]
- Koontz, J.L.; Marcy, J.E. Formation of natamycin: Cyclodextrin inclusion complexes and their characterization. J. Agric. Food Chem. 2003, 51, 7106–7110. [Google Scholar] [CrossRef]
- Cevher, E.; Şensoy, D.; Zloh, M.; Mülazımoğlu, L. Preparation and characterisation of natamycin: γ-cyclodextrin inclusion complex and its evaluation in vaginal mucoadhesive formulations. J. Pharm. Sci. 2008, 97, 4319–4335. [Google Scholar] [CrossRef]
- Spulber, M.; Pinteala, M.; Fifere, A.; Harabagiu, V.; Simionescu, B.C. Inclusion complexes of 5-flucytosine with β-cyclodextrin and hydroxypropyl-β-cyclodextrin: Characterization in aqueous solution and in solid state. J. Incl. Phenom. Macrocycl. Chem. 2008, 62, 117–125. [Google Scholar] [CrossRef]
- Uzqueda, M.; Martín, C.; Zornoza, A.; Sánchez, M.; Vélaz, I. Physicochemical characterization of terbinafine-cyclodextrin complexes in solution and in the solid state. J. Incl. Phenom. Macrocycl. Chem. 2010, 66, 393–402. [Google Scholar] [CrossRef]
- Higuchi, T.; Connors, K.A. Phase-solubility techniques. Adv. Anal. Chem. Instrum. 1965, 4, 117–212. [Google Scholar]
- Loftsson, T.; Brewster, M.E. Cyclodextrins as functional excipients: Methods to enhance complexation efficiency. J. Pharm. Sci. 2012, 101, 3019–3032. [Google Scholar] [CrossRef]
- Williams, A.C.; Barry, B.W. Penetration enhancers. Adv. Drug Deliv. Rev. 2012, 64, 128–137. [Google Scholar] [CrossRef]
- Kaur, I.P.; Smitha, R. Penetration enhancers and ocular bioadhesives: Two new avenues for ophthalmic drug delivery. Drug Dev. Ind. Pharm. 2002, 28, 353–369. [Google Scholar] [CrossRef]
- Behl, C.R.; Pimplaskar, H.K.; Sileno, A.P.; DeMeireles, J.; Romeo, V.D. Effects of physicochemical properties and other factors on systemic nasal drug delivery. Adv. Drug Deliv. Rev. 1998, 29, 89–116. [Google Scholar] [CrossRef]
- Benson, H.A.E. Transdermal drug delivery: Penetration enhancement techniques. Curr. Drug Deliv. 2005, 2, 23–33. [Google Scholar] [CrossRef] [PubMed]
- Brewster, M.E.; Noppe, M.; Peeters, J.; Loftsson, T. Effect of the unstirred water layer on permeability enhancement by hydrophilic cyclodextrins. Int. J. Pharm. 2007, 342, 250–253. [Google Scholar] [CrossRef] [PubMed]
- Lipinski, C.A. Drug-like properties and the causes of poor solubility and poor permeability. J. Pharmacol. Toxicol. Methods 2000, 44, 235–249. [Google Scholar] [CrossRef]
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 2001, 46, 3–26. [Google Scholar] [CrossRef]
- Matsuda, H.; Arima, H. Cyclodextrins in transdermal and rectal delivery. Adv. Drug Deliv. Rev. 1999, 36, 81–99. [Google Scholar] [CrossRef]
- Tanaka, M.; Iwata, Y.; Kouzuki, Y.; Taniguchi, K.; Matsuda, H.; Arima, H.; Tsuchiya, S. Effect of 2-hydroxypropyl-β-cyclodextrin on percutaneous absorption of methyl paraben. J. Pharm. Pharmacol. 1995, 47, 897–900. [Google Scholar] [CrossRef]
- Uekama, K.; Hirayama, F.; Irie, T. Cyclodextrin drug carrier systems. Chem. Rev. 1998, 98, 2045–2076. [Google Scholar] [CrossRef]
- Loftsson, T.; Konrádsdóttir, F.; Másson, M. Influence of aqueous diffusion layer on passive drug diffusion from aqueous cyclodextrin solutions through biological membranes. Pharmazie 2006, 61, 83–89. [Google Scholar]
- Sayed, S.; Elsayed, I.; Ismail, M.M. Optimization of β-cyclodextrin consolidated micellar dispersion for promoting the transcorneal permeation of a practically insoluble drug. Int. J. Pharm. 2018, 549, 249–260. [Google Scholar] [CrossRef]
- Elmotasem, H.; Awad, G.E.A. A stepwise optimization strategy to formulate in situ gelling formulations comprising fluconazole-hydroxypropyl-beta-cyclodextrin complex loaded niosomal vesicles and eudragit nanoparticles for enhanced antifungal activity and prolonged ocular delivery. Asian J. Pharm. Sci. 2020, 15, 617–636. [Google Scholar] [CrossRef]
- Popielec, A.; Loftsson, T. Effects of cyclodextrins on the chemical stability of drugs. Int. J. Pharm. 2017, 531, 532–542. [Google Scholar] [CrossRef]
- Hammond, S. 3 biological activity of polyene antibiotics. Prog. Med. Chem. 1977, 14, 105–179. [Google Scholar]
- van Doorne, H.; Bosch, E.H. Stability and in vitro activity of nystatin and its γ-cyclodextrin complex against Candida albicans. Int. J. Pharm. 1991, 73, 43–49. [Google Scholar] [CrossRef]
- Brik, H. New high-molecular decomposition products of natamycin (pimaricin) with intact lactone-ring. J. Antibiot. 1976, 29, 632–637. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Florey, K. Analytical Profiles of Drug Substances and Excipients; Academic Press: Cambridge, MA, USA, 1981; Volume 9. [Google Scholar]
- Koontz, J.L.; Marcy, J.E.; Barbeau, W.E.; Duncan, S.E. Stability of natamycin and its cyclodextrin inclusion complexes in aqueous solution. J. Agric. Food Chem. 2003, 51, 7111–7114. [Google Scholar] [CrossRef] [PubMed]
- de Araújo, J.I.R.; de Moura França, L.; Soares, M.F.L.R.; Nadvorny, D.; Bedor, D.C.G.; Rolim, L.A.; Soares-Sobrinho, J.L. Stability study and oxidative degradation kinetics of posaconazole. Microchem. J. 2019, 151, 104181. [Google Scholar] [CrossRef]
- Santana, A.C.S.G.V.; Nadvorny, D.; da Rocha Passos, T.D.; de La Roca Soares, M.F.; Soares-Sobrinho, J.L. Influence of cyclodextrin on posaconazole stability, release and activity: Improve the utility of the drug. J. Drug Deliv. Sci. Technol. 2019, 53, 101153. [Google Scholar] [CrossRef]
- Loftsson, T.; Brewster, M.E.; Másson, M. Role of cyclodextrins in improving oral drug delivery. Am. J. Adv. Drug Deliv. 2004, 2, 261–275. [Google Scholar] [CrossRef]
- Kumar, N.; Goindi, S.; Bansal, G. Physicochemical evaluation and in vitro release studies on itraconazolium sulfate salt. Asian J. Pharm. Sci. 2014, 9, 8–16. [Google Scholar] [CrossRef] [Green Version]
- Rao, M.R.P.; Borate, S.G.; Thanki, K.C.; Ranpise, A.A.; Parikh, G.N. Development and in vitro evaluation of floating rosiglitazone maleate microspheres. Drug Dev. Ind. Pharm. 2009, 35, 834–842. [Google Scholar] [CrossRef]
- Williams, D.W.; Kuriyama, T.; Silva, S.; Malic, S.; Lewis, M.A.O. Candida biofilms and oral candidosis: Treatment and prevention. Periodontol. 2000 2011, 55, 250–265. [Google Scholar] [CrossRef] [Green Version]
- Ellepola, A.N.B.; Samaranayake, L.P. Oral candidal infections and antimycotics. Crit. Rev. Oral Biol. Med. 2000, 11, 172–198. [Google Scholar] [CrossRef] [Green Version]
- Ayensu, I.; Mitchell, J.C.; Boateng, J.S. Development and physico-mechanical characterisation of lyophilised chitosan wafers as potential protein drug delivery systems via the buccal mucosa. Colloids Surf. B Biointerfaces 2012, 91, 258–265. [Google Scholar] [CrossRef]
- Mura, P.; Mennini, N.; Kosalec, I.; Furlanetto, S.; Orlandini, S.; Jug, M. Amidated pectin-based wafers for econazole buccal delivery: Formulation optimization and antimicrobial efficacy estimation. Carbohydr. Polym. 2015, 121, 231–240. [Google Scholar] [CrossRef]
- Rindum, J.L.; Holmstrup, P.; Pedersen, M.; Rassing, M.R.; Stoltze, K. Miconazole chewing gum for treatment of chronic oral candidosis. Eur. J. Oral Sci. 1993, 101, 386–390. [Google Scholar] [CrossRef]
- Jacobsen, J.; Bjerregaard, S.; Pedersen, M. Cyclodextrin inclusion complexes of antimycotics intended to act in the oral cavity–drug supersaturation, toxicity on TR146 cells and release from a delivery system. Eur. J. Pharm. Biopharm. 1999, 48, 217–224. [Google Scholar] [CrossRef]
- Arthanari, S.; Mani, G.; Jang, J.H.; Choi, J.O.; Cho, Y.H.; Lee, J.H.; Cha, S.E.; Oh, H.S.; Kwon, D.H.; Jang, H.T. Preparation and characterization of gatifloxacin-loaded alginate/poly (vinyl alcohol) electrospun nanofibers. Artif. Cells Nanomed. Biotechnol. 2016, 44, 847–852. [Google Scholar] [CrossRef]
- Hu, X.; Liu, S.; Zhou, G.; Huang, Y.; Xie, Z.; Jing, X. Electrospinning of polymeric nanofibers for drug delivery applications. J. Control. Release 2014, 185, 12–21. [Google Scholar] [CrossRef]
- Tonglairoum, P.; Ngawhirunpat, T.; Rojanarata, T.; Kaomongkolgit, R.; Opanasopit, P. Fast-acting clotrimazole composited PVP/HPβCD nanofibers for oral candidiasis application. Pharm. Res. 2014, 31, 1893–1906. [Google Scholar] [CrossRef]
- Tonglairoum, P.; Ngawhirunpat, T.; Rojanarata, T.; Panomsuk, S.; Kaomongkolgit, R.; Opanasopit, P. Fabrication of mucoadhesive chitosan coated polyvinylpyrrolidone/cyclodextrin/clotrimazole sandwich patches for oral candidiasis. Carbohydr. Polym. 2015, 132, 173–179. [Google Scholar] [CrossRef]
- Rossi, S.; Vigani, B.; Sandri, G.; Bonferoni, M.C.; Caramella, C.M.; Ferrari, F. Recent advances in the mucus-interacting approach for vaginal drug delivery: From mucoadhesive to mucus-penetrating nanoparticles. Expert Opin. Drug Deliv. 2019, 16, 777–781. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Srikrishna, S.; Cardozo, L. The vagina as a route for drug delivery: A review. Int. Urogynecol. J. 2013, 24, 537–543. [Google Scholar] [CrossRef]
- Cevher, E.; Açma, A.; Sinani, G.; Aksu, B.; Zloh, M.; Mülazımoğlu, L. Bioadhesive tablets containing cyclodextrin complex of itraconazole for the treatment of vaginal candidiasis. Int. J. Biol. Macromol. 2014, 69, 124–136. [Google Scholar] [CrossRef]
- Kim, Y.-T.; Shin, B.-K.; Garripelli, V.K.; Kim, J.-K.; Davaa, E.; Jo, S.; Park, J.-S. A thermosensitive vaginal gel formulation with HPγCD for the pH-dependent release and solubilization of amphotericin B. Eur. J. Pharm. Sci. 2010, 41, 399–406. [Google Scholar] [CrossRef]
- Mukherjee, B.; Paul, P.; Dutta, L.; Chakraborty, S.; Dhara, M.; Mondal, L.; Sengupta, S. Pulmonary administration of biodegradable drug nanocarriers for more efficacious treatment of fungal infections in lungs: Insights based on recent findings. In Multifunctional Systems for Combined Delivery, Biosensing and Diagnostics; Grumezescu, A.M., Ed.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 261–280. [Google Scholar]
- Newman, S.P. Drug delivery to the lungs: Challenges and opportunities. Ther. Deliv. 2017, 8, 647–661. [Google Scholar] [CrossRef]
- Koushik, K.; Dhanda, D.S.; Cheruvu, N.P.; Kompella, U.B. Pulmonary delivery of deslorelin: Large-porous PLGA particles and HPβCD complexes. Pharm. Res. 2004, 21, 1119–1126. [Google Scholar] [CrossRef]
- Yang, W.; Chow, K.T.; Lang, B.; Wiederhold, N.P.; Johnston, K.P.; Williams III, R.O. In vitro characterization and pharmacokinetics in mice following pulmonary delivery of itraconazole as cyclodextrin solubilized solution. Eur. J. Pharm. Sci. 2010, 39, 336–347. [Google Scholar] [CrossRef]
- Tolman, J.A.; Nelson, N.A.; Son, Y.J.; Bosselmann, S.; Wiederhold, N.P.; Peters, J.I.; McConville, J.T.; Williams, R.O., III. Characterization and pharmacokinetic analysis of aerosolized aqueous voriconazole solution. Eur. J. Pharm. Biopharm. 2009, 72, 199–205. [Google Scholar] [CrossRef]
- Agrahari, V.; Mandal, A.; Agrahari, V.; Trinh, H.M.; Joseph, M.; Ray, A.; Hadji, H.; Mitra, R.; Pal, D.; Mitra, A.K. A comprehensive insight on ocular pharmacokinetics. Drug Deliv. Transl. Res. 2016, 6, 735–754. [Google Scholar] [CrossRef] [Green Version]
- Mahmoud, A.A.; El-Feky, G.S.; Kamel, R.; Awad, G.E. Chitosan/sulfobutylether-β-cyclodextrin nanoparticles as a potential approach for ocular drug delivery. Int. J. Pharm. 2011, 413, 229–236. [Google Scholar] [CrossRef]
- Yang, Y.; Fang, Z.; Chen, X.; Zhang, W.; Xie, Y.; Chen, Y.; Liu, Z.; Yuan, W. An overview of Pickering emulsions: Solid-particle materials, classification, morphology, and applications. Front. Pharmacol. 2017, 8, 287. [Google Scholar] [CrossRef] [Green Version]
- Maw, P.D.; Pienpinijtham, P.; Pruksakorn, P.; Jansook, P. Cyclodextrin-based Pickering nanoemulsions containing amphotericin B: Part II. Formulation, antifungal activity, and chemical stability. J. Drug Deliv. Sci. Technol. 2022, 69, 103174. [Google Scholar] [CrossRef]
- Garg, A.; Sharma, G.S.; Goyal, A.K.; Ghosh, G.; Si, S.C.; Rath, G. Recent advances in topical carriers of anti-fungal agents. Heliyon 2020, 6, e04663. [Google Scholar] [CrossRef] [PubMed]
- Che, J.; Wu, Z.; Shao, W.; Guo, P.; Lin, Y.; Pan, W.; Zeng, W.; Zhang, G.; Wu, C.; Xu, Y. Synergetic skin targeting effect of hydroxypropyl-β-cyclodextrin combined with microemulsion for ketoconazole. Eur. J. Pharm. Biopharm. 2015, 93, 136–148. [Google Scholar] [CrossRef] [PubMed]
- Alomrani, A.H.; Shazly, G.A.; Amara, A.A.; Badran, M.M. Itraconazole-hydroxypropyl-β-cyclodextrin loaded deformable liposomes: In vitro skin penetration studies and antifungal efficacy using Candida albicans as model. Colloids Surf. B Biointerfaces 2014, 121, 74–81. [Google Scholar] [CrossRef] [PubMed]
- Leclercq, L.; Nardello-Rataj, V. Pickering emulsions based on cyclodextrins: A smart solution for antifungal azole derivatives topical delivery. Eur. J. Pharm. Sci. 2016, 82, 126–137. [Google Scholar] [CrossRef]
- Omar, S.M.; Ibrahim, F.; Ismail, A. Formulation and evaluation of cyclodextrin-based nanosponges of griseofulvin as pediatric oral liquid dosage form for enhancing bioavailability and masking bitter taste. Saudi Pharm. J. 2020, 28, 349–361. [Google Scholar] [CrossRef]
- Adeoye, O.; Bártolo, I.; Conceição, J.; da Silva, A.B.; Duarte, N.; Francisco, A.P.; Taveira, N.; Cabral-Marques, H. Pyromellitic dianhydride crosslinked soluble cyclodextrin polymers: Synthesis, lopinavir release from sub-micron sized particles and anti-HIV-1 activity. Int. J. Pharm. 2020, 583, 119356. [Google Scholar] [CrossRef]
- Srivastava, S.; Mahor, A.; Singh, G.; Bansal, K.; Singh, P.P.; Gupta, R.; Dutt, R.; Alanazi, A.M.; Khan, A.A.; Kesharwani, P. Formulation development, in vitro and in vivo evaluation of topical hydrogel formulation of econazole nitrate-loaded β-cyclodextrin nanosponges. J. Pharm. Sci. 2021, 110, 3702–3714. [Google Scholar] [CrossRef]
- Gulati, N.; Gupta, H. Parenteral drug delivery: A review. Recent Pat. Drug Deliv. Formul. 2011, 5, 133–145. [Google Scholar] [CrossRef]
- Wang, M.; Jiang, J.; Cai, Y.; Zhao, M.; Wu, Q.; Cui, Y.; Zhao, C. In vitro and in vivo evaluation of a posaconazole-sulfobutyl ether-β-cyclodextrin inclusion complex. Biomed. Chromatogr. 2018, 32, e4364. [Google Scholar] [CrossRef]
- Mutlu-Agardan, N.B.; Yilmaz, S.; Kaynak Onurdag, F.; Celebi, N. Development of effective AmB/AmB–αCD complex double loaded liposomes using a factorial design for systemic fungal infection treatment. J. Liposome Res. 2021, 31, 177–188. [Google Scholar] [CrossRef]
Cyclodextrin | Number of Substituents a | MW (g/mol) of Given Substitution (MS) b | Solubility in Water (mg/mL) c | Calculated LogP(octanol/water) at 25 °C | Refs. |
---|---|---|---|---|---|
α-cyclodextrin (αCD) | - | 972 | 145 | −13 | [24,25,26] |
β-cyclodextrin (βCD) | - | 1135 | 18.5 | −14 | [24,25] |
γ-cyclodextrin (γCD) | - | 1297 | 232 | −17 | [24,25] |
2-hydroxypropyl-αCD (HPαCD) | 3.6 | 1199 (0.65) | >500 | <−10 | [24,27] |
Randomly methylated-βCD (RMβCD) | 9.7–13.6 | 1312 (1.8) | >500 | −6 | [24,25,28] |
2-hydroxypropyl-βCD (HPβCD) | 2.8–10.5 | 1400 (0.65) | >600 | −11 | [24,25,29] |
Hydroxyethyl-βCD (HEβCD) | 3.6 | 1443 (1.0) | >2000 | - | [24,29,30] |
Sulfobutylether-βCD (SBEβCD) | 6.2–6.9 | 2163 (0.9) | >500 | <−10 | [24,25] |
2-hydroxylpropyl-γCD (HPγCD) | 3.0–5.4 | 1576 (0.6) | >500 | −13 | [24,25] |
Drug | CD a | Medium | pH | Type | K1:1 (M−1) | K1:2 (M−1) | CE | Refs. |
---|---|---|---|---|---|---|---|---|
Miconazole | αCD | Water (25 °C) | - | AL | 333 | - | - | [32] |
Water (25 °C) | - | AL | 436 | - | 0.21 | [33] | ||
βCD | Water (25 °C) | - | AL | 293 | - | - | [32] | |
Water (25 °C) | - | BS | 596 b | - | 0.29 | [33] | ||
Water (37 °C) | - | AL | 6065 | - | 0.902 | [34] | ||
Phosphate buffer | pH 6 | AL | 97 | - | - | [35] | ||
pH 7 | AL | 82 | - | - | ||||
pH 8 | AL | 65 | - | - | ||||
pH 9 | AL | 39 | - | - | ||||
γCD | Water (25 °C) | - | AL | 695 | - | - | [32] | |
Water (25 °C) | - | AN | 488 | - | 0.24 | [33] | ||
HPβCD | Water (25 °C) | - | AL | 363 | - | - | [32] | |
Water (37 °C) | - | AL | 1017 | - | 0.361 | [34] | ||
HPγCD | Water (25 °C) | - | AL | 305 | - | - | [32] | |
HEβCD | Water (25 °C) | - | AL | 312 | - | - | [32] | |
Econazole | αCD | Water (22–23 °C) | pH 3 | AL | 354.5 | - | 0.371 | [36] |
pH 5 | AL | 2597.5 | - | 0.293 | ||||
pH 7.5 | AP | 870.2 | 15.0 | 0.041 | ||||
Water (25 °C) | - | AL | 505.54 | - | 0.075 | [37] | ||
Phosphate buffer saline (25 °C) | pH 7.4 | AL | 6.28 | - | 0.036 | |||
γCD | Water (22–23 °C) | pH 3 | BS | 246.7 b | - | 0.258 | [36] | |
pH 5 | BS | 1032.8 b | - | 0.117 | ||||
pH 7.5 | - c | - c | - c | - c | ||||
HPβCD | Water (25 °C) | - | AL | 52.21 | - | 0.077 | [37] | |
Phosphate buffer saline (25 °C) | pH 7.4 | AL | 86.34 | - | 0.051 | |||
HPγCD | Water (25 °C) | - | AL | 54.11 | - | 0.080 | [37] | |
Phosphate buffer saline (25 °C) | pH 7.4 | AL | 40.35 | - | 0.025 | |||
Ketoconazole | βCD | Water (25 °C) | - | AL | 1859 | - | - | [38] |
Water (37 °C) | - | AL | 4966 | - | - | [39] | ||
SBEβCD | Water | - | AL | 843 | - | 0.399 | [40] | |
Itraconazole | βCD | Phosphate buffer (25 °C) | pH 7.4 | AL | 885 | - | - | [41] |
HPβCD | Water (25 °C) | pH 2 | AP | 5280 | 38 | - | [42] | |
pH 4 | AP | 15 | 2504 | - | ||||
pH 7 | AP | 1926 | 1 | - | ||||
Voriconazole | αCD | Water (25 °C) | - | AL | 55.14 | - | 0.07 | [43] |
HPβCD | Water (25 °C) | - | AL | 224.27 | - | 0.29 | [43] | |
Water (37 °C) | - | AL | 320 | - | - | [44] | ||
SBEβCD | Water (25 °C) | - | AL | 324.98 | - | 0.741 | [45] | |
HPγCD | Water (25 °C) | - | AL | 242.65 | - | 0.32 | [43] | |
Posaconazole | βCD | Water (15 °C) | - | AP | 296.66 | 935.42 | - | [46] |
Water (25 °C) | - | AP | 300.28 | 983.19 | - | |||
Water (37 °C) | - | AP | 307.12 | 1025.44 | - | |||
HPβCD | Water (15 °C) | - | AP | 441.23 | 1289.18 | - | [47] | |
Water (25 °C) | - | AP | 494.67 | 1337.24 | - | |||
Water (37 °C) | - | AP | 431.36 | 1385.47 | - | |||
DMβCD | Water (15 °C) | - | AP | 393.25 | 1269.53 | - | [46] | |
Water (25 °C) | - | AP | 398.13 | 1296.27 | - | |||
Water (37 °C) | - | AP | 405.86 | 1340.29 | - | |||
Amphotericin B | αCD | Water (25 °C) | - | AL | 146 | - | 0.002 | [48] |
βCD | Water (25 °C) | - | AL | 72.1 | - | 0.001 | [48] | |
γCD | Water (25 °C) | - | AP | 4972.3 | 14.1 | 0.069 | [48] | |
Water (25 °C) | - | AP | 462 | 42 | - | [49] | ||
Water (25 °C) | - | AL | 1129 | - | 0.016 | [50] | ||
HPγCD | Water (25 °C) | - | AP | 2851.7 | 17.0 | 0.039 | [48] | |
Nystatin | αCD | Water (25 °C) | - | BS | - c | - c | - c | [51] |
βCD | Water (25 °C) | - | AL | 0.375 | - | - | [51] | |
γCD | Water (25 °C) | - | AL | 0.539 | - | - | [51] | |
Natamycin | βCD | Water (25 °C) | - | AL | 1010 | - | - | [52] |
γCD | Water (25 °C) | - | AN | - c | - c | - c | [52] | |
Water (25 °C) | - | AL | 667 | - | - | [53] | ||
HPβCD | Water (25 °C) | - | AN | - c | - c | - c | [52] | |
Flucytosine | βCD | Water (22 °C) | - | AL | 70 | - | - | [54] |
HPβCD | Water (22 °C) | - | AL | 297 | - | - | [54] | |
Terbinafine | αCD | 0.05 M Disodium hydrogen phosphate and 1M of Sodium hydroxide (25 °C) | pH 12 | AP | 2.8 | 1.1 | - | [55] |
βCD | 0.05 M Disodium hydrogen phosphate and 1M of Sodium hydroxide (25 °C) | pH 12 | BS | 25 | - | - | [55] | |
γCD | 0.05 M Disodium hydrogen phosphate and 1M of Dodium hydroxide (25 °C) | pH 12 | AL | 0.66 | - | - | [55] | |
HPβCD | 0.05 M Disodium hydrogen phosphate and 1M of Dodium hydroxide (25 °C) | pH 12 | AL | 23 | - | - | [55] | |
MβCD | 0.05 M Disodium hydrogen phosphate and 1M of Dodium hydroxide (25 °C) | pH 12 | AP | 46 | - | - | [55] |
Cyclodextrin | Drug | Biological Membrane | Observations | Refs. |
---|---|---|---|---|
βCD | Itraconazole | Rabbits’ cornea | Significantly higher ex vivo corneal flux compared with the drug suspension. | [69] |
HPβCD | Fluconazole | Rabbits’ cornea | Enhanced in vivo permeation compared with the plain drug solution. | [70] |
SBEβCD | Ketoconazole | Goats’ cornea | Increased ex vivo corneal permeation compared with ketoconazole alone | [40] |
RMβCD | Itraconazole | Caco-2 cell (intestinal cell line) monolayer | Enhanced in vitro permeation compared with drugs solubilized in dimethyl sulfoxide | [20] |
HPβCD | Voriconazole | Wister rats’ vaginal mucosa | Provided higher in vivo vaginal tissue uptake than without the HPβCD and voriconazole dispersion. | [21] |
Route of Administration | Drug | CD | Dosage Form/Delivery System | Experimental Findings | Refs. |
---|---|---|---|---|---|
Oral | Itraconazole | RMβCD | Floating tablet | Increased the drug solubility in the complexing medium, pH 1.2.; zero-order kinetic releasing profile, increased the floating time in the stomach, and increased the oral bioavailability. | [20] |
Posaconazole | HPβCD | Inclusion complex | Significantly increased the aqueous solubility of drugs, enhanced the drug dissolution rate in different simulated gastrointestinal conditions, and showed good susceptibility to microorganisms, i.e., Candida, Aspergillus, and Penicillium. | [47] | |
Oral local cavity | Econazole | SBEβCD | Wafer | Increased the drug solubility and dissolution rate; demonstrated controlled-release properties and mucoadhesive and antifungal efficacy. | [85] |
Miconazole | HPβCD | Chewing gum | Demonstrated high drug release and enhanced antifungal activity | [87] | |
Clotrimazole | HPβCD | Nanofiber | Demonstrated high mucoadhesive properties, an initial fast release followed by controlled release, a fast therapeutic efficacy in antifungals, and biocompatibility | [91] | |
Ocular | Econazole | SBEβCD | Nanoparticle | Good mucoadhesive and controlled-release characteristics and antifungal efficacy | [102] |
Fluconazole | HPβCD | Nanoparticle loaded in an situ gel and a noisome loaded in situ gel | Sustained release, enhanced corneal permeation, nonirritant to the ocular surface, and promising antifungal activity against Candida albicans | [70] | |
Itraconazole | βCD | Micelle | Good stability, safe, mucoadhesive and ability to permeate through the cornea of a rabbit, and reduced clinical symptoms in the anterior chamber, white lesions, and corneal opacity | [69] | |
Amphotericin B | γCD, HPγCD | Pickering nanoemulsion | Less amphotericin B aggregation and hemolytic properties than commercial products, sustained in vitro drug release, better stability than conventional nanoemulsion, and active against Candida albicans | [104] | |
Voriconazole | HPβCD | In situ gel | High mucoadhesive property, enhanced ex vivo permeation, and biocompatibility | [43] | |
Ketoconazole | SBEβCD | In situ gel | Increased ex vivo corneal permeation, increased corneal retention time, and biocompatibility | [40] | |
Pulmonary | Voriconazole | SBEβCD | Aerosol solution | Increased solubility, high bioavailability in lung tissue, and plasma | [100] |
Vaginal | Itraconazole | SBEβCD | Tablet | Increased solubility and increased antifungal efficacy, bioadhesive property, and prolonged drug release | [94] |
Amphotericin B | HPγCD | In situ gel | Increased solubility, biocompatibility, and controlled-release property | [95] | |
Voriconazole | HPβCD | In situ gel | Mucoadhesive property, sustained release, and increased in vivo vaginal tissue uptake | [21] | |
Natamycin | γCD | Bioadhesive tablet | High mucoadhesion and prolonged drug release | [53] | |
Dermal | Itraconazole | HPβCD | Deformable liposome | Better permeability to the skin layer than conventional liposomes and active antifungal activity against Candida albicans | [107] |
Econazole | βCD | Nanosponge | Enhanced permeation in in vitro goatskin, ability to inhibit fungal growth in both in vitro and in vivo studies | [111] | |
Econazole | αCD, βCD, γCD | Pickering emulsion | Good stability, biocompatibility, and antifungal activity against Candida albicans | [108] | |
Systemic | Posaconazole | SBEβCD | Inclusion complex | Enhanced solubility and dissolution property, improved bioavailability (1.6 times higher) than pure posaconazole | [113] |
Amphotericin B | αCD | Double-loaded liposome | Higher physical stability, controlled-release manner, and four times higher antifungal activity (minimal MIC and MFC values) than the marketed product Ambisone® | [114] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soe, H.M.S.H.; Maw, P.D.; Loftsson, T.; Jansook, P. A Current Overview of Cyclodextrin-Based Nanocarriers for Enhanced Antifungal Delivery. Pharmaceuticals 2022, 15, 1447. https://doi.org/10.3390/ph15121447
Soe HMSH, Maw PD, Loftsson T, Jansook P. A Current Overview of Cyclodextrin-Based Nanocarriers for Enhanced Antifungal Delivery. Pharmaceuticals. 2022; 15(12):1447. https://doi.org/10.3390/ph15121447
Chicago/Turabian StyleSoe, Hay Man Saung Hnin, Phyo Darli Maw, Thorsteinn Loftsson, and Phatsawee Jansook. 2022. "A Current Overview of Cyclodextrin-Based Nanocarriers for Enhanced Antifungal Delivery" Pharmaceuticals 15, no. 12: 1447. https://doi.org/10.3390/ph15121447
APA StyleSoe, H. M. S. H., Maw, P. D., Loftsson, T., & Jansook, P. (2022). A Current Overview of Cyclodextrin-Based Nanocarriers for Enhanced Antifungal Delivery. Pharmaceuticals, 15(12), 1447. https://doi.org/10.3390/ph15121447