New Incretin Combination Treatments under Investigation in Obesity and Metabolism: A Systematic Review
Abstract
:1. Introduction
2. Methods
3. Results
3.1. Approved Pharmacotherapy for Obesity
3.2. Orlistat
3.3. Phentermine/Topiramate
3.4. Bupropion/Naltrexone
3.5. Liraglutide
3.6. Semaglutide
3.7. Pharmacotherapy for Obesity under Investigation
Biology of Incretins
3.8. GIP/GLP-1 Receptor Agonists
3.9. GLP-1/Glucagon Receptor Agonists
3.10. GLP-1 Receptor Agonist/Sodium Glucose Co-Transporter-2 (SGLT2) Inhibitor
3.11. GLP-1 Receptor Agonist/Amylin Analogue
3.12. GLP-1/GIP/Glucagon Receptor Agonists
3.13. GLP-1 Receptor Agonist/Oxyntomodulin/Peptide YY
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Finer, N. Medical Consequences of Obesity. Medicine (Baltimore) 2015, 43, 88–93. [Google Scholar] [CrossRef]
- Abarca-Gómez, L.; Abdeen, Z.A.; Hamid, Z.A.; Abu-Rmeileh, N.M.; Acosta-Cazares, B.; Acuin, C.; Adams, R.J.; Aekplakorn, W.; Afsana, K.; Aguilar-Salinas, C.A.; et al. Worldwide Trends in Body-Mass Index, Underweight, Overweight, and Obesity from 1975 to 2016: A Pooled Analysis of 2416 Population-Based Measurement Studies in 128·9 Million Children, Adolescents, and Adults. Lancet 2017, 390, 2627–2642. [Google Scholar] [CrossRef] [Green Version]
- Kelly, T.; Yang, W.; Chen, C.-S.; Reynolds, K.; He, J. Global Burden of Obesity in 2005 and Projections to 2030. Int. J. Obes. 2008, 32, 1431–1437. [Google Scholar] [CrossRef] [Green Version]
- WHO. Obesity: Preventing and Managing the Global Epidemic. Report of a WHO Consultation; Technical Report; World Health Organisation: Geneva, Switzerland, 2000; pp. 1–253. [Google Scholar]
- Hill, J.O. Understanding and Addressing the Epidemic of Obesity: An Energy Balance Perspective. Endocr. Rev. 2006, 27, 750–761. [Google Scholar] [CrossRef] [Green Version]
- Kang, J.G.; Park, C.-Y. Anti-Obesity Drugs: A Review about Their Effects and Safety. Diabetes Metab. J. 2012, 36, 13. [Google Scholar] [CrossRef] [Green Version]
- Halpern, B.; Mancini, M.C. Safety Assessment of Combination Therapies in the Treatment of Obesity: Focus on Naltrexone/Bupropion Extended Release and Phentermine-Topiramate Extended Release. Expert Opin. Drug Saf. 2017, 16, 27–39. [Google Scholar] [CrossRef]
- Halpern, B.; Halpern, A. Safety Assessment of FDA-Approved (Orlistat and Lorcaserin) Anti-Obesity Medications. Expert Opin. Drug Saf. 2015, 14, 305–315. [Google Scholar] [CrossRef]
- Nuffer, W.A.; Trujillo, J.M. Liraglutide: A New Option for the Treatment of Obesity. Pharmacotherapy 2015, 35, 926–934. [Google Scholar] [CrossRef] [PubMed]
- Lewis, A.L.; McEntee, N.; Holland, J.; Patel, A. Development and Approval of Rybelsus (Oral Semaglutide): Ushering in a New Era in Peptide Delivery. Drug Deliv. Transl. Res. 2021. [Google Scholar] [CrossRef]
- Sharretts, J.; Galescu, O.; Gomatam, S.; Andraca-Carrera, E.; Hampp, C.; Yanoff, L. Cancer Risk Associated with Lorcaserin—The FDA’s Review of the CAMELLIA-TIMI 61 Trial. N. Engl. J. Med. 2020, 383, 1000–1002. [Google Scholar] [CrossRef]
- Anderson, S.L.; Beutel, T.R.; Trujillo, J.M. Oral Semaglutide in Type 2 Diabetes. J. Diabetes Complicat. 2020, 34, 107520. [Google Scholar] [CrossRef]
- Srivastava, G.; Apovian, C. Future Pharmacotherapy for Obesity: New Anti-Obesity Drugs on the Horizon. Curr. Obes. Rep. 2018, 7, 147–161. [Google Scholar] [CrossRef]
- Apovian, C.M.; Garvey, W.T.; Ryan, D.H. Challenging Obesity: Patient, Provider, and Expert Perspectives on the Roles of Available and Emerging Nonsurgical Therapies. Obes. Silver Spring 2015, 23 (Suppl. 2), S1–S26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gorgojo-Martínez, J.J.; Basagoiti-Carreño, B.; Sanz-Velasco, A.; Serrano-Moreno, C.; Almodóvar-Ruiz, F. Effectiveness and Tolerability of Orlistat and Liraglutide in Patients with Obesity in a Real-World Setting: The XENSOR Study. Int. J. Clin. Pract. 2019, 73, e13399. [Google Scholar] [CrossRef]
- Muls, E.; Kolanowski, J.; Scheen, A.; Van Gaal, L.; ObelHyx Study Group. The Effects of Orlistat on Weight and on Serum Lipids in Obese Patients with Hypercholesterolemia: A Randomized, Double-Blind, Placebo-Controlled, Multicentre Study. Int. J. Obes. 2001, 25, 1713–1721. [Google Scholar] [CrossRef] [Green Version]
- Wilding, J.P.H.; Batterham, R.L.; Calanna, S.; Davies, M.; Van Gaal, L.F.; Lingvay, I.; McGowan, B.M.; Rosenstock, J.; Tran, M.T.D.; Wadden, T.A.; et al. Once-Weekly Semaglutide in Adults with Overweight or Obesity. N. Engl. J. Med. 2021, 384, 989. [Google Scholar] [CrossRef]
- Wadden, T.A.; Foreyt, J.P.; Foster, G.D.; Hill, J.O.; Klein, S.; O’Neil, P.M.; Perri, M.G.; Pi-Sunyer, F.X.; Rock, C.L.; Erickson, J.S.; et al. Weight Loss with Naltrexone SR/Bupropion SR Combination Therapy as an Adjunct to Behavior Modification: The COR-BMOD Trial. Obes. Silver Spring 2011, 19, 110–120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garvey, W.T.; Ryan, D.H.; Look, M.; Gadde, K.M.; Allison, D.B.; Peterson, C.A.; Schwiers, M.; Day, W.W.; Bowden, C.H. Two-Year Sustained Weight Loss and Metabolic Benefits with Controlled-Release Phentermine/Topiramate in Obese and Overweight Adults (SEQUEL): A Randomized, Placebo-Controlled, Phase 3 Extension Study. Am. J. Clin. Nutr. 2011, 95, 297–308. [Google Scholar] [CrossRef] [Green Version]
- Smith, S.R.; Weissman, N.J.; Anderson, C.M.; Sanchez, M.; Chuang, E.; Stubbe, S.; Bays, H.; Shanahan, W.R.; Behavioral Modification and Lorcaserin for Overweight and Obesity Management (BLOOM) Study Group. Multicenter, Placebo-Controlled Trial of Lorcaserin for Weight Management. N. Engl. J. Med. 2010, 363, 245–256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leblanc, E.S.; O’Connor, E.; Whitlock, E.P.; Patnode, C.D.; Kapka, T. Effectiveness of Primary Care-Relevant Treatments for Obesity in Adults: A Systematic Evidence Review for the U.S. Preventive Services Task Force. Ann. Intern. Med. 2011, 155, 434–447. [Google Scholar] [CrossRef]
- Torgerson, J.S.; Hauptman, J.; Boldrin, M.N.; Sjöström, L. XENical in the Prevention of Diabetes in Obese Subjects (XENDOS) Study: A Randomized Study of Orlistat as an Adjunct to Lifestyle Changes for the Prevention of Type 2 Diabetes in Obese Patients. Diabetes Care 2004, 27, 155–161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siebenhofer, A.; Jeitler, K.; Horvath, K.; Berghold, A.; Posch, N.; Meschik, J.; Semlitsch, T. Long-Term Effects of Weight-Reducing Drugs in People with Hypertension. Cochrane Database Syst. Rev. 2016, 3, CD007654. [Google Scholar] [CrossRef]
- Reitsma, J.B.; Castro Cabezas, M.; de Bruin, T.W.; Erkelens, D.W. Relationship between Improved Postprandial Lipemia and Low-Density Lipoprotein Metabolism during Treatment with Tetrahydrolipstatin, a Pancreatic Lipase Inhibitor. Metabolism 1994, 43, 293–298. [Google Scholar] [CrossRef]
- Hollander, P.A.; Elbein, S.C.; Hirsch, I.B.; Kelley, D.; McGill, J.; Taylor, T.; Weiss, S.R.; Crockett, S.E.; Kaplan, R.A.; Comstock, J.; et al. Role of Orlistat in the Treatment of Obese Patients with Type 2 Diabetes. A 1-Year Randomized Double-Blind Study. Diabetes Care 1998, 21, 1288–1294. [Google Scholar] [CrossRef]
- Sall, D.; Wang, J.; Rashkin, M.; Welch, M.; Droege, C.; Schauer, D. Orlistat-Induced Fulminant Hepatic Failure. Clin. Obes. 2014, 4, 342–347. [Google Scholar] [CrossRef]
- Weir, M.A.; Beyea, M.M.; Gomes, T.; Juurlink, D.N.; Mamdani, M.; Blake, P.G.; Wald, R.; Garg, A.X. Orlistat and Acute Kidney Injury: An Analysis of 953 Patients. Arch. Intern. Med. 2011, 171, 702–710. [Google Scholar] [CrossRef] [Green Version]
- Padwal, R.; Li, S.K.; Lau, D.C.W. Long-Term Pharmacotherapy for Obesity and Overweight. Cochrane Database Syst. Rev. 2004, CD004094. [Google Scholar] [CrossRef]
- Filippatos, T.D.; Derdemezis, C.S.; Gazi, I.F.; Nakou, E.S.; Mikhailidis, D.P.; Elisaf, M.S. Orlistat-Associated Adverse Effects and Drug Interactions: A Critical Review. Drug Saf. 2008, 31, 53–65. [Google Scholar] [CrossRef] [PubMed]
- Fleming, J.W.; McClendon, K.S.; Riche, D.M. New Obesity Agents: Lorcaserin and Phentermine/Topiramate. Ann. Pharmacother. 2013, 47, 1007–1016. [Google Scholar] [CrossRef]
- Allison, D.B.; Gadde, K.M.; Garvey, W.T.; Peterson, C.A.; Schwiers, M.L.; Najarian, T.; Tam, P.Y.; Troupin, B.; Day, W.W. Controlled-Release Phentermine/Topiramate in Severely Obese Adults: A Randomized Controlled Trial (EQUIP). Obes. Silver Spring 2012, 20, 330–342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gadde, K.M.; Allison, D.B.; Ryan, D.H.; Peterson, C.A.; Troupin, B.; Schwiers, M.L.; Day, W.W. Effects of Low-Dose, Controlled-Release, Phentermine plus Topiramate Combination on Weight and Associated Comorbidities in Overweight and Obese Adults (CONQUER): A Randomised, Placebo-Controlled, Phase 3 Trial. Lancet 2011, 377, 1341–1352. [Google Scholar] [CrossRef]
- Shin, J.H.; Gadde, K.M. Clinical Utility of Phentermine/Topiramate (Qsymia™) Combination for the Treatment of Obesity. Diabetes Metab. Syndr. Obes. 2013, 6, 131–139. [Google Scholar] [CrossRef] [Green Version]
- Huecker, M.R.; Smiley, A.; Saadabadi, A. Bupropion. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2021. [Google Scholar]
- Hendershot, C.S.; Wardell, J.D.; Samokhvalov, A.V.; Rehm, J. Effects of Naltrexone on Alcohol Self-Administration and Craving: Meta-Analysis of Human Laboratory Studies. Addict. Biol. 2016, 22, 1515–1527. [Google Scholar] [CrossRef]
- Verpeut, J.L.; Bello, N.T. Drug Safety Evaluation of Naltrexone/Bupropion for the Treatment of Obesity. Expert Opin. Drug Saf. 2014, 13, 831–841. [Google Scholar] [CrossRef]
- Caixàs, A.; Albert, L.; Capel, I.; Rigla, M. Naltrexone Sustained-Release/Bupropion Sustained-Release for the Management of Obesity: Review of the Data to Date. Drug Des. Dev. Ther. 2014, 8, 1419–1427. [Google Scholar] [CrossRef] [Green Version]
- Greenway, F.L.; Fujioka, K.; Plodkowski, R.A.; Mudaliar, S.; Guttadauria, M.; Erickson, J.; Kim, D.D.; Dunayevich, E.; COR-I Study Group. Effect of Naltrexone plus Bupropion on Weight Loss in Overweight and Obese Adults (COR-I): A Multicentre, Randomised, Double-Blind, Placebo-Controlled, Phase 3 Trial. Lancet 2010, 376, 595–605. [Google Scholar] [CrossRef]
- Christou, G.; Kiortsis, D. The Efficacy and Safety of the Naltrexone/Bupropion Combination for the Treatment of Obesity: An Update. Hormones 2015. [Google Scholar] [CrossRef] [Green Version]
- Nauck, M.A.; Meier, J.J. Incretin Hormones: Their Role in Health and Disease. Diabetes Obes. Metab. 2018, 20 (Suppl. 1), 5–21. [Google Scholar] [CrossRef] [PubMed]
- Knudsen, L.B.; Lau, J. The Discovery and Development of Liraglutide and Semaglutide. Front. Endocrinol. 2019, 10, 155. [Google Scholar] [CrossRef] [Green Version]
- Flint, A.; Raben, A.; Astrup, A.; Holst, J.J. Glucagon-like Peptide 1 Promotes Satiety and Suppresses Energy Intake in Humans. J. Clin. Investig. 1998, 101, 515–520. [Google Scholar] [CrossRef]
- Valassi, E.; Scacchi, M.; Cavagnini, F. Neuroendocrine Control of Food Intake. Nutr. Metab. Cardiovasc. Dis. 2008, 18, 158–168. [Google Scholar] [CrossRef]
- Davies, M.J.; Bergenstal, R.; Bode, B.; Kushner, R.F.; Lewin, A.; Skjøth, T.V.; Andreasen, A.H.; Jensen, C.B.; DeFronzo, R.A.; NN8022-1922 Study Group. Efficacy of Liraglutide for Weight Loss Among Patients With Type 2 Diabetes: The SCALE Diabetes Randomized Clinical Trial. JAMA 2015, 314, 687–699. [Google Scholar] [CrossRef] [Green Version]
- Ladenheim, E.E. Liraglutide and Obesity: A Review of the Data so Far. Drug Des. Dev. Ther. 2015, 9, 1867–1875. [Google Scholar] [CrossRef] [Green Version]
- Jackson, S.H.; Martin, T.S.; Jones, J.D.; Seal, D.; Emanuel, F. Liraglutide (Victoza): The First Once-Daily Incretin Mimetic Injection for Type-2 Diabetes. Pharm. Ther. 2010, 35, 498–529. [Google Scholar]
- le Roux, C.W.; Astrup, A.; Fujioka, K.; Greenway, F.; Lau, D.C.W.; Van Gaal, L.; Ortiz, R.V.; Wilding, J.P.H.; Skjøth, T.V.; Manning, L.S.; et al. 3 Years of Liraglutide versus Placebo for Type 2 Diabetes Risk Reduction and Weight Management in Individuals with Prediabetes: A Randomised, Double-Blind Trial. Lancet 2017, 389, 1399–1409. [Google Scholar] [CrossRef] [Green Version]
- Brunton, S.A.; Mosenzon, O.; Wright, E.E. Integrating Oral Semaglutide into Clinical Practice in Primary Care: For Whom, When, and How? Postgrad. Med. 2020, 132 (Suppl. 2), 48–60. [Google Scholar] [CrossRef]
- O’Neil, P.M.; Birkenfeld, A.L.; McGowan, B.; Mosenzon, O.; Pedersen, S.D.; Wharton, S.; Carson, C.G.; Jepsen, C.H.; Kabisch, M.; Wilding, J.P.H. Efficacy and Safety of Semaglutide Compared with Liraglutide and Placebo for Weight Loss in Patients with Obesity: A Randomised, Double-Blind, Placebo and Active Controlled, Dose-Ranging, Phase 2 Trial. Lancet 2018, 392, 637–649. [Google Scholar] [CrossRef]
- Aroda, V.R.; Rosenstock, J.; Terauchi, Y.; Altuntas, Y.; Lalic, N.M.; Morales Villegas, E.C.; Jeppesen, O.K.; Christiansen, E.; Hertz, C.L.; Haluzík, M.; et al. PIONEER 1: Randomized Clinical Trial of the Efficacy and Safety of Oral Semaglutide Monotherapy in Comparison With Placebo in Patients With Type 2 Diabetes. Diabetes Care 2019, 42, 1724–1732. [Google Scholar] [CrossRef]
- Zinman, B.; Aroda, V.R.; Buse, J.B.; Cariou, B.; Harris, S.B.; Hoff, S.T.; Pedersen, K.B.; Tarp-Johansen, M.J.; Araki, E.; PIONEER 8 Investigators. Efficacy, Safety, and Tolerability of Oral Semaglutide Versus Placebo Added to Insulin With or Without Metformin in Patients With Type 2 Diabetes: The PIONEER 8 Trial. Diabetes Care 2019, 42, 2262–2271. [Google Scholar] [CrossRef] [Green Version]
- Rodbard, H.W.; Rosenstock, J.; Canani, L.H.; Deerochanawong, C.; Gumprecht, J.; Lindberg, S.Ø.; Lingvay, I.; Søndergaard, A.L.; Treppendahl, M.B.; Montanya, E.; et al. Oral Semaglutide Versus Empagliflozin in Patients With Type 2 Diabetes Uncontrolled on Metformin: The PIONEER 2 Trial. Diabetes Care 2019, 42, 2272–2281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosenstock, J.; Allison, D.; Birkenfeld, A.L.; Blicher, T.M.; Deenadayalan, S.; Jacobsen, J.B.; Serusclat, P.; Violante, R.; Watada, H.; Davies, M.; et al. Effect of Additional Oral Semaglutide vs Sitagliptin on Glycated Hemoglobin in Adults With Type 2 Diabetes Uncontrolled With Metformin Alone or With Sulfonylurea: The PIONEER 3 Randomized Clinical Trial. JAMA 2019, 321, 1466–1480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pieber, T.R.; Bode, B.; Mertens, A.; Cho, Y.M.; Christiansen, E.; Hertz, C.L.; Wallenstein, S.O.R.; Buse, J.B.; PIONEER 7 Investigators. Efficacy and Safety of Oral Semaglutide with Flexible Dose Adjustment versus Sitagliptin in Type 2 Diabetes (PIONEER 7): A Multicentre, Open-Label, Randomised, Phase 3a Trial. Lancet Diabetes Endocrinol. 2019, 7, 528–539. [Google Scholar] [CrossRef]
- Pratley, R.; Amod, A.; Hoff, S.T.; Kadowaki, T.; Lingvay, I.; Nauck, M.; Pedersen, K.B.; Saugstrup, T.; Meier, J.J.; PIONEER 4 Investigators. Oral Semaglutide versus Subcutaneous Liraglutide and Placebo in Type 2 Diabetes (PIONEER 4): A Randomised, Double-Blind, Phase 3a Trial. Lancet 2019, 394, 39–50. [Google Scholar] [CrossRef]
- Baggio, L.L.; Drucker, D.J. Biology of Incretins: GLP-1 and GIP. Gastroenterology 2007, 132, 2131–2157. [Google Scholar] [CrossRef] [PubMed]
- Nauck, M.A.; Meier, J.J. The Incretin Effect in Healthy Individuals and Those with Type 2 Diabetes: Physiology, Pathophysiology, and Response to Therapeutic Interventions. Lancet Diabetes Endocrinol. 2016, 4, 525–536. [Google Scholar] [CrossRef]
- Usdin, T.B.; Mezey, E.; Button, D.C.; Brownstein, M.J.; Bonner, T.I. Gastric Inhibitory Polypeptide Receptor, a Member of the Secretin-Vasoactive Intestinal Peptide Receptor Family, Is Widely Distributed in Peripheral Organs and the Brain. Endocrinology 1993, 133, 2861–2870. [Google Scholar] [CrossRef] [PubMed]
- Thornberry, N.A.; Gallwitz, B. Mechanism of Action of Inhibitors of Dipeptidyl-Peptidase-4 (DPP-4). Best Pract. Res. Clin. Endocrinol. Metab. 2009, 23, 479–486. [Google Scholar] [CrossRef]
- Holst, J.J. The Incretin System in Healthy Humans: The Role of GIP and GLP-1. Metabolism 2019, 96, 46–55. [Google Scholar] [CrossRef] [Green Version]
- Willard, F.S.; Douros, J.D.; Gabe, M.B.; Showalter, A.D.; Wainscott, D.B.; Suter, T.M.; Capozzi, M.E.; van der Velden, W.J.; Stutsman, C.; Cardona, G.R.; et al. Tirzepatide Is an Imbalanced and Biased Dual GIP and GLP-1 Receptor Agonist. JCI Insight 2020, 5, 140532. [Google Scholar] [CrossRef]
- Frias, J.P.; Nauck, M.A.; Van, J.; Benson, C.; Bray, R.; Cui, X.; Milicevic, Z.; Urva, S.; Haupt, A.; Robins, D.A. Efficacy and Tolerability of Tirzepatide, a Dual Glucose-Dependent Insulinotropic Peptide and Glucagon-like Peptide-1 Receptor Agonist in Patients with Type 2 Diabetes: A 12-Week, Randomized, Double-Blind, Placebo-Controlled Study to Evaluate Different Dose-Escalation Regimens. Diabetes Obes. Metab. 2020, 22, 938–946. [Google Scholar] [CrossRef]
- Frias, J.P.; Nauck, M.A.; Van, J.; Kutner, M.E.; Cui, X.; Benson, C.; Urva, S.; Gimeno, R.E.; Milicevic, Z.; Robins, D.; et al. Efficacy and Safety of LY3298176, a Novel Dual GIP and GLP-1 Receptor Agonist, in Patients with Type 2 Diabetes: A Randomised, Placebo-Controlled and Active Comparator-Controlled Phase 2 Trial. Lancet 2018, 392, 2180–2193. [Google Scholar] [CrossRef]
- Coskun, T.; Sloop, K.W.; Loghin, C.; Alsina-Fernandez, J.; Urva, S.; Bokvist, K.B.; Cui, X.; Briere, D.A.; Cabrera, O.; Roell, W.C.; et al. LY3298176, a Novel Dual GIP and GLP-1 Receptor Agonist for the Treatment of Type 2 Diabetes Mellitus: From Discovery to Clinical Proof of Concept. Mol. Metab. 2018, 18, 3–14. [Google Scholar] [CrossRef] [PubMed]
- Min, T.; Bain, S.C. The Role of Tirzepatide, Dual GIP and GLP-1 Receptor Agonist, in the Management of Type 2 Diabetes: The SURPASS Clinical Trials. Diabetes Ther. Res. Treat. Educ. Diabetes Relat. Disord. 2021, 12, 143–157. [Google Scholar] [CrossRef]
- “Stunning” Twincretin Beats Semaglutide in Type 2 Diabetes. Available online: http://www.medscape.com/viewarticle/953825 (accessed on 28 June 2021).
- Holst, J.J.; Albrechtsen, N.J.W.; Gabe, M.B.N.; Rosenkilde, M.M. Oxyntomodulin: Actions and Role in Diabetes. Peptides 2018, 100, 48–53. [Google Scholar] [CrossRef]
- Pocai, A. Action and Therapeutic Potential of Oxyntomodulin. Mol. Metab. 2014, 3, 241–251. [Google Scholar] [CrossRef] [PubMed]
- Camilleri, M.; Acosta, A. Combination Therapies for Obesity. Metab. Syndr. Relat. Disord. 2018, 16, 390–394. [Google Scholar] [CrossRef]
- Wynne, K.; Park, A.J.; Small, C.J.; Meeran, K.; Ghatei, M.A.; Frost, G.S.; Bloom, S.R. Oxyntomodulin Increases Energy Expenditure in Addition to Decreasing Energy Intake in Overweight and Obese Humans: A Randomised Controlled Trial. Int. J. Obes. 2006, 30, 1729–1736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wynne, K.; Park, A.J.; Small, C.J.; Patterson, M.; Ellis, S.M.; Murphy, K.G.; Wren, A.M.; Frost, G.S.; Meeran, K.; Ghatei, M.A.; et al. Subcutaneous Oxyntomodulin Reduces Body Weight in Overweight and Obese Subjects: A Double-Blind, Randomized, Controlled Trial. Diabetes 2005, 54, 2390–2395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scott, R.; Minnion, J.; Tan, T.; Bloom, S.R. Oxyntomodulin Analogue Increases Energy Expenditure via the Glucagon Receptor. Peptides 2018, 104, 70–77. [Google Scholar] [CrossRef]
- Shankar, S.S.; Shankar, R.R.; Mixson, L.A.; Miller, D.L.; Pramanik, B.; O’Dowd, A.K.; Williams, D.M.; Frederick, C.B.; Beals, C.R.; Stoch, S.A.; et al. Native Oxyntomodulin Has Significant Glucoregulatory Effects Independent of Weight Loss in Obese Humans With and Without Type 2 Diabetes. Diabetes 2018, 67, 1105–1112. [Google Scholar] [CrossRef] [Green Version]
- Elvert, R.; Bossart, M.; Herling, A.W.; Weiss, T.; Zhang, B.; Kannt, A.; Wagner, M.; Haack, T.; Evers, A.; Dudda, A.; et al. Team Players or Opponents: Coadministration of Selective Glucagon and GLP-1 Receptor Agonists in Obese Diabetic Monkeys. Endocrinology 2018, 159, 3105–3119. [Google Scholar] [CrossRef]
- Elashoff, M.; Matveyenko, A.V.; Gier, B.; Elashoff, R.; Butler, P.C. Pancreatitis, Pancreatic, and Thyroid Cancer with Glucagon-like Peptide-1-Based Therapies. Gastroenterology 2011, 141, 150–156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grieve, D.J.; Cassidy, R.S.; Green, B.D. Emerging Cardiovascular Actions of the Incretin Hormone Glucagon-like Peptide-1: Potential Therapeutic Benefits beyond Glycaemic Control? Br. J. Pharmacol. 2009, 157, 1340–1351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nauck, M.; Frid, A.; Hermansen, K.; Shah, N.S.; Tankova, T.; Mitha, I.H.; Zdravkovic, M.; Düring, M.; Matthews, D.R.; LEAD-2 Study Group. Efficacy and Safety Comparison of Liraglutide, Glimepiride, and Placebo, All in Combination with Metformin, in Type 2 Diabetes: The LEAD (Liraglutide Effect and Action in Diabetes)-2 Study. Diabetes Care 2009, 32, 84–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parker, V.E.R.; Robertson, D.; Wang, T.; Hornigold, D.C.; Petrone, M.; Cooper, A.T.; Posch, M.G.; Heise, T.; Plum-Moerschel, L.; Schlichthaar, H.; et al. Efficacy, Safety, and Mechanistic Insights of Cotadutide, a Dual Receptor Glucagon-Like Peptide-1 and Glucagon Agonist. J. Clin. Endocrinol. Metab. 2020, 105, dgz047. [Google Scholar] [CrossRef] [PubMed]
- Bonora, B.M.; Avogaro, A.; Fadini, G.P. Extraglycemic Effects of SGLT2 Inhibitors: A Review of the Evidence. Diabetes Metab. Syndr. Obes. Targets Ther. 2020, 13, 161–174. [Google Scholar] [CrossRef] [Green Version]
- Clar, C.; Gill, J.A.; Court, R.; Waugh, N. Systematic Review of SGLT2 Receptor Inhibitors in Dual or Triple Therapy in Type 2 Diabetes. BMJ Open 2012, 2, e001007. [Google Scholar] [CrossRef]
- Bolinder, J.; Ljunggren, Ö.; Kullberg, J.; Johansson, L.; Wilding, J.; Langkilde, A.M.; Sugg, J.; Parikh, S. Effects of Dapagliflozin on Body Weight, Total Fat Mass, and Regional Adipose Tissue Distribution in Patients with Type 2 Diabetes Mellitus with Inadequate Glycemic Control on Metformin. J. Clin. Endocrinol. Metab. 2012, 97, 1020–1031. [Google Scholar] [CrossRef] [Green Version]
- Yokote, K.; Sano, M.; Tsumiyama, I.; Keefe, D. Dose-Dependent Reduction in Body Weight with LIK066 (Licogliflozin) Treatment in Japanese Patients with Obesity. Diabetes Obes. Metab. 2020, 22, 1102–1110. [Google Scholar] [CrossRef] [PubMed]
- Lundkvist, P.; Sjöström, C.D.; Amini, S.; Pereira, M.J.; Johnsson, E.; Eriksson, J.W. Dapagliflozin Once-Daily and Exenatide Once-Weekly Dual Therapy: A 24-Week Randomized, Placebo-Controlled, Phase II Study Examining Effects on Body Weight and Prediabetes in Obese Adults without Diabetes. Diabetes Obes. Metab. 2017, 19, 49–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lundkvist, P.; Pereira, M.J.; Katsogiannos, P.; Sjöström, C.D.; Johnsson, E.; Eriksson, J.W. Dapagliflozin Once Daily plus Exenatide Once Weekly in Obese Adults without Diabetes: Sustained Reductions in Body Weight, Glycaemia and Blood Pressure over 1 Year. Diabetes Obes. Metab. 2017, 19, 1276–1288. [Google Scholar] [CrossRef]
- Anderson, S.L. Dapagliflozin Efficacy and Safety: A Perspective Review. Ther. Adv. Drug Saf. 2014, 5, 242–254. [Google Scholar] [CrossRef] [Green Version]
- Frías, J.P.; Guja, C.; Hardy, E.; Ahmed, A.; Dong, F.; Öhman, P.; Jabbour, S.A. Exenatide Once Weekly plus Dapagliflozin Once Daily versus Exenatide or Dapagliflozin Alone in Patients with Type 2 Diabetes Inadequately Controlled with Metformin Monotherapy (DURATION-8): A 28 Week, Multicentre, Double-Blind, Phase 3, Randomised Controlled Trial. Lancet Diabetes Endocrinol. 2016, 4, 1004–1016. [Google Scholar] [CrossRef]
- Fulcher, G.; Matthews, D.R.; Perkovic, V.; de Zeeuw, D.; Mahaffey, K.W.; Mathieu, C.; Woo, V.; Wysham, C.; Capuano, G.; Desai, M.; et al. Efficacy and Safety of Canagliflozin When Used in Conjunction with Incretin-Mimetic Therapy in Patients with Type 2 Diabetes. Diabetes Obes. Metab. 2016, 18, 82–91. [Google Scholar] [CrossRef]
- Becerril, S.; Frühbeck, G. Cagrilintide plus Semaglutide for Obesity Management. Lancet 2021, 397, 1687–1689. [Google Scholar] [CrossRef]
- Hartter, E.; Svoboda, T.; Ludvik, B.; Schuller, M.; Lell, B.; Kuenburg, E.; Brunnbauer, M.; Woloszczuk, W.; Prager, R. Basal and Stimulated Plasma Levels of Pancreatic Amylin Indicate Its Co-Secretion with Insulin in Humans. Diabetologia 1991, 34, 52–54. [Google Scholar] [CrossRef]
- Li, Z.; Kelly, L.; Heiman, M.; Greengard, P.; Friedman, J.M. Hypothalamic Amylin Acts in Concert with Leptin to Regulate Food Intake. Cell Metab. 2015, 22, 1059–1067. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Enebo, L.B.; Berthelsen, K.K.; Kankam, M.; Lund, M.T.; Rubino, D.M.; Satylganova, A.; Lau, D.C.W. Safety, Tolerability, Pharmacokinetics, and Pharmacodynamics of Concomitant Administration of Multiple Doses of Cagrilintide with Semaglutide 2·4 Mg for Weight Management: A Randomised, Controlled, Phase 1b Trial. Lancet 2021, 397, 1736–1748. [Google Scholar] [CrossRef]
- Jall, S.; Sachs, S.; Clemmensen, C.; Finan, B.; Neff, F.; DiMarchi, R.D.; Tschöp, M.H.; Müller, T.D.; Hofmann, S.M. Monomeric GLP-1/GIP/Glucagon Triagonism Corrects Obesity, Hepatosteatosis, and Dyslipidemia in Female Mice. Mol. Metab. 2017, 6, 440–446. [Google Scholar] [CrossRef] [PubMed]
- Finan, B.; Yang, B.; Ottaway, N.; Smiley, D.L.; Ma, T.; Clemmensen, C.; Chabenne, J.; Zhang, L.; Habegger, K.M.; Fischer, K.; et al. A Rationally Designed Monomeric Peptide Triagonist Corrects Obesity and Diabetes in Rodents. Nat. Med. 2015, 21, 27–36. [Google Scholar] [CrossRef]
- Kannt, A.; Madsen, A.N.; Kammermeier, C.; Elvert, R.; Klöckener, T.; Bossart, M.; Haack, T.; Evers, A.; Lorenz, K.; Hennerici, W.; et al. Incretin Combination Therapy for the Treatment of Non-Alcoholic Steatohepatitis. Diabetes Obes. Metab. 2020, 22, 1328–1338. [Google Scholar] [CrossRef] [PubMed]
- Batterham, R.L.; Cowley, M.A.; Small, C.J.; Herzog, H.; Cohen, M.A.; Dakin, C.L.; Wren, A.M.; Brynes, A.E.; Low, M.J.; Ghatei, M.A.; et al. Gut Hormone PYY(3-36) Physiologically Inhibits Food Intake. Nature 2002, 418, 650–654. [Google Scholar] [CrossRef] [PubMed]
- Dirksen, C.; Jørgensen, N.B.; Bojsen-Møller, K.N.; Kielgast, U.; Jacobsen, S.H.; Clausen, T.R.; Worm, D.; Hartmann, B.; Rehfeld, J.F.; Damgaard, M.; et al. Gut Hormones, Early Dumping and Resting Energy Expenditure in Patients with Good and Poor Weight Loss Response after Roux-En-Y Gastric Bypass. Int. J. Obes. 2013, 37, 1452–1459. [Google Scholar] [CrossRef] [Green Version]
- Mingrone, G.; Nolfe, G.; Gissey, G.C.; Iaconelli, A.; Leccesi, L.; Guidone, C.; Nanni, G.; Holst, J.J. Circadian Rhythms of GIP and GLP1 in Glucose-Tolerant and in Type 2 Diabetic Patients after Biliopancreatic Diversion. Diabetologia 2009, 52, 873–881. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Behary, P.; Tharakan, G.; Alexiadou, K.; Johnson, N.; Wewer Albrechtsen, N.J.; Kenkre, J.; Cuenco, J.; Hope, D.; Anyiam, O.; Choudhury, S.; et al. Combined GLP-1, Oxyntomodulin, and Peptide YY Improves Body Weight and Glycemia in Obesity and Prediabetes/Type 2 Diabetes: A Randomized, Single-Blinded, Placebo-Controlled Study. Diabetes Care 2019, 42, 1446–1453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmidt, J.B.; Gregersen, N.T.; Pedersen, S.D.; Arentoft, J.L.; Ritz, C.; Schwartz, T.W.; Holst, J.J.; Astrup, A.; Sjödin, A. Effects of PYY3-36 and GLP-1 on Energy Intake, Energy Expenditure, and Appetite in Overweight Men. Am. J. Physiol. Endocrinol. Metab. 2014, 306, E1248–E1256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaplan, L.M.; Golden, A.; Jinnett, K.; Kolotkin, R.L.; Kyle, T.K.; Look, M.; Nadglowski, J.; O’Neil, P.M.; Parry, T.; Tomaszewski, K.J.; et al. Perceptions of Barriers to Effective Obesity Care: Results from the National ACTION Study. Obes. Silver Spring 2018, 26, 61–69. [Google Scholar] [CrossRef]
- Patel, D. Pharmacotherapy for the Management of Obesity. Metabolism. 2015, 64, 1376–1385. [Google Scholar] [CrossRef]
- Casimiro, I.; Sam, S.; Brady, M.J. Endocrine Implications of Bariatric Surgery: A Review on the Intersection between Incretins, Bone, and Sex Hormones. Physiol. Rep. 2019, 7, e14111. [Google Scholar] [CrossRef]
- Kassir, R.; Debs, T.; Blanc, P.; Gugenheim, J.; Ben Amor, I.; Boutet, C.; Tiffet, O. Complications of Bariatric Surgery: Presentation and Emergency Management. Int. J. Surg. Lond. Engl. 2016, 27, 77–81. [Google Scholar] [CrossRef]
- Gribble, F.M.; Reimann, F. Function and Mechanisms of Enteroendocrine Cells and Gut Hormones in Metabolism. Nat. Rev. Endocrinol. 2019, 15, 226–237. [Google Scholar] [CrossRef] [PubMed]
- le Roux, C.W.; Welbourn, R.; Werling, M.; Osborne, A.; Kokkinos, A.; Laurenius, A.; Lönroth, H.; Fändriks, L.; Ghatei, M.A.; Bloom, S.R.; et al. Gut Hormones as Mediators of Appetite and Weight Loss after Roux-En-Y Gastric Bypass. Ann. Surg. 2007, 246, 780–785. [Google Scholar] [CrossRef] [PubMed]
Drug | Brand Name | Average Weight Loss in Treatment vs. Control Group | % of Subjects Losing > 5% of Initial Body Weight |
---|---|---|---|
Liraglutide | Saxenda | −7.7 kg vs. −3.3 kg [15] | 64.7% [15] |
Orlistat | Xenical, Alli | −6.8% vs. −3.8% from baseline [16] | 64% [16] |
Semaglutide | Wegovy | −14.9% vs. −2.4% change in body weight from baseline [17] | 86.4% [17] |
Naltrexone/Bupropion sustained release | Contrave | −9.3 ± 0.4 kg vs. −5.1 ± 0.6 kg [18] | 66.4% [18] |
Phentermine/Topiramate extended release | Qsymia | −10.5% vs. −1.8% change in body weight from baseline [19] | 50% [19] |
Lorcaserin 1 | Belviq | −5.8 ± 0.2 kg vs. −2.2 ± 0.1 kg [20] | 47.5% [20] |
Drug | Average Weight Loss in Treatment Group versus Placebo Group | Side Effects | Clinical Trial Time Frame |
---|---|---|---|
GIP/GLP-1 Receptor Agonist [63] | −0.9 to −11.3 kg vs. −0.4 kg | Nausea, vomiting, diarrhea, decreased appetite | 26 weeks |
GLP-1/Glucagon Receptor Agonists [71] | −2.4 ± 0.4 kg vs. −0.5 ± 0.6 kg | Mild nausea, discomfort at injection site | 4 weeks |
SGLT2/GLP-1 Receptor Agonists [87] | −3.55 (−4.12 to −2.99) vs. −1.56 (−2.13 to −0.98) or −2.22 (−2.78 to −1.66) | Diarrhea, nausea, injection site nodules, urinary tract infections | 28 weeks |
GLP-1 Receptor Agonist/Amylin Analogue [92] | −15.9 (SE 1.40) vs. −7.8 (SE 2.2) | Nausea (most common), vomiting, dyspepsia, decreased appetite | 20 weeks |
GLP-1/GIP/Glucagon Receptor Agonists [93] 1 | −26.6% vs. −15.7% | - | 20 days |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kakouri, A.; Kanti, G.; Kapantais, E.; Kokkinos, A.; Lanaras, L.; Farajian, P.; Galanakis, C.; Georgantopoulos, G.; Vlahos, N.F.; Mastorakos, G.; et al. New Incretin Combination Treatments under Investigation in Obesity and Metabolism: A Systematic Review. Pharmaceuticals 2021, 14, 869. https://doi.org/10.3390/ph14090869
Kakouri A, Kanti G, Kapantais E, Kokkinos A, Lanaras L, Farajian P, Galanakis C, Georgantopoulos G, Vlahos NF, Mastorakos G, et al. New Incretin Combination Treatments under Investigation in Obesity and Metabolism: A Systematic Review. Pharmaceuticals. 2021; 14(9):869. https://doi.org/10.3390/ph14090869
Chicago/Turabian StyleKakouri, Agni, Georgia Kanti, Efthymios Kapantais, Alexandros Kokkinos, Leonidas Lanaras, Paul Farajian, Christos Galanakis, Georgios Georgantopoulos, Nikos F. Vlahos, George Mastorakos, and et al. 2021. "New Incretin Combination Treatments under Investigation in Obesity and Metabolism: A Systematic Review" Pharmaceuticals 14, no. 9: 869. https://doi.org/10.3390/ph14090869
APA StyleKakouri, A., Kanti, G., Kapantais, E., Kokkinos, A., Lanaras, L., Farajian, P., Galanakis, C., Georgantopoulos, G., Vlahos, N. F., Mastorakos, G., Bargiota, A., & Valsamakis, G. (2021). New Incretin Combination Treatments under Investigation in Obesity and Metabolism: A Systematic Review. Pharmaceuticals, 14(9), 869. https://doi.org/10.3390/ph14090869