The Effects of N-Acetylcysteine on the Rat Mesocorticolimbic Pathway: Role of mGluR5 Receptors and Interaction with Ethanol
Abstract
:1. Introduction
2. Results and Discussion
2.1. Experiment 1: Effect of MTEP on the Blockade of cFOS IR-Cell Expression in the NAcc after i.p. Administration of NAC
2.2. Experiment 2: Effect of 120 mg/kg of NAC on Ethanol-Induced Activation of the Mesocorticolimbic System
2.2.1. Effect of NAC on the Increase in Locomotor Activity Caused by Intra pVTA Administration of 150 nmol of Ethanol
2.2.2. Effect of NAC on the Blockade of cFOS IR-Cell Expression in the NAcc Caused by Intra-pVTA Administration of 150 nmol of Ethanol
3. Materials and Methods
3.1. Animals
3.2. Drugs and Chemicals
3.3. Experimental Design
3.3.1. Experiment 1: The Efficacy of MTEP to Suppress NAC-Induced cFOS IR-Cell Expression
3.3.2. Experiment 2: The Effect of 120 mg/kg of NAC on the Ethanol-Induced Activation of the Mesocorticolimbic System
3.4. Surgery and Post-Surgical Care
3.5. Drug Microinjection Procedure
3.6. Handling and Test Procedure
3.7. Immunochemistry
3.8. Image Analysis
3.9. Statistical Methods
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Smaga, I.; Frankowska, M.; Filip, M. N-acetylcysteine as a new prominent approach for treating psychiatric disorders. Br. J. Pharmacol. 2021, 178, 2569–2594. [Google Scholar] [CrossRef] [PubMed]
- McClure, E.A.; Gipson, C.D.; Malcolm, R.J.; Kalivas, P.W.; Gray, K.M. Potential Role of N-Acetylcysteine in the Management of Substance Use Disorders. CNS Drugs 2014, 28, 95–106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cuninghame, S.; Lotfy, K.; Cameron, P. Massive acetaminophen overdose with metabolic acidosis refractory to N-acetylcysteine, fomepizole, and renal replacement therapy. Toxicol. Rep. 2021, 8, 804–807. [Google Scholar] [CrossRef] [PubMed]
- Shekunov, J.; Lewis, C.P.; Voort, J.L.V.; Bostwick, J.M.; Romanowicz, M. Clinical Characteristics, Outcomes, Disposition, and Acute Care of Children and Adolescents Treated for Acetaminophen Toxicity. Psychiatr. Serv. 2021. [Google Scholar] [CrossRef]
- Kalivas, P.W.; Volkow, N.D. New medications for drug addiction hiding in glutamatergic neuroplasticity. Mol. Psychiatry 2011, 16, 974–986. [Google Scholar] [CrossRef] [Green Version]
- Massie, A.; Boillée, S.; Hewett, S.; Knackstedt, L.; Lewerenz, J. Main path and byways: Non-vesicular glutamate release by system xc—As an important modifier of glutamatergic neurotransmission. J. Neurochem. 2015, 135, 1062–1079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Henter, I.D.; Park, L.T.; Zarate, C.A. Novel Glutamatergic Modulators for the Treatment of Mood Disorders: Current Status. CNS Drugs 2021, 35, 527–543. [Google Scholar] [CrossRef]
- Ibrahim, K.S.; Abd-Elrahman, K.S.; El Mestikawy, S.; Ferguson, S.S. Targeting VGLUT Machinery: Implications on mGluR5 Signaling and Behavior. Mol. Pharmacol. 2020, 98, 314–327. [Google Scholar] [CrossRef]
- Nicoletti, F.; Bruno, V.; Ngomba, R.T.; Gradini, R.; Battaglia, G. Metabotropic glutamate receptors as drug targets: What’s new? Curr. Opin. Pharmacol. 2015, 20, 89–94. [Google Scholar] [CrossRef]
- Ohishi, H.; Shigemoto, R.; Nakanishi, S.; Mizuno, N. Distribution of the messenger RNA for a metabotropic glutamate receptor, mGluR2, in the central nervous system of the rat. Neuroscience 1993, 53, 1009–1018. [Google Scholar] [CrossRef]
- Kupchik, Y.M.; Moussawi, K.; Tang, X.C.; Wang, X.; Kalivas, B.C.; Kolokithas, R.; Kalivas, P.W. The effect of N-acetylcysteine in the nucleus accumbens on neurotransmission and relapse to cocaine. Biol. Psychiatry 2012, 71, 978–986. [Google Scholar] [CrossRef] [Green Version]
- Baptista, M.A.; Martin-Fardon, R.; Weiss, F. Preferential effects of the metabotropic glutamate 2/3 receptor agonist LY379268 on conditioned reinstatement versus primary reinforcement: Comparison between cocaine and a potent conventional rein-forcer. J. Neurosci. 2004, 24, 4723–4727. [Google Scholar] [CrossRef]
- Bossert, J.M.; Gray, S.M.; Lu, L.; Shaham, Y. Activation of group II metabotropic glutamate receptors in the nucleus ac-cumbens shell attenuates context-induced relapse to heroin seeking. Neuropsychopharmacology 2006, 31, 2197–2209. [Google Scholar] [CrossRef] [PubMed]
- Kenny, P.J.; Markou, A. The ups and downs of addiction: Role of metabotropic glutamate receptors. Trends Pharmacol. Sci. 2004, 25, 265–272. [Google Scholar] [CrossRef]
- Zhao, Y.; Dayas, C.V.; Aujla, H.; Baptista, M.A.S.; Martin-Fardon, R.; Weiss, F. Activation of Group II Metabotropic Glutamate Receptors Attenuates Both Stress and Cue-Induced Ethanol-Seeking and Modulates c-fos Expression in the Hippocampus and Amygdala. J. Neurosci. 2006, 26, 9967–9974. [Google Scholar] [CrossRef] [PubMed]
- Cano-Cebrián, M.J.; Fernández-Rodríguez, S.; Hipólito, L.; Granero, L.; Polache, A.; Zornoza, T. Efficacy of N-acetylcysteine in the prevention of alcohol relapse-like drinking: Study in long-term ethanol-experienced male rats. J. Neurosci. Res. 2021, 99, 638–648. [Google Scholar] [CrossRef] [PubMed]
- Laverde, C.F.; Morais-Silva, G.; Amaral, V.C.S.; Marin, M.T. Effects of N-acetylcysteine treatment on ethanol’s rewarding properties and dopaminergic alterations in mesocorticolimbic and nigrostriatal pathways. Behav. Pharmacol. 2021, 32, 239–250. [Google Scholar] [CrossRef]
- Martí-Prats, L.; Sánchez-Catalán, M.J.; Hipólito, L.; Orrico, A.; Zornoza, T.; Polache, A.; Granero, L. Systemic administration of d-penicillamine prevents the locomotor activation after intra-VTA ethanol administration in rats. Neurosci. Lett. 2010, 483, 143–147. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Catalán, M.J.; Hipólito, L.; Zornoza, T.; Polache, A.; Granero, L. Motor stimulant effects of ethanol and acetal-dehyde injected into the posterior ventral tegmental area of rats: Role of opioid receptors. Psychopharmacology 2009, 204, 641–653. [Google Scholar] [CrossRef]
- Zornoza, T.; Cano-Cebrián, M.J.; Martínez-García, F.; Polache, A.; Granero, L. Hippocampal dopamine receptors modulate cFos expression in the rat nucleus accumbens evoked by chemical stimulation of the ventral hippocampus. Neuropharmacology 2005, 49, 1067–1076. [Google Scholar] [CrossRef]
- Jaworski, J.; Kalita, K.; Knapska, E. c-Fos and neuronal plasticity: The aftermath of Kaczmarek’s theory. Acta Neurobiol. Exp. 2018, 78, 287–296. [Google Scholar] [CrossRef] [Green Version]
- Berríos-Cárcamo, P.; Quezada, M.; Quintanilla, M.E.; Morales, P.; Ezquer, M.; Herrera-Marschitz, M.; Ezquer, F. Oxidative Stress and Neuroinflammation as a Pivot in Drug Abuse. A Focus on the Therapeutic Potential of Antioxidant and An-ti-Inflammatory Agents and Biomolecules. Antioxidants 2020, 9, 830. [Google Scholar] [CrossRef] [PubMed]
- Tuura, R.O.G.; Warnock, G.; Ametamey, S.; Treyer, V.; Noeske, R.; Buck, A.; Sommerauer, M. Imaging glutamate redis-tribution after acute N-acetylcysteine administration: A simultaneous PET/MR study. NeuroImage 2019, 184, 826–833. [Google Scholar] [CrossRef] [PubMed]
- Wyckhuys, T.; Verhaeghe, J.; Wyffels, L.; Langlois, X.; Schmidt, M.; Stroobants, S.; Staelens, S. N-Acetylcysteine–and MK-801–Induced Changes in Glutamate Levels Do Not Affect In Vivo Binding of Metabotropic Glutamate 5 Receptor Radi-oligand 11C-ABP688 in Rat Brain. J. Nucl. Med. 2013, 54, 1954–1961. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bardgett, E.M.; Henry, J.D. Locomotor activity and accumbens Fos expression driven by ventral hippocampal stimulation require D1 and D2 receptors. Neuroscience 1999, 94, 59–70. [Google Scholar] [CrossRef]
- Paxinos, G.; Watson, C.R.; Emson, P.C. AChE-stained horizontal sections of the rat brain in stereotaxic coordinates. J. Neurosci. Methods 1980, 3, 129–149. [Google Scholar] [CrossRef]
- Cepeda, C.; Buchwald, N.A.; Levine, M.S. Neuromodulatory actions of dopamine in the neostriatum are dependent upon the excitatory amino acid receptor subtypes activated. Proc. Natl. Acad. Sci. USA 1993, 90, 9576–9580. [Google Scholar] [CrossRef] [Green Version]
- Nicola, S.M.; Surmeier, D.J.; Malenka, R.C. Dopaminergic Modulation of Neuronal Excitability in the Striatum and Nucleus Accumbens. Annu. Rev. Neurosci. 2000, 23, 185–215. [Google Scholar] [CrossRef]
- Surmeier, D.J.; Ding, J.; Day, M.; Wang, Z.; Shen, W. D1 and D2 dopamine-receptor modulation of striatal glutamatergic signaling in striatal medium spiny neurons. Trends Neurosci. 2007, 30, 228–235. [Google Scholar] [CrossRef]
- Wang, Z.; Kai, L.; Day, M.; Ronesi, J.; Yin, H.H.; Ding, J.; Tkatch, T.; Lovinger, D.M.; Surmeier, D.J. Dopaminergic Control of Corticostriatal Long-Term Synaptic Depression in Medium Spiny Neurons Is Mediated by Cholinergic Interneurons. Neuron 2006, 50, 443–452. [Google Scholar] [CrossRef] [Green Version]
- Brebner, K.; Wong, T.P.; Liu, L.; Liu, Y.; Campsall, P.; Gray, S.; Phelps, L.; Phillips, A.G.; Wang, Y.T. Nucleus Accumbens Long-Term Depression and the Expression of Behavioral Sensitization. Science 2005, 310, 1340–1343. [Google Scholar] [CrossRef]
- Centonze, D.; Picconi, B.; Gubellini, P.; Bernardi, G.; Calabresi, P. Dopaminergic control of synaptic plasticity in the dorsal striatum. Eur. J. Neurosci. 2001, 13, 1071–1077. [Google Scholar] [CrossRef] [PubMed]
- Lovinger, D.M.; Partridge, J.G.; Tang, K.-C. Plastic Control of Striatal Glutamatergic Transmission by Ensemble Actions of Several Neurotransmitters and Targets for Drugs of Abuse. Ann. N. Y. Acad. Sci. 2003, 1003, 226–240. [Google Scholar] [CrossRef] [PubMed]
- Quintanilla, M.E.; Morales, P.; Ezquer, F.; Ezquer, M.; Herrera-Marschitz, M.; Israel, Y. Commonality of ethanol and nicotine reinforcement and relapse in Wistar-derived UChB rats: Inhibition by N-acetylcysteine. Alcohol. Clin. Exp. Res. 2018, 42, 1988–1999. [Google Scholar] [CrossRef] [PubMed]
- Lammel, S.; Lim, B.K.; Malenka, R.C. Reward and aversion in a heterogeneous midbrain dopamine sys-tem. Neuropharmacology 2014, 76, 351–359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Group | n | Treatment i.p. 1 | Treatment i.p. 2 |
---|---|---|---|
Veh/Sal | 4 | Saline | Vehicle |
NAC 30/Sal | 6 | Saline | NAC 30 mg/kg |
NAC 120/Sal | 6 | Saline | NAC 120 mg/kg |
Veh/MTEP | 6 | MTEP 0.1 mg/kg | Vehicle |
NAC 30/MTEP | 6 | MTEP 0.1 mg/kg | NAC 30 mg/kg |
NAC 120/MTEP | 6 | MTEP 0.1 mg/kg | NAC 120 mg/kg |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernández-Rodríguez, S.; Esposito-Zapero, C.; Zornoza, T.; Polache, A.; Granero, L.; Cano-Cebrián, M.J. The Effects of N-Acetylcysteine on the Rat Mesocorticolimbic Pathway: Role of mGluR5 Receptors and Interaction with Ethanol. Pharmaceuticals 2021, 14, 593. https://doi.org/10.3390/ph14060593
Fernández-Rodríguez S, Esposito-Zapero C, Zornoza T, Polache A, Granero L, Cano-Cebrián MJ. The Effects of N-Acetylcysteine on the Rat Mesocorticolimbic Pathway: Role of mGluR5 Receptors and Interaction with Ethanol. Pharmaceuticals. 2021; 14(6):593. https://doi.org/10.3390/ph14060593
Chicago/Turabian StyleFernández-Rodríguez, Sandra, Claudia Esposito-Zapero, Teodoro Zornoza, Ana Polache, Luis Granero, and María José Cano-Cebrián. 2021. "The Effects of N-Acetylcysteine on the Rat Mesocorticolimbic Pathway: Role of mGluR5 Receptors and Interaction with Ethanol" Pharmaceuticals 14, no. 6: 593. https://doi.org/10.3390/ph14060593
APA StyleFernández-Rodríguez, S., Esposito-Zapero, C., Zornoza, T., Polache, A., Granero, L., & Cano-Cebrián, M. J. (2021). The Effects of N-Acetylcysteine on the Rat Mesocorticolimbic Pathway: Role of mGluR5 Receptors and Interaction with Ethanol. Pharmaceuticals, 14(6), 593. https://doi.org/10.3390/ph14060593