Investigation of the Mechanisms of Cytotoxic Activity of 1,3-Disubstituted Thiourea Derivatives
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Biological Studies
2.2.1. Cytotoxic Activity
2.2.2. Antiproliferative Activity
2.2.3. Apoptotic Activity
2.2.4. Inhibition of IL-6 Release
3. Materials and Methods
3.1. Chemistry
3.1.1. General Procedure
General Procedure for the Preparation of N-aryl-[3-(trifluoromethyl)phenyl]thiourea Derivatives (1–12)
3.2. Biological Studies
3.2.1. Cell Culture
3.2.2. MTT Assay
3.2.3. Trypan Blue Assay
3.2.4. Annexin V Binding Assay
3.2.5. Il-6 Level Assay
3.2.6. Statistical Analyses
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Frankish, H. 15 Million New Cancer Cases per Year by 2020, Says Who. Lancet 2003, 361, 1278. [Google Scholar] [CrossRef]
- Bielenica, A.; Stefańska, J.; Stępień, K.; Napiórkowska, A.; Augustynowicz-Kopeć, E.; Sanna, G.; Madeddu, S.; Boi, S.; Giliberti, G.; Wrzosek, M.; et al. Synthesis, Cytotoxicity and Antimicrobial Activity of Thiourea Derivatives Incorporating 3-(Trifluoromethyl)phenyl Moiety. Eur. J. Med.Chem. 2015, 101, 111–125. [Google Scholar] [CrossRef] [PubMed]
- Bielenica, A.; Sanna, G.; Madeddu, S.; Giliberti, G.; Stefańska, J.; Kozioł, A.; Savchenko, O.; Strzyga-Łach, P.; Chrzanowska, A.; Kubiak-Tomaszewska, G.; et al. Disubstituted 4-Chloro-3-Nitrophenylthiourea Derivatives: Antimicrobial and Cytotoxic Studies. Molecules 2018, 23, 2428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maalik, A.; Rahim, H.; Saleem, M.; Fatima, N.; Rauf, A.; Wadood, A.; Malik, M.I.; Ahmed, A.; Rafique, H.; Zafar, M.N.; et al. Synthesis, Antimicrobial, Antioxidant, Cytotoxic, Antiurease and Molecular Docking Studies of N-(3-Trifluoromethyl)Benzoyl-N′-Aryl Thiourea Derivatives. Bioorg. Chem. 2019, 88, 102946. [Google Scholar] [CrossRef]
- Bielenica, A.; Stępień, K.; Napiórkowska, A.; Augustynowicz-Kopeć, E.; Krukowski, S.; Włodarczyk, M.; Struga, M. Synthesis and Antimicrobial Activity of 4-Chloro-3-Nitrophenylthiourea Derivatives Targeting Bacterial Type II Topoisomerases. Chem.Biol. Drug Des. 2016, 87, 905–917. [Google Scholar] [CrossRef]
- Mazzotta, S.; Cebrero-Cangueiro, T.; Frattaruolo, L.; Vega-Holm, M.; Carretero-Ledesma, M.; Sánchez-Céspedes, J.; Cappello, A.R.; Aiello, F.; Pachón, J.; Vega-Pérez, J.M.; et al. Exploration of Piperazine-Derived Thioureas as Antibacterial and Anti-Inflammatory Agents. In Vitro Evaluation against Clinical Isolates of Colistin-Resistant Acinetobacter Baumannii. Bioorg. Med. Chem. Lett. 2020, 30, 127411. [Google Scholar] [CrossRef]
- Ameryckx, A.; Pochet, L.; Wang, G.; Yildiz, E.; Saadi, B.E.; Wouters, J.; Van Bambeke, F.; Frédérick, R. Pharmacomodulations of the Benzoyl-Thiosemicarbazide Scaffold Reveal Antimicrobial Agents Targeting D-Alanyl-D-Alanine Ligase in Bacterio. Eur. J. Med. Chem. 2020, 200, 112444. [Google Scholar] [CrossRef]
- Bielenica, A.; Drzewiecka-Antonik, A.; Rejmak, P.; Stefańska, J.; Koliński, M.; Kmiecik, S.; Lesyng, B.; Włodarczyk, M.; Pietrzyk, P.; Struga, M. Synthesis, Structural and Antimicrobial Studies of Type II Topoisomerase-Targeted Copper(II) Complexes of 1,3-Disubstituted Thiourea Ligands. J. Inorg. Biochem. 2018, 182, 61–70. [Google Scholar] [CrossRef]
- Bielenica, A.; Sanna, G.; Madeddu, S.; Struga, M.; Jóźwiak, M.; Kozioł, A.E.; Sawczenko, A.; Materek, I.B.; Serra, A.; Giliberti, G. New Thiourea and 1,3-Thiazolidin-4-one Derivatives Effective on the HIV-1 Virus. Chem. Biol. Drug Des. 2017, 90, 883–891. [Google Scholar] [CrossRef]
- Nagalakshmamma, V.; Venkataswamy, M.; Pasala, C.; Umamaheswari, A.; Thyagaraju, K.; Nagaraju, C.; Chalapathi, P.V. Design, Synthesis, Anti-Tobacco Mosaic Viral Aand Molecule Docking Simulations of Urea/Thiourea Derivatives of 2-(Piperazine-1-Yl)-Pyrimidine and 1-(4-Fluoro/4-Chloro Phenyl)-Piperazine and 1-(4-ChloroPhenyl)-Piperazine—A Study. Bioorg. Chem. 2020, 102, 104084. [Google Scholar] [CrossRef]
- Khachatoorian, R.; Micewicz, E.D.; Micewicz, A.; French, S.W.; Ruchala, P. Optimization of 1,3-Disubstituted Urea-Based Inhibitors of Zika Virus Infection. Bioorg. Med. Chem. Lett. 2019, 29, 126626. [Google Scholar] [CrossRef]
- Bielenica, A.; Szulczyk, D.; Olejarz, W.; Madeddu, S.; Giliberti, G.; Materek, I.B.; Koziol, A.E.; Struga, M. 1H-Tetrazol-5-Amine and 1,3-Thiazolidin-4-one Derivatives Containing 3-(Trifluoromethyl)Phenyl Scaffold: Synthesis, Cytotoxic and Anti-Hiv Studies. Biomed. Pharmacother. 2017, 94, 804–812. [Google Scholar] [CrossRef]
- Doğan, Ş.D.; Gündüz, M.G.; Doğan, H.; Krishna, V.S.; Lherbet, C.; Sriram, D. Design and Synthesis of Thiourea-Based Derivatives as Mycobacterium Tuberculosis Growth and Enoyl Acyl Carrier Protein Reductase (Inha) Inhibitors. Eur. J. Med. Chem. 2020, 199, 112402. [Google Scholar] [CrossRef]
- Kollu, U.; Avula, V.K.; Vallela, S.; Pasupuleti, V.R.; Zyryanov, G.V.; Neelam, Y.S.; Chamarthi, N.R. Synthesis, Antioxidant Activity and Bioinformatics Studies of L-3-Hydroxytyrosine Templated N-Alkyl/Aryl Substituted Urea/Thioureas. Bioorg. Chem. 2021, 111, 104837. [Google Scholar] [CrossRef]
- Bielenica, A.; Kędzierska, E.; Koliński, M.; Kmiecik, S.; Koliński, A.; Fiorino, F.; Severino, B.; Magli, E.; Corvino, A.; Rossi, I.; et al. 5-HT2 receptor affinity, docking Studies and Pharmacological Evaluation of a Series of 1,3-Disubstituted Thiourea Derivatives. Eur. J. Med. Chem. 2016, 116, 173–186. [Google Scholar] [CrossRef]
- Kaymakçıoğlu, B.K.; Rollas, S.; Körceğez, E.; Arıcıoğlu, F. Synthesis and Biological Evaluation of New N-Substituted-N′-(3,5-Di/1,3,5-Trimethylpyrazole-4-yl)Thiourea/Urea Derivatives. Eur. J. Pharm. Sci. 2005, 26, 97–103. [Google Scholar] [CrossRef]
- Stefanska, J.; Szulczyk, D.; Koziol, A.E.; Miroslaw, B.; Kedzierska, E.; Fidecka, S.; Busonera, B.; Sanna, G.; Giliberti, G.; La Colla, P.; et al. Disubstituted Thiourea Derivatives and Their Activity on CNS: Synthesis and Biological Evaluation. Eur. J. Med. Chem. 2012, 55, 205–213. [Google Scholar] [CrossRef]
- Bielenica, A.; Kedzierska, E.; Fidecka, S.; Maluszynska, H.; Miroslaw, B.; Koziol, A.E.; Stefanska, J.; Madeddu, S.; Giliberti, G.; Sanna, G.; et al. Synthesis, Antimicrobial and Pharmacological Evaluation of Thiourea Derivatives of 4H-1,2,4-Triazole. Lett. Drug Discov. Dev. 2015, 12, 263–276. [Google Scholar] [CrossRef]
- Nammalwar, B.; Bunce, R.A.; Berlin, K.D.; Benbrook, D.M.; Toal, C. Synthesis and Biological Evaluation of Sheta2 (NSC-721689) Analogs against the Ovarian Cancer Cell Line a2780. Eur. J. Med. Chem. 2019, 170, 16–27. [Google Scholar] [CrossRef]
- Zhang, Y.; Meng, X.; Tang, H.; Cheng, M.; Yang, F.; Xu, W. Design, Synthesis, and Biological Evaluation of Novel Substituted Thiourea Derivatives as Potential Anticancer Agents for NSCLC by Blocking k-Ras Protein-Effectors Interactions. J. Enzyme Inhib. Med. Chem. 2019, 35, 344–353. [Google Scholar] [CrossRef]
- Dai, B.; Yang, T.; Shi, X.; Ma, N.; Kang, Y.; Zhang, J.; Zhang, Y. HMQ-T-F5 (1-(4-(2-Aminoquinazolin-7-yl)Phenyl)-3-(2-Bromo-5-(Trifluoromethoxy)Phenyl) Thiourea) Suppress Proliferation and Migration of Human Cervical HeLa Cells via Inhibiting Wnt/β-Catenin Signaling Pathway. Phytomedicine 2018, 51, 48–57. [Google Scholar] [CrossRef] [PubMed]
- Viswas, R.S.; Pundir, S.; Lee, H. Design and Synthesis of 4-Piperazinyl Quinoline Derived Urea/Thioureas for Anti-Breast Cancer Activity by a Hybrid Pharmacophore Approach. J. Enzyme Inhib. Med. Chem. 2019, 34, 620–630. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Türe, A.; Ergül, M.; Ergül, M.; Altun, A.; Küçükgüzel, İ. Design, Synthesis, and Anticancer Activity of Novel 4-Thiazolidinone-Phenylaminopyrimidine Hybrids. Mol. Divers. 2020, 25, 1025–1050. [Google Scholar] [CrossRef] [PubMed]
- Tokala, R.; Bale, S.; Janrao, I.P.; Vennela, A.; Kumar, N.P.; Senwar, K.R.; Godugu, C.; Shankaraiah, N. Synthesis of 1,2,4-Triazole-Linked Urea/Thiourea Conjugates as Cytotoxic and Apoptosis Inducing Agents. Bioorg. Med. Chem. Lett. 2018, 28, 1919–1924. [Google Scholar] [CrossRef]
- Johnson, J.; Rychahou, P.; Sviripa, V.M.; Weiss, H.L.; Liu, C.; Watt, D.S.; Evers, B.M. Induction of AMPK Activation By N,N’-Diarylurea FND-4b Decreases Growth and Increases Apoptosis in Triple Negative and Estrogen-Receptor Positive Breast Cancers. PLoS ONE 2019, 14, e0209392. [Google Scholar] [CrossRef] [Green Version]
- Sbenati, R.M.; Zaraei, S.-O.; El-Gamal, M.I.; Anbar, H.S.; Tarazi, H.; Zoghbor, M.M.; Mohamood, N.A.; Khakpour, M.M.; Zaher, D.M.; Omar, H.A.; et al. Design, Synthesis, Biological Evaluation, and Modeling Studies of Novel Conformationally-Restricted Analogues of Sorafenib as Selective Kinase-Inhibitory Antiproliferative Agents against Hepatocellular Carcinoma Cells. Eur. J. Med. Chem. 2021, 210, 113081. [Google Scholar] [CrossRef]
- Ragab, F.A.F.; Abdel-Aziz, S.A.; Kamel, M.; Ouf, A.M.; Allam, H.A. Design, Synthesis and Biological Evaluation of Some New 1,3,4-Thiadiazine-Thiourea Derivatives as Potential Antitumor Agents against Non-Small Cell Lung Cancer Cells. Bioorg. Chem. 2019, 93, 103323. [Google Scholar] [CrossRef]
- Farooqi, S.I.; Arshad, N.; Perveen, F.; Channar, P.A.; Saeed, A.; Javed, A. Corrigendum to “Aroylthiourea Derivatives of Ciprofloxacin Drug as DNA Binder: Theoretical, Spectroscopic and Electrochemical Studies along with Cytotoxicity Assessment”. Arch. Biochem. Biophys. 2020, 686, 108268. [Google Scholar] [CrossRef]
- Elseginy, S.A.; Hamdy, R.; Menon, V.; Almehdi, A.M.; El-Awady, R.; Soliman, S.S.M. Design, Synthesis, and Computational Validation of Novel Compounds Selectively Targeting Her2-Expressing Breast Cancer. Bioorg. Med. Chem. Lett. 2020, 30, 127658. [Google Scholar] [CrossRef]
- Ghorab, M.M.; Alsaid, M.S.; El-Gaby, M.S.A.; Safwat, N.A.; Elaasser, M.M.; Soliman, A.M. Biological Evaluation of Some New N -(2,6-Dimethoxypyrimidinyl) Thioureido Benzenesulfonamide Derivatives as Potential Antimicrobial and Anticancer Agents. Eur. J. Med. Chem. 2016, 124, 299–310. [Google Scholar] [CrossRef]
- Mowafy, S.; Galanis, A.; Doctor, Z.M.; Paranal, R.M.; Lasheen, D.S.; Farag, N.A.; Jänne, P.A.; Abouzid, K.A.M. Toward Discovery of Mutant EGFR Inhibitors; Design, Synthesis and in Vitro Biological Evaluation of Potent 4-Arylamino-6-Ureido and Thioureido-Quinazoline Derivatives. Bioorg. Med. Chem. 2016, 24, 3501–3512. [Google Scholar] [CrossRef]
- Hamed, M.M.; Darwish, S.S.; Herrmann, J.; Abadi, A.H.; Engel, M. First Bispecific Inhibitors of the Epidermal Growth Factor Receptor Kinase and the Nf-Κb Activity as Novel Anticancer Agents. J. Med. Chem. 2017, 60, 2853–2868. [Google Scholar] [CrossRef] [Green Version]
- Turan-Zitouni, G.; Altıntop, M.D.; Özdemir, A.; Kaplancıklı, Z.A.; Çiftçi, G.A.; Temel, H.E. Synthesis and Evaluation of Bis-Thiazole Derivatives as New Anticancer Agents. Eur. J. Med. Chem. 2016, 107, 288–294. [Google Scholar] [CrossRef]
- Ghorab, M.M.; Alsaid, M.S.; Al-Dosary, M.S.; Nissan, Y.M.; Attia, S.M. Design, Synthesis and Anticancer Activity of Some Novel Thioureido-Benzenesulfonamides Incorporated Biologically Active Moieties. Chem. Cent. J. 2016, 10, 19. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Louie, M.C.; Rajagopalan, V.; Zhou, G.; Ponce, E.; Nguyen, T.; Green, L. Synthesis and Evaluation of the Diarylthiourea Analogs as Novel Anti-Cancer Agents. Bioorg. Med. Chem. Lett. 2015, 25, 1301–1305. [Google Scholar] [CrossRef] [Green Version]
- Sylvester, P.W. Optimization of the tetrazolium dye (MTT) colorimetric assay for cellular growth and viability. Methods Mol. Biol. 2011, 716, 157–168. [Google Scholar] [CrossRef]
- Chrzanowska, A.; Roszkowski, P.; Bielenica, A.; Olejarz, W.; Stępień, K.; Struga, M. Anticancer and Antimicrobial Effects of Novel Ciprofloxacin Fatty Acids Conjugates. Eur. J. Med. Chem. 2020, 185, 111810. [Google Scholar] [CrossRef]
- Navarro, S.; Mitjavila, M.T.; Katz, A.; Doly, J.; Vainchenker, W. Expression of interleukin 6 and its specific receptor by untreated and PMA-stimulated human erythroid and megakaryocytic cell lines. Exp. Hematol. 1991, 19, 11–17. [Google Scholar]
- Heinz, L.J.; Panetta, J.A.; Phillips, M.L.; Reel, J.K.; Shadle, J.K.; Simon, R.L.; Whitesitt, C.A. Inhibitors of amyloid beta-protein production. U.S. Patent 5814646 A1, 29 September 1998. [Google Scholar]
Compound | Cancer Cells | Normal Cells | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
SW480 d | SW620 e | PC3 f | K562 g | HaCaT h | ||||||
R | IC50 b | SI c | IC50 | SI | IC50 | SI | IC50 | SI | IC50 | |
1 | 3-Cl,4-F-Ph | 12.7 ± 1.53 | 3.4 | 9.4 ± 1.85 | 4.6 | 53.6 ± 2.94 | 0.8 | 6.8 ± 1.57 | 6.4 | 43.6 ± 4.22 |
2 | 3-Cl,4-Cl-Ph | 9.0 ± 1.42 | 2.7 | 1.5 ± 0.72 | 16.5 | 31.7 ± 2.07 | 0.8 | 6.3 ± 1.28 | 3.9 | 24.7 ± 0.05 |
3 | 2-Cl,4-Cl-Ph | 30.1 ± 3.11 | 1.7 | 5.8 ± 0.76 | 9.0 | 13.7 ± 7.04 | 3.8 | 54.3 ± 1.86 | 1.0 | 52.1 ± 0.95 |
4 | 2-Cl,3-Cl-Ph | 22.5 ± 0.10 | 0.6 | 14.0 ± 1.73 | 1.0 | 10.5 ± 2.52 | 1.3 | 35.9 ± 0.07 | 0.4 | 13.9 ± 1.70 |
5 | 2-CH3,3-Cl-Ph | 7.3 ± 0.89 | 7.6 | 23.2 ± 4.07 | 2.4 | 51.8 ± 3.19 | 1.1 | 52.5 ± 2.14 | 1.1 | 55.6 ± 1.74 |
6 | 2-CH3,5-Cl-Ph | 15.6 ± 4.10 | 0.9 | 22.1 ± 4.36 | 0.7 | 65.9 ± 10.50 | 0.2 | 40.3 ± 3.88 | 0.4 | 14.5 ± 1.08 |
7 | 2-CF3-Ph | >100 | 0.7 | 30.1 ± 9.74 | 2.2 | 17.1 ± 0.57 | 3.8 | 76.5 ± 4.57 | 0.9 | 65.7 ± 3.83 |
8 | 4-CF3-Ph | 8.9 ± 1.14 | 4.6 | 7.6 ± 1.75 | 5.4 | 6.9 ± 1.64 | 6.0 | 54.8 ± 0.24 | 0.8 | 41.3 ± 0.17 |
9 | 4-Cl-Ph | 38.1 ± 4.38 | 1.9 | 6.7 ± 1.74 | 10.7 | 22.6 ± 1.25 | 3.2 | 10.2 ± 0.35 | 7.4 | 71.5 ± 3.08 |
10 | 4-CN-Ph | 20.6 ± 3.59 | 2.4 | 18.7 ± 5.92 | 2.7 | 66.2 ± 4.47 | 0.8 | 12.9 ± 4.33 | 3.9 | 50.1 ± 4.89 |
11 | 4-Br-Ph | 41.5 ± 4.46 | 0.4 | 16.2 ± 4.08 | 1.1 | 76.6 ± 4.70 | 0.2 | 74.2 ± 6.82 | 0.2 | 17.2 ± 0.64 |
12 | -CH2CH2-Ph | 25.3 ± 8.53 | 2.2 | 38.2 ± 3.10 | 1.5 | 26.7 ± 3.95 | 2.1 | 23.8 ± 0.45 | 2.3 | 55.4 ± 1.08 |
Doxorubicin i | - | 0.8 ± 0.10 | 0.4 | 0.3 ± 0.08 | 1.0 | 0.3 ± 0.12 | 1.0 | 0.2 ± 0.10 | 1.5 | 0.3 ± 0.11 |
Cisplatin j | - | 10.4 ± 0.90 | 0.6 | 6.7 ± 1.10 | 0.9 | 13.2 ± 2.10 | 0.5 | 8.2 ± 4.08 | 0.8 | 6.3 ± 0.70 |
Compound | Cell Number × 105 | Viability (%) | ||
---|---|---|---|---|
Cancer cell line | SW480 a | - | 3.6 ± 0.20 | 93 ± 1.35 |
1 | 2.0 ± 0.30 | 69 ± 1.30 | ||
2 | 0.3 ± 0.35 | 45 ± 2.40 | ||
3 | 1.5 ± 0.10 | 90 ± 1.30 | ||
8 | 0.4 ± 0.15 | 90 ± 2.30 | ||
9 | 2.5 ± 0.12 | 72 ± 2.25 | ||
SW620 b | - | 5.7 ± 0.10 | 96 ± 3.30 | |
1 | 1.3 ± 0.25 | 79 ± 1.30 | ||
2 | 0.4 ± 0.22 | 42 ± 1.30 | ||
3 | 2.4 ± 0.20 | 93 ± 2.33 | ||
8 | 1.0 ± 0.20 | 55 ± 1.11 | ||
9 | 1.6 ± 0.11 | 84 ± 3.08 | ||
PC3 c | - | 3.4 ± 0.25 | 97 ± 2.30 | |
1 | 2.3 ± 0.15 | 93 ± 1.50 | ||
2 | 2.4 ± 0.16 | 93 ± 1.40 | ||
3 | 1.8 ± 0.18 | 58 ± 1.20 | ||
8 | 2.1 ± 0.12 | 82 ± 1.10 | ||
9 | 1.2 ± 0.15 | 73 ± 1.99 | ||
K-562 d | - | 4.4 ± 0.15 | 98 ± 1.30 | |
1 | 1.8 ± 0.24 | 93 ± 2.05 | ||
2 | 1.0 ± 0.21 | 55 ± 1.03 | ||
3 | 3.0 ± 0.27 | 85 ± 1.20 | ||
8 | 3.2 ± 0.14 | 88 ± 1.10 | ||
9 | 3.5 ± 0.22 | 90 ± 2.40 | ||
Normal cell line | HaCaT e | - | 9.2 ± 0.25 | 98 ± 1.30 |
1 | 6.5 ± 0.15 | 97 ± 1.33 | ||
2 | 1.6 ± 0.31 | 84 ± 1.03 | ||
3 | 7.8 ± 0.14 | 96 ± 3.01 | ||
8 | 4.9 ± 0.28 | 98 ± 1.02 | ||
9 | 8.6 ± 0.12 | 98 ± 1.50 |
Compound | IL-6 Concentration (pg/mL) | ||
---|---|---|---|
Cancer cell line | SW480 a | Control | 7.8 ± 0.03 |
1 | 5.7 ± 0.01 | ||
2 | 3.6 ± 0.02 | ||
3 | 4.8 ± 0.04 | ||
8 | 5.3 ± 0.01 | ||
9 | 5.5 ± 0.02 | ||
SW620 b | Control | 7.7 ± 0.05 | |
1 | 4.9 ± 0.01 | ||
2 | 2.8 ± 0.03 | ||
3 | 5.9 ± 0.03 | ||
8 | 5.8 ± 0.06 | ||
9 | 5.2 ± 0.03 | ||
PC3 c | Control | 10.9 ± 0.07 | |
1 | 9.6 ± 0.02 | ||
2 | 9.1 ± 0.04 | ||
3 | 7.3 ± 0.06 | ||
8 | 8.1 ± 0.08 | ||
9 | 9.9 ± 0.03 | ||
Normal cell line | HaCaT d | Control | 9.7 ± 0.03 |
1 | 8.7 ± 0.03 | ||
2 | 9.1 ± 0.03 | ||
3 | 8.9 ± 0.01 | ||
8 | 9.1 ± 0.06 | ||
9 | 9.0 ± 0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Strzyga-Łach, P.; Chrzanowska, A.; Podsadni, K.; Bielenica, A. Investigation of the Mechanisms of Cytotoxic Activity of 1,3-Disubstituted Thiourea Derivatives. Pharmaceuticals 2021, 14, 1097. https://doi.org/10.3390/ph14111097
Strzyga-Łach P, Chrzanowska A, Podsadni K, Bielenica A. Investigation of the Mechanisms of Cytotoxic Activity of 1,3-Disubstituted Thiourea Derivatives. Pharmaceuticals. 2021; 14(11):1097. https://doi.org/10.3390/ph14111097
Chicago/Turabian StyleStrzyga-Łach, Paulina, Alicja Chrzanowska, Katarzyna Podsadni, and Anna Bielenica. 2021. "Investigation of the Mechanisms of Cytotoxic Activity of 1,3-Disubstituted Thiourea Derivatives" Pharmaceuticals 14, no. 11: 1097. https://doi.org/10.3390/ph14111097
APA StyleStrzyga-Łach, P., Chrzanowska, A., Podsadni, K., & Bielenica, A. (2021). Investigation of the Mechanisms of Cytotoxic Activity of 1,3-Disubstituted Thiourea Derivatives. Pharmaceuticals, 14(11), 1097. https://doi.org/10.3390/ph14111097