4-(Indol-3-yl)thiazole-2-amines and 4-ιndol-3-yl)thiazole Acylamines as Νovel Antimicrobial Agents: Synthesis, In Silico and In Vitro Evaluation
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Biological Evaluation
2.3. Additive Effect of Selected Indole Derivatives in Combination with Streptomycin
2.4. P. aeruginosa Time-Kill Curve Assay Efficient of P. aeruginosa Bactericidal Effect after 1 h
2.5. Antifungal Activity
2.6. Docking Studies
2.6.1. Docking Studies to Antibacterial Targets
2.6.2. Docking to Antifungal Targets
2.7. Drug-Likeness
2.8. Cytotoxicity Assessment
3. Materials and Methods
3.1. General Procedure for the Synthesis of 3- (α-chlorouracil) -Indoles 2a–q
3.2. General Method for Synthesis of 3- (α-chlorouracil) Indoles
3.3. General Procedure for the Synthesis of Indol-2-ylthiazoles 5a–x
3.4. General Procedure for the Synthesis of indol-2-ylthiazoles 6a–f
3.5. Biological Evaluation
3.5.1. Antibacterial Action
3.5.2. Biofilm Formation Inhibition
3.5.3. Checkboard Assay
3.5.4. Time-Kill Curve Assay
3.5.5. Antifungal Activity
3.6. Docking Studies
3.6.1. Docking Studies for Prediction of the Mechanism of Antibacterial Activity
3.6.2. Docking Studies for Prediction of the Mechanism of Antifungal Activity
3.7. In-Silico Predictive Studies
3.8. Assessment of Cytotoxicity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Davies, J.; Davies, D. Origins and evolution of antibiotic resistance. Microbiol Mol. Biol. Rev. 2010, 74, 417–433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tehranchian, S.; Akbarzadeh, T.; Fazeli, M.R.; Jamalifar, H.; Shafiee, A. Synthesis and antibacterial activity of 1-[1,2,4-triazol-3-yl] and 1-[1,3,4-thiadiazol-2-yl]-3-methylthio-6,7-dihydrobenzo[c]thiophen-4(5H)ones. Bioorganic Med. Chem. Lett. 2005, 15, 1023–1025. [Google Scholar] [CrossRef] [PubMed]
- Abdellatif, K.R.; Lamie, R.F.; Omar, H.A. 3-methyl-2-phenyl-1-substituted-indole derivatives as indomethacin analogs: Design, synthesis and biological evaluation as potential anti-inflammatory and analgesic agents. J. Enzyme Inhib. Med. Chem. 2016, 31, 318–324. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Tang, L.; Zhu, H.; Xu, T.; Qiu, C.; Zheng, S.; Gu, Y.; Feng, J.; Zhang, Y. Design, Synthesis, and Structure–Activity Relationship Study of Novel Indole-2-carboxamide Derivatives as Anti-inflammatory Agents for the Treatment of Sepsis. J. Med. Chem. 2016, 59, 4637–4650. [Google Scholar] [CrossRef]
- Shaker, A.M.M.; Abdelall, E.K.A.; Abdellatif, K.R.A.; Abdel-Rahman, H.M. Synthesis and biological evaluation of 2-(4-methylsulfonyl phenyl) indole derivatives: Multi-target compounds with dual antimicrobial and anti-inflammatory activities. BMC Chem. 2020, 14, 23–37. [Google Scholar] [CrossRef] [Green Version]
- Fatahala, S.S.; Khedr, M.A.; Mohamed, M.S. Synthesis and Structure Activity Relationship of Some Indole Derivatives as Potential Anti-inflammatory Agents. Acta Chim. Slov. 2017, 64, 865–876. [Google Scholar] [CrossRef] [Green Version]
- Kaur, H.; Sing, J.; Narasimhan, B. Indole hybridized diazenyl derivatives: Synthesis, antimicrobial activity, cytotoxicity evaluation and docking studies. BMC Chem. 2019, 13, 65–82. [Google Scholar] [CrossRef]
- Kaur, J.; Utreja, D.; Jain, N.; Sharma, S. Recent Developments in the Synthesis and Antimicrobial Activity of Indole and its Derivatives. Curr. Org Synth. 2019, 16, 17–37. [Google Scholar] [CrossRef]
- Tiwari, S.; Kirar, S.; Banerjee, U.C.; Neerupudi, K.B.; Singh, S.; Wani, A.A.; Bharatam, P.V.; Singh, I.P. Synthesis of N-substituted indole derivatives as potential antimicrobial and antileishmanial agents. Bioorganic Chem. 2020, 99, 103787–103798. [Google Scholar] [CrossRef]
- Dixit, A.; Pathak, D.; Sharma, G.K. Synthesis, antibacterial and free radical scavenging activity of some newer N-((10-nitro-1H-indolo [1, 2-c]quinazolin-12-yl)methylene)benzenamines. Eur. Pharm. J. 2019, 67, 7–16. [Google Scholar] [CrossRef]
- Kaur, K.; Jaitak, V. Recent Development in Indole Derivatives as Anticancer Agents for Breast Cancer. Anticancer Agents Med. Chem. 2019, 19, 962–983. [Google Scholar] [CrossRef]
- Prakash, B.; Amuthavalli, A.; Edison, D.; Sivaramkumar, M.; Velmurugan, S. Novel indole derivatives as potential anticancer agents:Design, synthesis and biological screening. Med. Chem. Res. 2018, 27, 321–331. [Google Scholar] [CrossRef]
- Parrino, B.; Carbone, A.; Di Vita, G.; Ciancimino, C.; Attanzio, A.; Spanò, V.; Montalbano, A.; Barraja, P.; Tesoriere, V.; Livrea, M.A.; et al. 3-[4-(1H-Indol-3-yl)-1,3-thiazol-2-yl]-1H-pyrrolo [2,3-b]pyridines, Nortopsentin Analogues with Antiproliferative Activity. Mar. Drugs 2015, 13, 1901–1924. [Google Scholar] [CrossRef] [Green Version]
- Swathi, K.; Sarangapani, M. Evaluation of Anti-Epileptic Effect of New Indole Derivatives by Estimation of Biogenic Amines Concentrations in Rat Brain. Adv. Exp. Med. Biol. 2017, 988, 39–48. [Google Scholar] [CrossRef]
- Saini, S. Synthesis and Anticonvulsant Studies of Thiazolidinone and Azetidinone Derivatives from Indole Moiety. Drug Res. 2019, 69, 445–450. [Google Scholar] [CrossRef]
- Zhang, M.-Z.; Chen, Q.; Yang, G.-F. A review on recent developments of indole-containing antiviral agents. Eur. J. Med. Chem. 2015, 89, 421–441. [Google Scholar] [CrossRef]
- Bardiot, D.; Koukni, M.; Smets, W.; Carlens, G.; McNaughton, M.; Kaptein, S.; Dallmeier, K.; Chaltin, P.; Neyts, J.; Marchand, A. Discovery of Indole Derivatives as Novel and Potent Dengue Virus Inhibitors. J. Med. Chem. 2018, 61, 8390–8401. [Google Scholar] [CrossRef]
- Bhat, M.A.; Al-Omar, M.A.; Raish, M.; Ansari, M.A.; Hatem, A.; Abuelizz, H.A.; Bakheit, A.H.; Naglah, A.N. Indole Derivatives as Cyclooxygenase Inhibitors: Synthesis, Biological Evaluation and Docking Studies. Molecules 2018, 23, 1250. [Google Scholar] [CrossRef] [Green Version]
- Atta-Allah, S.R.; Nassar, I.F.; El-Sayed, W.A. Design, synthesis and anti-inflammatory vel 5-(Indol-3-yl)thiazolidinone derivatives as COX-2 inhibitors. J. Pharm. Therap. Res. 2020, 4, 23–25. [Google Scholar] [CrossRef]
- Gani, R.S.; Timanagouda, K.; Joshic, S.D.; Hiremath, M.B.; Mujawar, S.B.H.; Kudva, A.K. Synthesis of novel indole, 1,2,4-triazole derivatives as potential glucosidase inhibitors. J. King Saud Univ. Sci. 2020, 32, 3388–3399. [Google Scholar] [CrossRef]
- Ramya, V.; Vembu, S.; Ariharasivakumar, G.; Gopalakrishnan, M. Synthesis, Characterisation, Molecular Docking, Anti-microbial and Anti-diabetic Screening of Substituted 4-indolylphenyl-6-arylpyrimidine-2-imine Derivatives. Drug Res. 2017, 67, 515–526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reddy, G.S.; Pal, M. Indole derivatives as anti-tubercular agents: An overview on their synthesis and biological activities. Curr. Med. Chem. 2020. [Google Scholar] [CrossRef] [PubMed]
- Cihan-Üstündağ, G.; Şatana, D.; Özhan, G.; Çapan, G. Indole-based hydrazide-hydrazones and 4-thiazolidinones: Synthesis and evaluation as antitubercular and anticancer agents. J. Enzyme Inhib. Med. Chem. 2016, 31, 369–380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herlé, B.; Wanner, M.J.; van Maarseveen, J.H.; Hiemstra, H. Total synthesis of (+)-yohimbine via an enantioselective organocatalytic Pictet-Spengler reaction. J. Org. Chem. 2011, 76, 8907–8912. [Google Scholar] [CrossRef]
- Morales, A. Yohimbine in erectile dysfunction: The facts. Int. J. Impot. Res. 2000, 12 (Suppl 1), S70–S74. [Google Scholar] [CrossRef] [Green Version]
- Scott, L.J.; Perry, C.M. Delavirdine: A review of its use in HIV infection. Drugs 2000, 60, 1411–1444. [Google Scholar] [CrossRef]
- Biswal, S.; Sahoo, U.; Sethy, S.; Kumar, H.K.S.; Banerjee, M. Indole: The molecule of diverse biological activities. Asian J. Pharm. Clin. Res. 2012, 5, 1. [Google Scholar]
- Newman, D.J.; Cragg, G.M. Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019. J. Nat. Prod. 2020, 83, 770–803. [Google Scholar] [CrossRef]
- Watanabe, H.; Okuyama, K.; Ozawa, H.; Hirabayashi, K.; Shimomura, M.; Kunitake, T.; Yasuoka, N. A new antibiotic SF2583A, 4-chloro-5-(3′-indolyl) oxazole, produced by Streptomyces. Meiji Seika Kenkyu Nenpo 1988, 27, 55–62. [Google Scholar]
- Zhang, M.Z.; Jia, C.Y.; Gu, Y.C.; Mulholland, N.; Turner, S.; Beattie, D.; Zhang, W.H.; Yang, G.F.; Clough, J. Synthesis and antifungal activity of novel indole-replaced streptochlorin analogues. Eur. J. Med. Chem. 2017, 126, 669–674. [Google Scholar] [CrossRef]
- Gao, Y.; Huang, D.-C.; Liu, C.; Song, Z.-L.; Zhang, M.-Z. Streptochlorin analogues as potential antifungal agents: Design, synthesis, antifungal activity and molecular docking study. Bioorg. Med. Chem. 2021, 35, 116073. [Google Scholar] [CrossRef]
- Althagafi, I.; El-Metwaly, N.; Farghaly, T.A. New Series of Thiazole Derivatives: Synthesis, Structural Elucidation, Antimicrobial Activity, Molecular Modeling and MOE Docking. Molecules 2019, 24, 1741. [Google Scholar] [CrossRef] [Green Version]
- Demirci, S. Synthesis of Thiazole Derivatives as Antimicrobial Agents by Green Chemistry Techniques. JOTCSA 2018, 5, 393–414. [Google Scholar] [CrossRef]
- Kamat, V.; Santosh, R.; Poojary, B.; Nayak, S.P.; Kumar, B.K.; Sankaranarayanan, M.; Khanapure, S.; Barretto, D.A.; Vootla, S.K. Pyridine- and Thiazole-Based hydrazides with promising anti-inflammatory and antimicrobial activities along with their in-silico studies. ACS Omega 2020, 5, 25228–25239. [Google Scholar] [CrossRef]
- Zaki, I.; Abdelhameid, M.K.; El-Deen, I.M.; Wahab, A.H.; Ashmawy, A.M.; Mohamed, K.O. Design, synthesis and screening of 1, 2, 4-triazinone derivatives as potential antitumor agents with apoptosis inducing activity on MCF-7 breast cancer cell line. Eur. J. Med. Chem. 2018, 156, 563–579. [Google Scholar] [CrossRef]
- Xie, W.; Wu, Y.; Zhang, J.; Mei, Q.; Zhang, Y.; Zhu, N.; Liu, R.; Zhang, H. Design, synthesis and biological evaluations of novel pyridonethiazole hybrid molecules as antitumor agents. Eur. J. Med. Chem. 2018, 145, 35–40. [Google Scholar] [CrossRef]
- de Santana, T.I.; Barbosa, M.O.; Gomes, P.A.T.M.; da Cruz, A.C.N.; da Silva, T.G.; Leite, A.C.L. Synthesis, anticancer activity and mechanism of action of new thiazole derivatives. Eur. J. Med. Chem. 2018, 144, 874–886. [Google Scholar] [CrossRef]
- Kamble, R.D.; Meshram, R.J.; Hese, S.V.; More, R.A.; Kamble, S.S.; Gacche, R.N. Synthesis and in silico investigation of thiazoles bearing pyrazoles derivatives as anti-inflammatory agents. Comp. Biol. Chem. 2016, 61, 86–96. [Google Scholar] [CrossRef]
- Liaras, K.; Fesatidou, M.; Geronikaki, A. Thiazoles and Thiazolidinones asCOX/LOX Inhibitors. Molecules 2018, 23, 685. [Google Scholar] [CrossRef] [Green Version]
- Porwal, P.; Tiwari, T.; Paliwal, S.; Sharma, H.; Kushwah, H.; Pal, K. Synthesis and anti-inflammatory activity of substituted phenyl thiazole derivatives. WJPMR 2021, 7, 152–155. [Google Scholar]
- Galochkina, A.V.; Bollikanda, R.K.; Zarubaev, V.V. Synthesis of novel derivatives of 7,8-dihydro-6H-imidazo [2,1-b][1,3]benzothiazol-5-one and their virus-inhibiting activity against influenza A virus. Arch. Pharm. Chem. Life Sci. 2019, 352, e1800225. [Google Scholar] [CrossRef] [PubMed]
- Gürsoy, E.; Dincel, E.D.; Naesens, L.; Güzeldemirci, N.U. Design and synthesis of novel Imidazo[2,1-b]thiazole derivatives as potent antiviral and antimycobacterial agents. Bioorg. Chem. 2020, 95, 103496–103505. [Google Scholar] [CrossRef]
- Meleddu, R.; Distinto, S.; Corona, A.; Tramontano, E.; Bianco, G.; Melis, C.; Cottiglia, F.; Maccioni, E. Isatin thiazoline hybrids as dual inhibitors of HIV-1reverse transcriptase. J. Enzyme Inhib. Med. Chem. 2017, 32, 130–136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petrou, A.; Eleftheriou, P.; Geronikaki, A.; Akrivou, Μ.; Vizirianakis, Ι. Novel thiazolidin-4-ones as potential non-nucleoside inhibitors of HIV-1 reverse transcriptase. Molecules 2019, 24, 3821. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sravanthi, T.V.; Sajitha, L.; Vino, S.; Jayasri, M.A.; Mohanapriya, A.L.; Manju, S.L. Synthesis, docking, and evaluation of novel thiazoles for potent antidiabetic activity. Med. Chem. Res. 2017, 26, 1306–1315. [Google Scholar] [CrossRef]
- Khatik, G.L.; Datusalia, A.K.; Ahsan, W.; Kaur, P.; Vyas, M.; Mittal, A.; Nayak, S.K. A Retrospect Study on Thiazole Derivatives as the Potential Antidiabetic Agents in Drug Discovery and Developments. Curr. Drug Discov. Technol. 2018, 15, 163–177. [Google Scholar] [CrossRef] [PubMed]
- Distinto, S.; Meleddu, R.; Ortuso, F.; Cottiglia, F.; Deplano, S.; Sequeira, L.; Melis, C.; Fois, B.; Angeli, A.; Capasso, C.; et al. Exploring new structural features of the 4-[(3-methyl-4-aryl-2,3-dihydro-1,3-thiazol-2-ylidene)amino]benzenesulphonamide scaffold for the inhibition of human carbonic anhydrases. J. Enzym. Inhib. Med. Chem. 2019, 34, 1526–1533. [Google Scholar] [CrossRef] [Green Version]
- Manasa, K.L.; Pujitha, S.; Sethi, A.; Arifuddin, M.; Alvala, M.; Angeli, A.; Supuran, C.T. Synthesis and Biological Evaluation ofImidazo[2,1-b]Thiazole based Sulfonyl Piperazines as Novel Carbonic Anhydrase II Inhibitor. Metabolites 2020, 10, 136. [Google Scholar] [CrossRef] [Green Version]
- Al-Jaidi, B.A.; Deb, P.K.; Telfah, S.T.; Dakkah, A.N.; Bataineh, Y.A.; Khames Aga, Q.; Al-Dhoun, M.A.; Ahmad Al-Subeihi, A.A.; Odetallah, H.M.; Bardaweel, S.K.; et al. Synthesis and evaluation of 2,4,5-trisubstitutedthiazoles as carbonic anhydrase-III inhibitors. J. Enzym. Inhib. Med. Chem. 2020, 35, 1483–1490. [Google Scholar] [CrossRef]
- Karale, U.B.; Krishna, V.S.; Krishna, E.V.; Choudhari, A.S.; Shukla, M.; Gaikwad, V.R.; Mahizhaveni, B.; Chopra, S.; Misra, S.; Sarkar, D.; et al. Synthesis and biological evaluation of 2,4,5-trisubstituted thiazoles as antituberculosis agents effective against drug-resistant tuberculosis. Eur. J. Med. Chem. 2019, 178, 315–328. [Google Scholar] [CrossRef]
- SAlegaon, S.; Kashniya, K.; Kuncolienkar, S.; Kavalapure, R.; Salve, P.; Palled, M. Synthesis and biological evaluation of some 4-aminoquinoline derivatives as potential antitubercular agents. Future J. Pharm. Sci. 2020, 6, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Mishchenko, M.; Shtrygol, S.; Kaminskyy, D.; Lesyk, R. Thiazole-Bearing 4-Thiazolidinones as NewAnticonvulsant Agents. Sci. Pharm. 2020, 88, 16. [Google Scholar] [CrossRef] [Green Version]
- Kumawat, M.K. Thiazole Containing Heterocycles with Antimalarial Activity. Curr. Drug Discov. Technol. 2018, 15, 196–200. [Google Scholar] [CrossRef]
- de Siqueira, L.R.P.; de Oliveira, M.; Oliveira, A.R.; de Moraes Gomes, P.A.T.; de Oliveira Filho, G.B.; de Oliveira Cardoso, M.V.; Pereira, V.R.A.; da Silva Santos, A.C.; Júnior, P.A.S.; Romanha, A.J.; et al. Synthesis and anti-Trypanosoma cruzi profile of the novel 4-thiazolidinone and 1,3-thiazole derivatives. Front. Drug Chem. Clin. Res. 2019, 2, 1–12. [Google Scholar]
- Ye, J.; Liu, Q.; Wang, C.; Meng, Q.; Sun, H.; Peng, J.; Ma, X.; Liu, K. Benzylpenicillin inhibits the renal excretion of acyclovir by OAT1 and OAT3. Pharmacol. Rep. 2013, 65, 505–512. [Google Scholar] [CrossRef]
- Rahmutulla, B.; Matsushita, K.; Satoh, M.; Seimiya, M.; Tsuchida, S.; Kubo, S.; Shimada, H.; Ohtsuka, M.; Miyazaki, M.; Nomura, F. Alternative splicing of FBP-interacting repressor coordinates c-Myc, P27Kip1/cyclinE and Ku86/XRCC5 expression as a molecular sensor for bleomycin induced DNA damage pathway. Oncotarget 2014, 15, 2404–2417. [Google Scholar] [CrossRef]
- Popsavin, V. Synthesis and antiproliferative activity of two new tiazofurin analogues with 2′-amido functionalities. Bioorganic Med. Chem. Lett. 2006, 16, 2773–2776. [Google Scholar] [CrossRef]
- Wei, L.; Cheng, J.; Meng, Y.; Ren, Y.; Deng, H.; Guo, Y. A novel formulation of thiamine dilaurylsulphate and its preservative effect on apple juice and sterilised milk. Food Chem. 2014, 1, 415–422. [Google Scholar] [CrossRef]
- Sevrioukova, L.F.; Poulos, T.L. Dissecting cytochrome P450 3A4-ligand interactions using ritonavir analogues. Biochemistry 2013, 52, 4474–4481. [Google Scholar] [CrossRef]
- Karateev, A.E. [Meloxicam: The golden mean of nonsteroidal anti-inflammatory drugs]. Ter Arkh. 2014, 86, 99–105, Russian. PMID: 25026810. [Google Scholar] [PubMed]
- Ivasiv, V.; Albertini, C.; Gonçalves, A.E.; Rossi, M.; Bolognesi, M.L. Molecular hybridization as a tool for designing multitarget drug candidates for complex diseases. Curr. Top. Med. Chem. 2019, 19, 1694–1711. [Google Scholar] [CrossRef] [PubMed]
- Viegas-Junior, C.; Danuello, A.; Bolzani, V.d.S.; Barreiro, E.J.; Fraga, C.A.M. Molecular Hybridization: A Useful Tool in the Design of New Drug Prototypes. Curr. Med. Chem. 2007, 14, 1829–1852. [Google Scholar] [CrossRef] [PubMed]
- Horishny, V.; Kartsev, V.G.; Matiychuk, V.S.; Geronikaki, A.; Petrou, A.; Pogodin, D.; Poroikov, V.; Ivanov, M.; Kostic, M.; Sokovic, M. 3-Amino-5- (indol-3-yl) methylene-4-oxo-2-thioxothiazolidine derivatives as antimicrobial agents: Synthesis, computational and biological evaluation. Pharmaceuticals 2020, 13, 229. [Google Scholar] [CrossRef] [PubMed]
- Horishny, V.; Kartsev, V.G.; Matiychuk, V.S.; Geronikaki, A.; Petrou, A.; Glamoclija, J.; Ciric, A.; Sokovic, M. 5-(1H-Indol-3-ylmethylene)-4-oxo-2-thioxothiazolidin-3-yl)alkancarboxylic acids as antimicrobial agents. Synthesis, biological evaluation and molecular docking studies. Molecules 2020, 25, 1964. [Google Scholar] [CrossRef] [Green Version]
- Mirchamsy, H.; Shafyi, A.; Bahrami, S.; Kamali, M.; Nazari, P. Use of human diploid cell MRC-5, for production of measles and rubella virus vaccines. Dev Biol Stand. 1976, 37, 297–300. [Google Scholar]
- Rieske, P.; Krynska, B.; Azizi, S. Human fibroblast-derived cell lines have characteristics of embryonic stem cells and cells of neuro-ectodermal origin. Differentiation 2005, 73, 474–483. [Google Scholar] [CrossRef]
- Akrivou, M.G.; Demertzidou, V.P.; Theodoroula, N.F.; Chatzopoulou, F.M.; Kyritsis, K.A.; Grigoriadis, N.; Zografos, A.L.; Vizirianakis, I.S. Uncovering the pharmacological response of novel sesquiterpene derivatives that differentially alter gene expression and modulate the cell cycle in cancer cells. Int. J. Oncol. 2018, 53, 2167–2179. [Google Scholar] [CrossRef] [Green Version]
- Tseligka, E.D.; Rova, A.; Amanatiadou, E.P.; Calabrese, G.; Tsibouklis, J.; Fatouros, D.G.; Vizirianakis, I.S. Pharmacological Development of Target-Specific Delocalized Lipophilic Cation-Functionalized Carboranes for Cancer Therapy. Pharm. Res. 2016, 33, 1945–1958. [Google Scholar] [CrossRef] [Green Version]
- Egan, W.J.; Merz, K.M.; Baldwin, J.J. Prediction of Drug Absorption Using Multivariate Statistics. J. Med. Chem. 2000, 43, 3867–3877. [Google Scholar] [CrossRef]
- Ghose, A.K.; Viswanadhan, V.N.; Wendoloski, J.J. A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. A qualitative and quantitative characterization of known drug databases. J Comb. Chem. 1999, 1, 55–68. [Google Scholar] [CrossRef]
- Muegge, I.; Heald, S.L.; Brittelli, D. Simple selection criteria for drug-like chemical matter. J. Med. Chem. 2001, 44, 1841–1846. [Google Scholar] [CrossRef]
- Veber, D.F.; Johnson, S.R.; Cheng, H.Y.; Smith, B.R.; Wars, K.W.; Kopple, K.D. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem. 2002, 45, 2615–2623. [Google Scholar] [CrossRef]
- Lipinski, C.A. Lead- and drug-like compounds: The rule-of-five revolution. Drug Discov. Today: Technologies 2004, 1, 337–341. [Google Scholar] [CrossRef]
- Rubtsov, M.B.; Baichikov, A.G. Synthetic chemico-pharmaceutical preparates. In Meditsina; Moscow, Russia, 1971; pp. 158–159. [Google Scholar]
- Murakami, Y.; Yokoyama, Y.; Miura, T.; Hirasawa, H.; Kamimura, Y.; Mzaki, M. p-Toluenesulfonik acid and cation exchange resin in aprotonic solvent: Valuable catalysts for Fischer indolization. Heterocycles 1984, 22, 1211–1216. [Google Scholar] [CrossRef]
- Suvorov, N.N.; Smushkvic, J.I.; Velezheva, V.S.; Rozhkov, V.S.; Simakov, S.V. Synthesis of N-substituted indoles by extractive alkylation. Chim. Heterocyc. Soedin. 1976, 2, 191–193. [Google Scholar] [CrossRef]
- Chapman, N.B.; Clarke, K.; Hughes, H. 250. Synthesis of some 5-substituted-2-methyltryptamines and their N-mono- and -di-alkyl derivatives. J. Chem. Soc. 1965, 1424–1428. [Google Scholar] [CrossRef]
- Kartsev, V.; Lichitsky, B.; Geronikaki, A.; Petrou, A.; Smiljkovic, M.; Kostic, M.; Radanovic, O.; Soković, M. Design, synthesis and antimicrobial activity of usnic acid derivatives. Med. Chem. Comm. 2018, 9, 870–882. [Google Scholar] [CrossRef] [Green Version]
- Kostić, M.; Smiljković, M.; Petrović, J.; Glamočilija, J.; Barros, L.; Ferreira, I.C.F.R.; Ćirić, A.; Soković, M. Chemical, nutritive composition and a wide range of bioactive properties of honey mushroom Armillariamellea (Vahl: Fr.) Kummer. Food and Function 2017, 8, 3239–3249. [Google Scholar] [CrossRef] [Green Version]
- Cady, N.C.; McKean, K.A.; Behnke, J.; Kubec, R.; Mosier, A.P.; Kasper, S.H.; Burz, D.S.; Musah, R.A. Inhibition of biofilm formation, quorum sensing and infection in Pseudomonas aeruginosa by natural products-inspired organosulfur compounds. PLoS ONE 2012, 7, e38492. [Google Scholar] [CrossRef] [Green Version]
- Aničić, N.; Gaši, U.; Lu, F.; ĆCiric, A.; Ivanov, M.; Jevtic, B.; Dimitrijevic, M.; Andelkovic, B.; Skoric, M.; Nestorovic Živkovic, I.; et al. Antimicrobial and immunomodulating activities of two ]endemic Nepeta species and their major iridoids isolated from natural sources. Pharmaceuticals 2021, 14, 414. [Google Scholar] [CrossRef]
- Smiljkovic, M.; Dias, M.; Stojkovic, D.; Barros, L.; Bukvicki, D.; Ferreira, I.C.F.R.; Sokovic, M. Characterization of phenolic compounds in tincture of edible Nepeta nuda: Development of antimicrobial mouthwash. Food & Function 2018, 9, 5417–5425. [Google Scholar] [CrossRef] [Green Version]
- Kritsi, E.; Matsoukas, M.T.; Potamitis, C.; Detsi, A.; Ivanov, M.; Sokovic, M.; Zoumpoulakis, P. Novel Hit Compounds as Putative Antifungals: The Case of Aspergillus fumigatus. Molecules 2019, 24, 3853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aleksić, M.; Stanisavljević, D.; Smiljković, M.; Vasiljević, P.; Stevanović, M.; Soković, M.; Stojković, D. Pyrimethanil: Between efficient fungicide against Aspergillus rot on cherry tomato and cytotoxic agent on human cell lines. Ann. Appl. Biol. 2019, 175, 228–235. [Google Scholar] [CrossRef]
- Angeli, A.; Kartsev, V.; Petrou, A.; Pinteala, M.; Vydzhak, R.M.; Panchishin, S.Y.; Brovarets, V.; De Luca, V.; Capasso, C.; Geronikaki, A.; et al. New Sulfanilamide Derivatives Incorporating Heterocyclic Carboxamide Moieties as Carbonic Anhydrase Inhibitors. Pharmaceuticals 2021, 14, 828. [Google Scholar] [CrossRef]
Compounds | S.a. | B.c. | L.m. | E.c. | S.T | En.cl. | |
---|---|---|---|---|---|---|---|
5a | MIC | 0.94 ± 0.00 | 0.47 ± 0.01 | 0.23 ± 0.00 | 0.23 ± 0.00 | 0.12 ± 0.00 | 0.23 ± 0.00 |
MBC | 1.88 ± 0.03 | 0.94 ± 0.02 | 0.47 ± 0.01 | 0.47 ± 0.02 | 0.23 ± 0.00 | 0.47 ± 0.03 | |
5b | MIC | 0.94 ± 0.00 | 0.47 ± 0.00 | 0.94 ± 0.00 | 0.94 ± 0.02 | 0.47 ± 0.00 | 0.94 ± 0.02 |
MBC | 1.88 ± 0.05 | 0.94 ± 0.02 | 1.88 ± 0.05 | 1.88 ± 0.05 | 0.94 ± 0.02 | 1.88 ± 0.02 | |
5c | MIC | 1.88 ± 0.03 | 0.94 ± 0.02 | 0.94 ± 0.02 | 1.88 ± 0.05 | 0.94 ± 0.02 | 1.88 ± 0.03 |
MBC | 3.75 ± 0.08 | 1.88 ± 0.03 | 1.88 ± 0.03 | 3.75 ± 0.05 | 1.88 ± 0.00 | 3.75 ± 0.03 | |
5d | MIC | 0.23 ± 0.00 | 0.23 ± 0.00 | 0.23 ± 0.00 | 0.23 ± 0.00 | 0.23 ± 0.00 | 0.23 ± 0.00 |
MBC | 0.47 ± 0.03 | 0.47 ± 0.02 | 0.47 ± 0.02 | 0.47 ± 0.03 | 0.47 ± 0.00 | 0.47 ± 0.03 | |
5e | MIC | 0.47 ± 0.00 | 0.12 ± 0.00 | 0.12 ± 0.00 | 0.94 ± 0.00 | 0.23 ± 0.00 | 0.12 ± 0.00 |
MBC | 0.94 ± 0.05 | 0.23 ± 0.00 | 0.23 ± 0.00 | 1.88 ± 0.04 | 0.47 ± 0.00 | 0.23 ± 0.01 | |
5f | MIC | 1.88 ± 0.07 | 0.47 ± 0.01 | 0.94 ± 0.02 | 0.47 ± 0.01 | 0.94 ± 0.03 | 0.94 ± 0.05 |
MBC | 3.75 ± 0.06 | 0.94 ± 0.02 | 1.88 ± 0.03 | 0.94 ± 0.03 | 1.88 ± 0.06 | 1.88 ± 0.06 | |
5i | MIC | 3.75 ± 0.06 | 0.94 ± 0.02 | 0.94 ± 0.03 | 0.94 ± 0.03 | 0.47 ± 0.01 | 0.94 ± 0.02 |
MBC | >3.75 | 1.88 ± 0.05 | 1.88 ± 0.05 | 1.88 ± 0.05 | 0.94 ± 0.02 | 1.88 ± 0.03 | |
5l | MIC | 1.88 ± 0.07 | 0.94 ± 0.02 | 0.94 ± 0.02 | 1.88 ± 0.05 | 0.94 ± 0.02 | 0.94 ± 0.03 |
MBC | 3.75 ± 0.08 | 1.88 ± 0.03 | 1.88 ± 0.05 | 3.75 ± 0.07 | 1.88 ± 0.05 | 1.88 ± 0.05 | |
5m | MIC | 0.12 ± 0.00 | 0.06 ± 0.00 | 0.12 ± 0.00 | 0.23 ± 0.00 | 0.23 ± 0.00 | 0.23 ± 0.00 |
MBC | 0.23 ± 0.00 | 0.12 ± 0.00 | 0.23 ± 0.00 | 0.47 ± 0.00 | 0.47 ± 0.00 | 0.47 ± 0.00 | |
5n | MIC | 1.88 ± 0.06 | 0.94 ± 0.02 | 0.94 ± 0.02 | 1.88 ± 0.05 | 0.94 ± 0.02 | 1.88 ± 0.02 |
MBC | 3.75 ± 0.08 | 1.88 ± 0.06 | 1.88 ± 0.05 | 3.75 ± 0.08 | 1.88 ± 0.08 | 3.75 ± 0.06 | |
5o | MIC | 1.88 ± 0.06 | 0.94 ± 0.02 | 0.94 ± 0.02 | 1.88 ± 0.05 | 1.88 ± 0.05 | 0.94 ± 0.02 |
MBC | 3.75 ± 0.08 | 1.88 ± 0.06 | 1.88 ± 0.06 | 3.75 ± 0.10 | 3.75 ± 0.08 | 1.88 ± 0.05 | |
5q | MIC | 0.23 ± 0.00 | 0.23 ± 0.00 | 0.23 ± 0.00 | 1.88 ± 0.05 | 0.47 ± 0.02 | 0.23 ± 0.01 |
MBC | 0.47 ± 0.03 | 0.47 ± 0.02 | 0.47 ± 0.02 | 3.75 ± 0.08 | 0.94 ± 0.02 | 0.47 ± 0.02 | |
5s | MIC | 0.94 ± 0.05 | 0.47 ± 0.02 | 0.23 ± 0.01 | 0.94 ± 0.03 | 0.94 ± 0.03 | 0.47 ± 0.02 |
MBC | 1.88 ± 0.07 | 0.94 ± 0.02 | 0.47 ± 0.02 | 1.88 ± 0.05 | 1.88 ± 0.06 | 0.94 ± 0.03 | |
5u | MIC | 1.88 ± 0.06 | 0.94 ± 0.01 | 0.47 ± 0.02 | 3.75 ± 0.08 | 1.88 ± 0.06 | 0.94 ± 0.03 |
MBC | 3.75 ± 0.08 | 1.88 ± 0.03 | 0.94 ± 0.03 | >3.75 | 3.75 ± 0.10 | 1.88 ± 0.05 | |
5v | MIC | 1.88 ± 0.06 | 0.47 ± 0.02 | 0.47 ± 0.02 | 0.94 ± 0.03 | 0.47 ± 0.02 | 0.94 ± 0.03 |
MBC | 3.75 ± 0.08 | 0.94 ± 0.02 | 0.94 ± 0.05 | 1.88 ± 0.05 | 0.94 ± 0.04 | 1.88 ± 0.06 | |
5x | MIC | 0.12 ± 0.00 | 0.12 ± 0.00 | 0.12 ± 0.00 | 0.12 ± 0.00 | 0.06 ± 0.00 | 0.12 ± 0.00 |
MBC | 0.23 ± 0.00 | 0.23 ± 0.00 | 0.23 ± 0.00 | 0.23 ± 0.00 | 0.12 ± 0.00 | 0.23 ± 0.00 | |
Streptomycin | MIC | 0.10 ± 0.00 | 0.02 ± 0.00 | 0.15 ± 0.00 | 0.10 ± 0.00 | 0.10 ± 0.00 | 0.02 ± 0.00 |
MBC | 0.20 ± 0.01 | 0.05 ± 0.00 | 0.30 ± 0.01 | 0.20 ± 0.00 | 0.20 ± 0.01 | 0.05 ± 0.00 | |
Ampicillin | MIC | 0.10 ± 0.00 | 0.10 ± 0.00 | 0.15 ± 0.00 | 0.15 ± 0.00 | 0.10 ± 0.00 | 0.10 ± 0.00 |
MBC | 0.15 ± 0.00 | 0.15 ± 0.00 | 0.30 ± 0.02 | 0.20 ± 0.01 | 0.20 ± 0.00 | 0.15 ± 0.01 |
Compound | FICI |
---|---|
5d | 1.5 |
5m | 1.5 |
5x | 1.5 |
Compounds | MRSA | P. a | E. c. | MIC | 0.5 MIC | |
---|---|---|---|---|---|---|
5d | MIC | 0.94 ± 0.00 | 0.23 ± 0.00 | 1.88 ± 0.06 | 39.38 ± 9.25 | 20.62 ± 3.22 |
MBC | 1.88 ± 0.06 | 0.47 ± 0.01 | 3.75 ± 0.00 | |||
5m | MIC | 0.23 ± 0.00 | 0.94 ± 0.00 | 0.47 ± 0.01 | 80.30 ± 5.62 | 69.55 ± 11.45 |
MBC | 0.47 ± 0.01 | 1.88 ± 0.06 | 0.94 ± 0.00 | |||
5x | MIC | 0.47 ± 0.01 | 0.47 ± 0.01 | 0.47 ± 0.01 | 75.52 ± 11.99 | 21.19 ± 3.50 |
MBC | 0.94 ± 0.00 | 0.94 ± 0.00 | 0.94 ± 0.00 | |||
Streptomycin | MIC | 0.10 ± 0.00 | 0.05 ± 0.00 | 0.10 ± 0.00 | 63.56 ± 8.28 | 29.12 ± 1.22 |
MBC | / | 0.10 ± 0.00 | 0.20 ± 0.01 | |||
Ampicillin | MIC | / | 0.20 ± 0.01 | 0.20 ± 0.01 | 70.00 ± 10.23 | 52.36 ± 3.67 |
MBC | / | / | / |
Compounds | A.f. | A.n. | A.v. | P.f. | T.v. | P.v.c. | |
---|---|---|---|---|---|---|---|
5a | MIC | 0.47 ± 0.00 | 0.47 ± 0.00 | 0.23 ± 0.00 | 0.47 ± 0.00 | 0.23 ± 0.00 | 0.23 ± 0.00 |
MFC | 0.94 ± 0.03 | 0.94 ± 0.03 | 0.47 ± 0.00 | 0.94 ± 0.07 | 0.47 ± 0.02 | 0.47 ± 0.02 | |
5b | MIC | 1.88 ± 0.08 | 0.23 ± 0.01 | 0.47 ± 0.00 | 0.47 ± 0.02 | 0.23 ± 0.01 | 0.47 ± 0.03 |
MFC | 3.75 ± 0.10 | 0.47 ± 0.03 | 0.94 ± 0.05 | 0.94 ± 0.05 | 0.47 ± 0.03 | 0.94 ± 0.07 | |
5c | MIC | 1.88 ± 0.08 | 0.47 ± 0.03 | 0.47 ± 0.02 | 0.47 ± 0.03 | 0.23 ± 0.01 | 0.12 ± 0.00 |
MFC | 3.75 ± 0.06 | 0.94 ± 0.07 | 0.94 ± 0.07 | 0.94 ± 0.07 | 0.47 ± 0.02 | 0.23 ± 0.01 | |
5d | MIC | 0.23 ± 0.00 | 0.06 ± 0.00 | 0.23 ± 0.00 | 0.47 ± 0.03 | 0.06 ± 0.00 | 0.47 ± 0.02 |
MFC | 0.47 ± 0.01 | 0.12 ± 0.00 | 0.47 ± 0.03 | 0.94 ± 0.06 | 0.12 ± 0.00 | 0.94 ± 0.04 | |
5e | MIC | 0.47 ± 0.02 | 0.12 ± 0.00 | 0.23 ± 0.02 | 0.47 ± 0.02 | 0.23 ± 0.00 | 0.47 ± 0.02 |
MFC | 0.94 ± 0.05 | 0.23 ± 0.01 | 0.47 ± 0.02 | 0.94 ± 0.08 | 0.47 ± 0.02 | 0.94 ± 0.06 | |
5f | MIC | 0.94 ± 0.05 | 0.47 ± 0.03 | 0.47 ± 0.02 | 0.94 ± 0.06 | 0.23 ± 0.00 | 0.12 ± 0.00 |
MFC | 1.88 ± 0.08 | 0.94 ± 0.07 | 0.94 ± 0.06 | 1.88 ± 0.08 | 0.47 ± 0.03 | 0.23 ± 0.01 | |
5i | MIC | 0.47 ± 0.01 | 0.23 ± 0.01 | 0.23 ± 0.01 | 0.94 ± 0.03 | 0.06 ± 0.00 | 0.94 ± 0.02 |
MFC | 0.94 ± 0.02 | 0.47 ± 0.03 | 0.47 ± 0.03 | 1.88 ± 0.08 | 0.12 ± 0.00 | 1.88 ± 0.05 | |
5l | MIC | 0.23 ± 0.00 | 0.06 ± 0.00 | 0.06 ± 0.00 | 0.47 ± 0.03 | 0.12 ± 0.00 | 0.12 ± 0.00 |
MFC | 0.47 ± 0.03 | 0.12 ± 0.00 | 0.12 ± 0.00 | 0.94 ± 0.04 | 0.23 ± 0.00 | 0.23 ± 0.00 | |
5m | MIC | 0.47 ± 0.02 | 0.23 ± 0.00 | 0.23 ± 0.00 | 0.47 ± 0.02 | 0.23 ± 0.00 | 0.47 ± 0.03 |
MFC | 0.94 ± 0.03 | 0.47 ± 0.02 | 0.47 ± 0.03 | 0.94 ± 0.07 | 0.47 ± 0.01 | 0.94 ± 0.07 | |
5n | MIC | 0.47 ± 0.01 | 0.23 ± 0.01 | 0.47 ± 0.03 | 0.47 ± 0.02 | 0.12 ± 0.00 | 0.12 ± 0.00 |
MFC | 0.94 ± 0.04 | 0.47 ± 0.03 | 0.94 ± 0.07 | 0.94 ± 0.06 | 0.23 ± 0.01 | 0.23 ± 0.02 | |
5o | MIC | 0.23 ± 0.01 | 0.23 ± 0.01 | 0.23 ± 0.01 | 0.47 ± 0.03 | 0.23 ± 0.02 | 0.47 ± 0.02 |
MFC | 0.47 ± 0.03 | 0.47 ± 0.03 | 0.47 ± 0.03 | 0.94 ± 0.05 | 0.47 ± 0.03 | 0.94 ± 0.05 | |
5q | MIC | 0.23 ± 0.00 | 0.23 ± 0.00 | 0.47 ± 0.02 | 0.47 ± 0.03 | 0.23 ± 0.00 | 0.47 ± 0.01 |
MFC | 0.47 ± 0.03 | 0.47 ± 0.03 | 0.94 ± 0.05 | 0.94 ± 0.05 | 0.47 ± 0.03 | 0.94 ± 0.03 | |
5s | MIC | 0.47 ± 0.02 | 0.47 ± 0.01 | 0.47 ± 0.02 | 0.47 ± 0.03 | 0.23 ± 0.01 | 0.47 ± 0.03 |
MFC | 0.94 ± 0.05 | 0.94 ± 0.03 | 0.94 ± 0.03 | 0.94 ± 0.03 | 0.47 ± 0.02 | 0.94 ± 0.07 | |
5u | MIC | 0.94 ± 0.05 | 0.12 ± 0.00 | 0.23 ± 0.00 | 0.47 ± 0.03 | 0.23 ± 0.00 | 0.47 ± 0.03 |
MFC | 1.88 ± 0.06 | 0.23 ± 0.00 | 0.47 ± 0.01 | 0.94 ± 0.05 | 0.47 ± 0.02 | 0.94 ± 0.05 | |
5v | MIC | 0.23 ± 0.01 | 0.06 ± 0.00 | 0.06 ± 0.00 | 0.47 ± 0.02 | 0.06 ± 0.00 | 0.94 ± 0.04 |
MFC | 0.47 ± 0.03 | 0.12 ± 0.00 | 0.12 ± 0.01 | 0.94 ± 0.03 | 0.12 ± 0.00 | 1.88 ± 0.07 | |
5x | MIC | 0.12 ± 0.00 | 0.06 ± 0.00 | 0.06 ± 0.00 | 0.12 ± 0.00 | 0.06 ± 0.00 | 0.06 ± 0.00 |
MFC | 0.23 ± 0.01 | 0.12 ± 0.01 | 0.12 ± 0.00 | 0.23 ± 0.01 | 0.12 ± 0.01 | 0.12 ± 0.01 | |
Bifonazole | MIC | 0.15 ± 0.00 | 0.15 ± 0.00 | 0.10 ± 0.00 | 0.20 ± 0.01 | 0.15 ± 0.00 | 0.10 ± 0.00 |
MFC | 0.20 ± 0.00 | 0.20 ± 0.00 | 0.20 ± 0.01 | 0.25 ± 0.01 | 0.20 ± 0.01 | 0.20 ± 0.00 | |
Ketoconazole | MIC | 0.20 ± 0.01 | 0.20 ± 0.01 | 0.20 ± 0.00 | 0.20 ± 0.00 | 1.00 ± 0.01 | 0.20 ± 0.01 |
MFC | 0.50 ± 0.03 | 0.50 ± 0.03 | 0.50 ± 0.02 | 0.50 ± 0.03 | 1.50 ± 0.02 | 0.30 ± 0.01 |
Compounds | A.f. | A.n. | A.v. | P.f. | T.v. | P.v.c. | |
---|---|---|---|---|---|---|---|
5g | MIC | 0.47 ± 0.03 | 0.06 ± 0.00 | 0.23 ± 0.01 | 0.47 ± 0.02 | 0.23 ± 0.01 | 0.94 ± 0.02 |
MFC | 0.94 ± 0.05 | 0.12 ± 0.01 | 0.47 ± 0.01 | 0.94 ± 0.03 | 0.47 ± 0.01 | 1.88 ± 0.05 | |
5h | MIC | 1.88 ± 0.08 | 0.47 ± 0.01 | 0.47 ± 0.01 | 0.23 ± 0.01 | 0.23 ± 0.01 | 0.47 ± 0.02 |
MFC | 3.75 ± 0.08 | 0.94 ± 0.03 | 0.94 ± 0.03 | 0.47 ± 0.02 | 0.47 ± 0.02 | 0.94 ± 0.03 | |
5j | MIC | 0.47 ± 0.02 | 0.23 ± 0.01 | 0.12 ± 0.01 | 0.47 ± 0.01 | 0.23 ± 0.01 | 0.94 ± 0.05 |
MFC | 0.94 ± 0.04 | 0.47 ± 0.03 | 0.23 ± 0.01 | 0.94 ± 0.03 | 0.47 ± 0.02 | 1.88 ± 0.08 | |
5k | MIC | 0.94 ± 0.03 | 0.47 ± 0.01 | 0.47 ± 0.02 | 0.47 ± 0.02 | 0.23 ± 0.01 | 0.47 ± 0.02 |
MFC | 1.88 ± 0.08 | 0.94 ± 0.03 | 0.94 ± 0.03 | 0.94 ± 0.05 | 0.47 ± 0.03 | 0.94 ± 0.02 | |
5p | MIC | 0.94 ± 0.03 | 0.47 ± 0.03 | 0.47 ± 0.02 | 0.23 ± 0.01 | 0.23 ± 0.01 | 0.94 ± 0.03 |
MFC | 1.88 ± 0.04 | 0.94 ± 0.03 | 0.94 ± 0.03 | 0.47 ± 0.02 | 0.47 ± 0.02 | 1.88 ± 0.04 | |
5r | MIC | 0.23 ± 0.01 | 0.12 ± 0.00 | 0.23 ± 0.01 | 0.23 ± 0.01 | 0.23 ± 0.00 | 0.47 ± 0.03 |
MFC | 0.47 ± 0.02 | 0.23 ± 0.01 | 0.47 ± 0.02 | 0.47 ± 0.02 | 0.47 ± 0.02 | 0.94 ± 0.04 | |
5t | MIC | 0.23 ± 0.01 | 0.23 ± 0.01 | 0.47 ± 0.02 | 0.47 ± 0.02 | 0.23 ± 0.01 | 0.47 ± 0.02 |
MFC | 0.47 ± 0.02 | 0.47 ± 0.02 | 0.94 ± 0.02 | 0.94 ± 0.03 | 0.47 ± 0.02 | 0.94 ± 0.02 | |
5w | MIC | 0.23 ± 0.01 | 0.12 ± 0.00 | 0.23 ± 0.01 | 1.88 ± 0.03 | 0.23 ± 0.01 | 1.88 ± 0.05 |
MFC | 0.47 ± 0.02 | 0.23 ± 0.01 | 0.47 ± 0.03 | 3.75 ± 0.09 | 0.47 ± 0.02 | 3.75 ± 0.06 | |
6a | MIC | 0.47 ± 0.02 | 0.23 ± 0.01 | 0.23 ± 0.01 | 0.94 ± 0.05 | 0.47 ± 0.02 | 0.94 ± 0.05 |
MFC | 0.94 ± 0.03 | 0.47 ± 0.02 | 0.47 ± 0.03 | 1.88 ± 0.06 | 0.94 ± 0.02 | 1.88 ± 0.08 | |
6b | MIC | 0.23 ± 0.00 | 0.23 ± 0.01 | 0.47 ± 0.02 | 0.47 ± 0.02 | 0.23 ± 0.01 | 0.47 ± 0.01 |
MFC | 0.47 ± 0.02 | 0.47 ± 0.02 | 0.94 ± 0.03 | 0.94 ± 0.05 | 0.47 ± 0.03 | 0.94 ± 0.05 | |
6c | MIC | 0.47 ± 0.02 | 0.23 ± 0.01 | 0.23 ± 0.01 | 0.47 ± 0.02 | 0.23 ± 0.01 | 0.94 ± 0.01 |
MFC | 0.94 ± 0.04 | 0.47 ± 0.03 | 0.47 ± 0.02 | 0.94 ± 0.03 | 0.47 ± 0.02 | 1.88 ± 0.06 | |
6d | MIC | 0.23 ± 0.02 | 0.23 ± 0.01 | 0.47 ± 0.02 | 0.23 ± 0.01 | 0.23 ± 0.01 | 1.88 ± 0.05 |
MFC | 0.47 ± 0.03 | 0.47 ± 0.03 | 0.94 ± 0.03 | 0.47 ± 0.02 | 0.47 ± 0.02 | 3.75 ± 0.08 | |
6e | MIC | 3.75 ± 0.00 | 3.75 ± 0.00 | 3.75 ± 0.00 | 3.75 ± 0.00 | 3.75 ± 0.00 | 3.75 ± 0.00 |
MFC | >3.75 | >3.75 | >3.75 | >3.75 | >3.75 | >3.75 | |
6f | MIC | 0.47 ± 0.01 | 0.23 ± 0.01 | 0.47 ± 0.02 | 0.47 ± 0.01 | 0.23 ± 0.01 | 0.23 ± 0.02 |
MFC | 0.94 ± 0.03 | 0.47 ± 0.02 | 0.94 ± 0.02 | 0.94 ± 0.03 | 0.47 ± 0.02 | 0.47 ± 0.02 | |
Bifonazole | MIC | 0.15 ± 0.00 | 0.15 ± 0.00 | 0.10 ± 0.00 | 0.20 ± 0.01 | 0.15 ± 0.00 | 0.10 ± 0.00 |
MFC | 0.20 ± 0.00 | 0.20 ± 0.00 | 0.20 ± 0.01 | 0.25 ± 0.01 | 0.20 ± 0.01 | 0.20 ± 0.00 | |
Ketoconazole | MIC | 0.20 ± 0.01 | 0.20 ± 0.01 | 0.20 ± 0.00 | 0.20 ± 0.00 | 1.00 ± 0.01 | 0.20 ± 0.01 |
MFC | 0.50 ± 0.03 | 0.50 ± 0.03 | 0.50 ± 0.02 | 0.50 ± 0.03 | 1.50 ± 0.02 | 0.30 ± 0.01 |
No | Est. Binding Energy (kcal/mol) | I-H | Residues Involved in Hydrogen Bond Formation | ||||
---|---|---|---|---|---|---|---|
DNA topo IV PDB ID: 1S16 | E. coli Primase PDB ID: 1DDE | Gyrase PDB ID: 1KZN | Thymidylate Kinase PDB ID: 4QGG | E. coli MurB PDB ID: 2Q85 | |||
5a | −2.56 | −3.46 | −5.88 | − | −9.88 | 2 | Arg158, Ser228 |
5c | - | −1.52 | −4.12 | −1.57 | −8.15 | 1 | Ser228 |
5d | −4.33 | −2.92 | −5.73 | − | −10.13 | 2 | Ser228 |
5e | −3.72 | −1.55 | −6.77 | −1.28 | −9.73 | 2 | Tyr189, Ser228 |
5f | - | - | −5.24 | - | −8.85 | 2 | Asn50, Arg158 |
5i | - | −1.23 | −5.37 | - | −6.94 | 1 | Arg158 |
5l | −2.46 | − | −4.31 | - | −8.91 | 2 | Asn50, Ser228 |
5m | −3.51 | −2.75 | −5.37 | −1.67 | −9.89 | 2 | Arg158, Ser228 |
5n | - | - | −4.88 | − | −8.06 | 1 | Ser228 |
5o | - | −1.74 | −5.39 | − | −8.17 | 1 | Ser228 |
5q | −4.90 | - | −6.15 | −1.37 | −9.31 | 2 | Arg158, Ser228 |
5s | −3.69 | −2.48 | −5.82 | −2.63 | −8.95 | 2 | Ser228, Lys261 |
5u | - | - | −5.78 | - | −7.02 | 1 | Asn50 |
5v | −3.11 | −1.67 | −4.95 | - | −8.73 | 2 | Arg158, Tyr189 |
5x | −4.85 | −3.97 | −6.28 | - | −10.74 | 3 | Asn50, Ser228, Glu324 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simakov, S.; Kartsev, V.; Petrou, A.; Nicolaou, I.; Geronikaki, A.; Ivanov, M.; Kostic, M.; Glamočlija, J.; Soković, M.; Talea, D.; et al. 4-(Indol-3-yl)thiazole-2-amines and 4-ιndol-3-yl)thiazole Acylamines as Νovel Antimicrobial Agents: Synthesis, In Silico and In Vitro Evaluation. Pharmaceuticals 2021, 14, 1096. https://doi.org/10.3390/ph14111096
Simakov S, Kartsev V, Petrou A, Nicolaou I, Geronikaki A, Ivanov M, Kostic M, Glamočlija J, Soković M, Talea D, et al. 4-(Indol-3-yl)thiazole-2-amines and 4-ιndol-3-yl)thiazole Acylamines as Νovel Antimicrobial Agents: Synthesis, In Silico and In Vitro Evaluation. Pharmaceuticals. 2021; 14(11):1096. https://doi.org/10.3390/ph14111096
Chicago/Turabian StyleSimakov, Sergei, Victor Kartsev, Anthi Petrou, Ioannis Nicolaou, Athina Geronikaki, Marija Ivanov, Marina Kostic, Jasmina Glamočlija, Marina Soković, Despoina Talea, and et al. 2021. "4-(Indol-3-yl)thiazole-2-amines and 4-ιndol-3-yl)thiazole Acylamines as Νovel Antimicrobial Agents: Synthesis, In Silico and In Vitro Evaluation" Pharmaceuticals 14, no. 11: 1096. https://doi.org/10.3390/ph14111096
APA StyleSimakov, S., Kartsev, V., Petrou, A., Nicolaou, I., Geronikaki, A., Ivanov, M., Kostic, M., Glamočlija, J., Soković, M., Talea, D., & Vizirianakis, I. S. (2021). 4-(Indol-3-yl)thiazole-2-amines and 4-ιndol-3-yl)thiazole Acylamines as Νovel Antimicrobial Agents: Synthesis, In Silico and In Vitro Evaluation. Pharmaceuticals, 14(11), 1096. https://doi.org/10.3390/ph14111096