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Abstract: Background: HIV is the causative agent of Acquired Immunodeficiency Syndrome (AIDS),
an infectious disease with increasing incidence worldwide. Non-nucleoside reverse transcriptase
inhibitors (NNRTIs) play an important role in the treatment of AIDS. Although, many compounds
are already being used as anti-HIV drugs, research for the development of new inhibitors continues
as the virus develops resistant strains. Methods: The best features of available NNRTIs were taken
into account for the design of novel inhibitors. PASS (Prediction of activity spectra for substances)
prediction program and molecular docking studies for the selection of designed compounds were
used for the synthesis. Compounds were synthesized using conventional and microwave irradiation
methods and HIV RT inhibitory action was evaluated by colorimetric photometric immunoassay.
Results: The evaluation of HIV-1 RT inhibitory activity revealed that seven compounds have
significantly lower IC50 values than nevirapine (0.3 µM). It was observed that the activity of
compounds depends not only on the nature of substituent and it position in benzothiazole ring but
also on the nature and position of substituents in benzene ring. Conclusion: Twenty four of the tested
compounds exhibited inhibitory action lower than 4 µM. Seven of them showed better activity than
nevirapine, while three of the compounds exhibited IC50 values lower than 5 nM. Two compounds 9
and 10 exhibited very good inhibitory activity with IC50 1 nM.
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1. Introduction

Acute Immunodeficiency Syndrome (AIDS) is a result of the infection and destruction of
T-lymphocytes by the human immunodeficiency virus (HIV). Over 60 million people are infected with
the virus placing AIDS as the fourth cause of death worldwide [1–3].

Non-nucleoside reverse transcriptase inhibitors, as a part of Highly Active Antiretroviral Therapy
(HAART), remain in the first line of fighting against AIDS. However, research for the development of
novel NNRT inhibitors still continues as the virus develops resistant strains, limiting their use.

Among the approved by FDA compounds are several heterocyclic compounds such as
benzoxazin-2-one (etravirine), dipirydo [1,4] diazepine-6-one (etravirin) [4], piperazine and indolyl
(delaverdine) moieties [5,6]. Except of these drugs many other molecules have been found to display RT
inhibitory action [7–13], among which are: benzothiazine dioxides [14], N1,N3-disubstituted uracils [15],
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6-arylmethyl-substituted S-DABOs [16], adamantyl-substituted thiazolidine-4-ones [17,18] and many
others [19–27]. The 2,3-diaryl-thiazolidin-4-one scaffold appeared as a selective NNRTI [28,29].
Modeling studies on the HIV-1 RT inhibitory activity of 2,3-diaryl-thiazolidin-4-ones showed the
importance of overall hydrophobicity of the analogues and the presence of a heteroaryl system over
the 3-aryl moiety for better HIV-1 RT inhibitory activity [30–34].

Computational methods are an important part of the drug design process and they are presently
used to get a deeper understanding into the drug-enzyme interactions.

In this study, taking into account the best features of available NNRTIs a large number of novel
2,3-diaryl-thiazolidin-4ones were designed. The most promising compounds were selected with the
aid of Molecular docking studies and prediction of spectra of biological activity for compounds by
computer program PASS, synthesized and evaluated.

2. Results and Discussion

2.1. Rational Design of the Compounds

It is known that HIV-1 reverse transcriptase (HIV-1 RT) has a flexible structure that contains two
binding domains. The active site characterized by the catalytic triad of Asp110, Asp185 and Asp186
residues, where the deoxynucleoside triphosphates are bound by the physiological process, and an
allosteric site of NNRTIs about 10 Å away from the active site.

The NNRTIs binding pocket is hydrophobic, as most of its amino acids are hydrophobic (Pro59,
Leu100, Val106, Val179, Leu234 and Pro236) and five of them are aromatic (Tyr181, Tyr188, Phe227,
Trp229 and Tyr232). Certain hydrophilic amino acids such as Lys101, Lys103, Ser105, Asp132 and
Glu224 are also present [35]. For the binding of NNRTIs to the reverse transcriptase enzyme, their
ability to adopt a configuration characterized as a “butterfly orientation” is needed [36]. Aromatic rings
are usually present in both wings of “batterfly” conformation. A heeterocyclic ring or other hydrogen
donor/acceptor groups stabilized the complex via hydrogen bond formation, usually with Lys101.

The design of the compounds was based on the presence of the above characteristics and consist
of a benzothiazole ring connected via thiazolidinone moiety with a phenyl ring. The benzothiazole and
the phenyl ring serve as the wings of the ‘’butterfly” confirmation, forming hydrothobic interactions,
while the thiazolidinone moiety involves in the formation of hydrogen bond interactions especially
with Lys101 (Figure 1). Different substituents at the benzothiazole and phenyl rings were used to
determinate the compounds with the best predicted activity.Molecules 2019, 24, x FOR PEER REVIEW 3 of 27 
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predicted with Pa values in range of 0.297–0.704 (Table 1). The calculated Pa values for most of 
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compounds from the PASS training set [38,39].  

2.3. Molecular Docking Prediction 
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widely used in the literature, was selected (PDB code: 3MEC). At first stage, a validation test was 
performed to certify the program’s reliability. Firstly, the ligand TMC 125 (etravirine), in the 
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binding pocket to determine the ability of Autodock to reproduce the orientation and position of the 
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2.2. Computational Prediction of Anti-HIV Activity

PASS prediction of anti-HIV RT inhibitory activity was performed for several dozen designed
molecules, from which thirty two were selected for synthesis and testing. Prediction was carried out
using PASS online [37] version. For all selected compounds, anti-HIV inhibitory activity was predicted
with Pa values in range of 0.297–0.704 (Table 1). The calculated Pa values for most of compounds were
less than 0.5, indicating their relative novelty compared to the structures of the compounds from the
PASS training set [38,39].

2.3. Molecular Docking Prediction

For the docking studies the enzyme of RT in complex with the inhibitor TMC 125, the most widely
used in the literature, was selected (PDB code: 3MEC). At first stage, a validation test was performed
to certify the program’s reliability. Firstly, the ligand TMC 125 (etravirine), in the conformation found
in the crystal structure, was extracted and docked back into the corresponding binding pocket to
determine the ability of Autodock to reproduce the orientation and position of the inhibitor observed in
the crystal structure. According to docking results, the orientation of the docked TMC 125 inhibitor was
very close to that found in the crystal structure (Figure 2). The low RMS deviation of 0.58 Å between
the docked and the crystal ligand is an indication of the very good alignment of the experimental and
calculated positions.
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Figure 2. Conformation of TMC 125-crystal Structure (green) as Compared to the Docked Conformation
of TMC 125 (yellow).

All designed compounds and the reference drug nevirapine were docked to the HIV-1 reverse
transcriptase enzyme using the same parameters (Table 1). Both the (S) and (R) isomer of each
compound were docked separately. It was observed that the (R) isomer exhibited proportionaly
decreased free binding energy for each compound [40–42].

The three-dimensional docked structures of the studied compounds were compared with the
X-ray crystallographic structure of TMC 125 (Figure 3). Detailed analysis of the binding mode found
in the docked compounds-RT and other NNRTIs-RT crystal complexes showed that the most of the
compounds could bind to RT in a butterfly-like conformation. Like TMC 125 (Figure 3), most of the
compounds are involved in the formation of a hydrogen bond with Lys101, which was observed in the
X-ray crystallographic structure of the TMC 125-RT complex [43].
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of HIV-1 RT.

From the 132 compounds designed, the 32 showed very good binding scores and taking into
account also the prediction results by PASS, were chosen for the synthesis (Tables 1 and 2).

It was observed that these compounds bind to the allosteric center of the enzyme occupying
a similar configuration to TMC 125 inhibitor (Figure 4a, best docked conformations of compounds
1, 9, 14, 27). Comparison of the X-ray structure of TMC 125 with compound 9 (−14.63 kcal/mol)
(Figure 4b), showed that this compound occupies similar configuration to TMC 125 inhibitor and
forms a hydrogen bond with Lys101. Specifically, the CH2-S moiety of 4-thiazolidinone is oriented
towards a channel formed between the residues Lys101, Val179 (p66 subunit) and Glu138 (p51 subunit).
The nitrogen atom of Lys101 interacts with the oxygen atom of the 4-thiazolidinone forming a hydrogen
bond. The substituted benzothiazole ring interacts hydrophobically with the residues Leu100, Val179,
Glu138 and Leu234. These hydrophobic interactions contribute significantly to the stabilization of
the compound-RT complex. As shown in Figure 4b, the 4-hydroxyphenyl ring is located inside the
cavity surrounded by the residues Pro95, Thr139, Glu138, and Ile180. It is important to mention that
the presence of the hydrogen bond with Lys101 is characteristic of many NNRTIs inhibitors. This
phenomenon is also observed in the crystallographic TMC 125-RT and 9-Cl TIBO-RT complexes [43].

Compounds with higher docking scores exhibit a different binding mode from those with lower
docking scores. In this type of binding, the substituted phenyl ring is oriented to a “channel” formed
by Leu100, Glu138, Ile180 and Val179. This orientation results in the CH2-S moiety of 4-thiazolidinone
being removed away from Lys101 and thus, being not able to interact and form a hydrogen bond with
it. This fact contributes significantly to the ability of these compounds to form a stable complex with
the enzyme and, potentially, to their intended action.
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Table 1. Molecular docking scores and PASS prediction of all the designed compounds.
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c8 6-Cl 2,4-di-Cl −5.92 −6.42 0.419 m4 6-Ad 2,3-di-Cl −7.14 −8.05 0.289
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d2 (11) 4-Cl 4-NO2 −8.45 −9.28 0.393 m6 6-Ad 4-F −6.82 −7.88 0.325
d3 (12) 4-Cl 4-Cl −8.73 −10.26 0.480 m7 6-Ad 4-NO2 −5.17 −6.75 0.226
d4 (13) 4-Cl 4-OCH3 −9.11 −11.69 0.378 m8 6-Ad 4-Cl −6.79 −7.55 0.319
d5 (14) 4-Cl 4-OH −10.58 −13.72 0.436 m9 6-Ad 4-OCH3 −6.49 −7.28 0.295

d6 4-Cl 4-Br −6.17 −7.76 0.422 m10 6-Ad 4-OH −4.18 −5.94 0.333
d7 4-Cl 2,3-di-Cl −6.63 −7.15 0.424 n1 4-CH3, 6-Ad 3-Cl −4.26 −5.97 0.226
d8 4-Cl 2,4-di-Cl −7.14 −7.93 0.404 n2 4-CH3, 6-Ad 3-Br −4.13 −5.62 0.280

e1 (15) 4-OCH3 4-F −9.93 −11.51 0.353 n3 4-CH3, 6-Ad 2-F, 6-Cl −7.03 −8.12 0.507
e2 (16) 4-OCH3 4-NO2 −10.05 −11.58 0.374 n4 4-CH3, 6-Ad 2,3-di-Cl −6.58 −7.89 0.280
e3 (17) 4-OCH3 4-Cl −9.92 −11.23 0.347 n5 4-CH3, 6-Ad 2,4-di-Cl −6.93 −7.91 0.276
e4 (18) 4-OCH3 4-OCH3 −8.76 −10.97 0.380 n6 4-CH3, 6-Ad 4-F −6.74 −7.59 0.313
e5 (19) 4-OCH3 4-OH −10.15 −11.02 0.379 n7 4-CH3, 6-Ad 4-NO2 −5.08 −6.65 0.202

e6 4-OCH3 4-Br −6.58 −7.46 0.329 n8 4-CH3, 6-Ad 4-Cl −6.83 −7.94 0.307
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Table 1. Cont.

N R1 R2

Free Binding
Energy

(kcal/mol)
S-(−)

Free Binding
Energy

(kcal/mol)
R-(+)

Pa N R1 R2

Free Binding
Energy

(kcal/mol) -(−)

Free Binding
Energy

(kcal/mol) R-(+)
Pa

e7 4-OCH3 2,3-di-Cl −5.14 −6.03 0.317 n9 4-CH3, 6-Ad 4-OCH3 −6.37 −7.17 0.287
e8 4-OCH3 2,4-di-Cl −5.79 −6.48 0.322 n10 4-CH3, 6-Ad 4-OH −4.16 −5.93 0.321

f1 (20) 6-OCH3 4-F −10.87 −12.17 0.393 o1 5,6-di-CH3 4-F −6.95 −7.56 0.433
f2 (21) 6-OCH3 4-NO2 −7.14 −8.96 0.346 o2 5,6-di-CH3 4-NO2 −5.18 −6.05 0.328
f3 (22) 6-OCH3 4-Cl −9.88 −11.00 0.365 o3 5,6-di-CH3 4-Cl −5.21 −6.17 0.432
f4 (23) 6-OCH3 4-OCH3 −9.91 −11.49 0.420 o4 5,6-di-CH3 4-OCH3 −3.28 −4.56 0.327

f5 6-OCH3 3-Br −5.03 −6.11 0.302 o5 5,6-di-CH3 4-OH −4.19 −5.13 0.351
f6 6-OCH3 4-Br −5.17 −6.13 0.367 o6 5,6-di-CH3 4-Br −3.05 −4.27 0.355
f7 6-OCH3 2,3-di-Cl −5.61 −6.92 0.303 o7 5,6-di-CH3 2,3-di-Cl −6.17 −7.01 0.275
f8 6-OCH3 2,4-di-Cl −6.24 −7.32 0.325 o8 5,6-di-CH3 2,4-di-Cl −6.14 −6.86 0.286

g1 (24) 6-OCH2CH3 4-F −6.97 −8.35 0.373 p1 6-NO2 4-F −6.84 −6.92 0.390
g2 (25) 6-OCH2CH3 4-NO2 −7.14 −9.02 0.339 p2 6-NO2 4-NO2 −5.11 −6.01 0.225
g3 (26) 6-OCH2CH3 4-Cl −9.84 −11.35 0.376 p3 6-NO2 4-Cl −5.20 −6.15 0.382
g4 (27) 6-OCH2CH3 4-OCH3 −9.10 −10.98 0.356 p4 6-NO2 4-OCH3 −3.15 −4.42 0.348
g5 (28) 6-OCH2CH3 4-OH −10.05 −11.56 0.387 p5 6-NO2 4-OH −3.47 −4.18 0.398

g6 6-OCH2CH3 4-Br −4.28 −5.43 0.358 p6 6-NO2 4-Br −3.01 −4.15 0.284
g7 6-OCH2CH3 2,3-di-Cl −5.84 −6.47 0.286 p7 6-NO2 2,3-di-Cl −6.18 −6.81 0.341
g8 6-OCH2CH3 2,4-di-Cl −5.33 −6.21 0.320 p8 6-NO2 2,4-di-Cl −6.29 −6.98 0.337

h1 (29) 6-OCF3 2,6-di-Cl −9.87 −11.03 0.388 q1 4-CH3 4-F −7.01 −7.82 0.345
h2 6-OCF3 2,6-di-F −7.77 −8.85 0.424 q2 4-CH3 4-NO2 −5.10 −6.12 0.326
h3 6-OCF3 3-Cl −5.96 −6.88 0.315 q3 4-CH3 4-Cl −5.03 −5.85 0.335

h4 (30) 6-OCF3 2,3-di-Cl −7.23 −9.31 0.300 q4 4-CH3 4-OCH3 −4.85 −5.16 0.290
h5 6-OCF3 3-Br −5.17 −6.33 0.242 q5 4-CH3 4-OH −4.08 −5.49 0.353
h6 6-OCF3 4-F −6.94 −8.74 0.345 q6 4-CH3 4-Br −3.17 −4.55 0.338

h7 (31) 6-OCF3 4-NO2 −8.45 −9.07 0.315 q7 4-CH3 2,3-di-Cl −6.14 −6.80 0.390
h8 (32) 6-OCF3 4-Cl −6.89 −8.71 0.332 q8 4-CH3 2,4-di-Cl −6.33 −6.86 0.382

h9 6-OCF3 3-F −5.22 −6.19 0.330 r1 6-CH3 4-F −7.00 −7.81 0.337
h10 6-OCF3 4-OH −7.97 −8.51 0.442 r2 6-CH3 4-NO2 −5.02 −5.93 0.315
i1 6-Br 4-F −7.31 −8.10 0.301 r3 6-CH3 4-Cl −5.01 −5.83 0.327
i2 6-Br 4-NO2 −6.88 −7.95 0.326 r4 6-CH3 4-OCH3 −4.77 −5.12 0.284
i3 6-Br 4-Cl −7.19 −8.02 0.393 r5 6-CH3 4-OH −4.05 −5.40 0.345
i4 6-Br 4-OCH3 −5.35 −6.42 0.285 r6 6-CH3 4-Br −3.12 −4.52 0.330
i5 6-Br 4-OH −7.22 −8.02 0.409 r7 6-CH3 2,3-di-Cl −6.13 −6.78 0.377
i6 6-Br 4-Br −5.11 −5.84 0.405 r8 6-CH3 2,4-di-Cl −6.10 −6.64 0.372

Etravirine −11.25 Nevirapine −11.95
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Table 2. Molecular docking scores and PASS prediction of the selected compounds.

N
Predicted
Anti-HIV

Activity (Pa)

Free
Binding
Energy

(kcal/mol)
S-(−)

Free
Binding
Energy

(kcal/mol)
R-(+)

H Bonds Amino
Acids

Hydrophobic
Interactions Pi Interact. Halogen

Interact.

1 0.651 −10.21 −13.37 1 Lys101
Thr139,
Lys172,
Gly190

Pro95,
Leu100,
Lys103,
Glu138,
Val179,
Tyr181

Ile180

2 0.704 −11.42 −14.10 1 Lys101

Glu28, Gly99,
Leu100,
Lys103,
Asn136,
Tyr181,
Ile382,
Trp383

Glu138,
Ile135,
Val179,
Tyr319,
Pro321

Glu138

3 0.472 −10.95 −13.21 2 Lys101
Trp229

Val106,
Gly190,
Leu234

Leu100,
Lys103,
Glu138,
Val179,
Tyr181,
Tyr188,
Trp229,
Leu234

-

4 0.374 −8.02 −9.11 1 Lys101 Glu131,
Thr132

Leu100,
Val106,
Glu138

-

5 0.398 −8.15 −9.02 - -

Glu138,
Tyr181,
Tyr188,
Gly190,
Phe227,
Tyr318

Leu100,
Lys101,
Val106,
Val179

Leu234
Pro236

6 0.360 −7.14 −8.70 1 Lys103 Ser127,
Glu131

Leu100,
Glu138,
Val179,
Tyr181

-

7 0.415 −8.27 −9.72 - -

Pro95,
Lys101,
Lys103,
Tyre181,
Gly190,
Phe117,
Trp229,
His235,
Pro236,
Tyr318

Leu100,
Val106,
Glu138,
Val179,
Tyr188,
Leu234

Glu138

8 0.426 −10.13 −12.30 2 Lys101
Pro126

Glu23,
Ser127,
Glu131,
Thr132,
Pro176,

Ile178, Ile180

Ile128,
Arg172,
Val179

-

9 0.492 −11.08 −14.63 2 Lys101
Thr139

Pro95,
Lys103,
Lys172,
Tyr181,
Leu234

Leu100,
Glu138,
Val179

-

10 0.469 −11.16 −14.59 1 Tyr318

Ile180,
Tur181,
Gly190,
Trp229

Leu100,
Lys103,
Val106,
Glu138,
Val179,
Tyr188,
Leu234

Lys101
His235
Pro236
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Table 2. Cont.

N
Predicted
Anti-HIV

Activity (Pa)

Free
Binding
Energy

(kcal/mol)
S-(−)

Free
Binding
Energy

(kcal/mol)
R-(+)

H Bonds Amino
Acids

Hydrophobic
Interactions Pi Interact. Halogen

Interact.

11 0.393 −8.45 −9.28 1 Lys101
Lys103,
Val106,
Ile180

Leu100,
Val179,
Tyr181

-

12 0.480 −8.73 −10.26 1 Lys101 Lys103,
Ile180

Leu100,
Glu138,
Val179

13 0.378 −9.11 −11.69 2 Lys101
Thr139

Lys103,
Lys172,
Ile180

Leu100,
Glu138,
Val179,
Tyr181

-

14 0.436 −10.58 −13.72 3
Lys101
Glu138
Thr139

Val106,
Leu234

Leu100,
Lys103,
Val179,
Tyr181

-

15 0.353 −9.93 −11.51 2 Lys101
Trp229

Pro95,
Val106,
Tyr188,
Leu234

Leu100,
Lys103,
Glu138,
Val179,
Tyr181

-

16 0.374 −10.05 −11.58 2 Lys101
Pro95,
Val106,
Tyr188

Leu100,
Glu138,
Val179,
Tyr181

-

17 0.347 −9.92 −11.23 1 Lys101

Pro95, Ile180,
Tyr181,
Gly190,
Trp229,
His235

Leu100,
Lys103,
Glu138,
Val179,
Tyr188,
Tyr318

-

18 0.380 −8.76 −10.97 2 Glu138
Tyr318

Pro95,
Lys101,
Lys102,
Tyr181,
Tyr188,
Gly190,
Trp229,
His235

Leu100,
Val106,
Glu138,
Val179,
Leu234

-

19 0.379 −10.15 −11.02 1 Lys101

Lys103,
Ile180,
Tyr181,
Gly190,
Trp229,
Pro236,
Tyr318,
His235

Leu100,
Val106,
Glu138,
Val179,
Tyr188,
Leu234

-

20 0.393 10.87 −12.17 2 Lys101
Thr139

Pro95,
Leu100,
Lys103,
Lys172,
Ile180,
Tyr188

Glu138,
Val179,
Tyr181,
Trp229

-

21 0.346 −7.14 −8.96 1 Lys101 Pro95, Ile180,
Tyr188

Leu100,
Glu138,
Val179

-

22 0.365 −9.88 −11.00 2 Lys101
Thr132

Pro95,
Lys172,
Ile180,
Tyr188

Leu100,
Glu138,
Val179

-

23 0.420 −9.91 −11.49 2 Lys101
Tyr181

Lys102,
Lys103,
Ile180,
Tyr188,
Phe225,
Pro234

Leu100,
Val106,
Val179,
Trp227,
Leu232,
Tyr316

-
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Table 2. Cont.

N
Predicted
Anti-HIV

Activity (Pa)

Free
Binding
Energy

(kcal/mol)
S-(−)

Free
Binding
Energy

(kcal/mol)
R-(+)

H Bonds Amino
Acids

Hydrophobic
Interactions Pi Interact. Halogen

Interact.

24 0.373 −6.97 −8.35 1 Lys101

Pro95,
Lys103,
Ile180,
Tyr181

Leu100,
Glu138,
Val179

-

25 0.339 −7.14 −9.02 1 Lys101

Pro95, Gly99,
Thr139,
Ile180,
Tyr181

Leu100,
Glu138,
Val179

-

26 0.376 −9.84 −11.35 1 Lys101

Pro95, Gly99,
Lys103,
Thr139,
Lys172,
Ile180,
Tyr181

Leu100,
Glu138,
Val179,
Trp229,
Leu234

-

27 0.356 −9.10 −10.98 1 Lys101

Pro95, Pro97,
Lys103,
Thr139,
Lys172,
Ile180,
Tyr181

Leu100,
Glu138,
Val179,
Trp229,
Leu234

-

28 0.387 −10.05 −11.56 2 Lys101
Thr139

Pro95, Pro97,
Lys103,
Lys172,
Ile180

Leu100,
Glu138,
Val179,
Trp229,
Leu234

-

29 0.388 −9.87 −11.03 1 Lys101

Pro95,
Tyr181,
Gly190,
Phe227,
Pro236,
Tyr318

Leu100,
Lys103,
Val106,
Val179,
Tyr188,
Leu234

Glu138
Gly99

30 0.300 −7.23 −9.31 1 Lys101

Lys101,
Tyr181,
Gly190,
His235

Leu100,
Val179,
Tyr188

-

31 0.315 −8.45 −9.07 1 Lys101

Pro95,
Lys103,
Lys172,
Leu234

Leu100,
Glu138,
Val179,

-

32 0.332 −6.89 −8.71 2 Lys103
Thr132

Pro95,
Tyr181

Glu138,
Val179,
Pro321

-

Nevirapine −11.95 2 Lys101,
Glu138

Glu28, Gly99,
Leu100,
Lys101,
Lys103,
Val179,
Ile382

Lys101,
Glu138,
Ile135,
Tyr319,
Trp383

-

Etravirine −11.25 2 Lys101,
Glu138

Lys102,
Val108,
Ty188,
Pro225,
Phe227,
Pro236

Pro95,
Leu100,
Lys103,
Val106,
Val179,
Tyr181,
Thr229,
Leu234

-
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Figure 4. (a). Docking of TMC125 (yellow) and Compounds 1 (green), 9(blue), 14 (light blue) and 27 
(purple) to the Allosteric Site of HIV-1 RT. (b). Docking of Compound 9 (green) in the Binding Site of 
HIV-1RT. 

2.4. Prediction of Toxicity 

Figure 4. (a) Docking of TMC125 (yellow) and Compounds 1 (green), 9 (blue), 14 (light blue) and 27
(purple) to the Allosteric Site of HIV-1 RT. (b) Docking of Compound 9 (green) in the Binding Site
of HIV-1RT.

2.4. Prediction of Toxicity

According to Lasar model throughout OpenTox, all the compounds found to be at the category IV
with LD50 between 500 mg/kg and 1000 mg/kg and they are saved for use (Table 3).
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Table 3. Predicted toxicity with program PROTOX.

‘E. Predicted
LD50

Predicted
Toxicity

Class
Hepatotoxicity Carcinogenicity Immunotoxicity Mutagenicity Cytotoxicity

1 500 mg/kg 4 Inactive 0.56 Inactive 0.57 Inactive 0.94 Inactive 0.67 Inactive 0.76
2 500 mg/kg 4 Inactive 0.56 Inactive 0.57 Inactive 0.95 Inactive 0.67 Inactive 0.76
3 500 mg/kg 4 Inactive 0.57 Inactive 0.55 Inactive 0.99 Inactive 0.66 Inactive 0.80
4 1000 mg/kg 4 Inactive 0.55 Inactive 0.68 Inactive 0.99 Inactive 0.66 Inactive 0.73
5 500 mg/kg 4 Inactive 0.57 Inactive 0.55 Inactive 0.99 Inactive 0.67 Inactive 0.81
6 500 mg/kg 4 Inactive 0.60 Inactive 0.58 Inactive 0.98 Inactive 0.65 Inactive 0.66
7 500 mg/kg 4 Inactive 0.63 Inactive 0.59 Inactive 0.99 Inactive 0.66 Inactive 0.70
8 500 mg/kg 4 Inactive 0.57 Inactive 0.55 Inactive 0.99 Inactive 0.67 Inactive 0.81
9 500 mg/kg 4 Inactive 0.60 Inactive 0.58 Inactive 0.99 Inactive 0.68 Inactive 0.68

10 500 mg/kg 4 Inactive 0.57 Inactive 0.55 Inactive 0.99 Inactive 0.67 Inactive 0.81
11 1000 mg/kg 4 Inactive 0.52 Inactive 0.65 Inactive 0.99 Active 0.91 Inactive 0.74
12 500 mg/kg 4 Inactive 0.54 Inactive 0.55 Inactive 0.99 Inactive 0.68 Inactive 0.82
13 500 mg/kg 4 Inactive 0.57 Inactive 0.58 Inactive 0.99 Inactive 0.66 Inactive 0.64
14 500 mg/kg 4 Inactive 0.60 Inactive 0.58 Inactive 0.99 Inactive 0.68 Inactive 0.68
15 500 mg/kg 4 Inactive 0.59 Inactive 0.60 Inactive 0.98 Inactive 0.66 Inactive 0.66
16 1000 mg/kg 4 Inactive 0.52 Inactive 0.65 Inactive 0.99 Inactive 0.66 Inactive 0.74
17 500 mg/kg 4 Inactive 0.56 Inactive 0.60 Inactive 0.98 Inactive 0.67 Inactive 0.65
18 500 mg/kg 4 Inactive 0.50 Inactive 0.62 Inactive 0.98 Inactive 0.61 Inactive 0.63
19 500 mg/kg 4 Inactive 0.52 Inactive 0.64 Inactive 0.99 Inactive 0.60 Inactive 0.63
20 500 mg/kg 4 Inactive 0.59 Inactive 0.60 Inactive 0.98 Inactive 0.66 Inactive 0.66
21 1000 mg/kg 4 Inactive 0.52 Inactive 0.65 Inactive 0.99 Inactive 0.66 Inactive 0.74
22 500 mg/kg 4 Inactive 0.56 Inactive 0.60 Inactive 0.98 Inactive 0.67 Inactive 0.65
23 500 mg/kg 4 Inactive 0.50 Inactive 0.62 Inactive 0.98 Inactive 0.61 Inactive 0.63
24 500 mg/kg 4 Inactive 0.52 Inactive 0.57 Inactive 0.96 Inactive 0.64 Inactive 0.62
25 1000 mg/kg 4 Inactive 0.53 Inactive 0.63 Inactive 0.97 Inactive 0.66 Inactive 0.62
26 500 mg/kg 4 Inactive 0.52 Inactive 0.56 Inactive 0.98 Inactive 0.65 Inactive 0.59
27 500 mg/kg 4 Inactive 0.53 Inactive 0.62 Inactive 0.97 Inactive 0.61 Inactive 0.61
28 500 mg/kg 4 Inactive 0.50 Inactive 0.62 Inactive 0.99 Inactive 0.63 Inactive 0.63
29 500 mg/kg 4 Inactive 0.61 Inactive 0.56 Inactive 0.91 Inactive 0.66 Inactive 0.64
30 500 mg/kg 4 Inactive 0.61 Inactive 0.56 Inactive 0.91 Inactive 0.66 Inactive 0.64
31 1000 mg/kg 4 Inactive 0.56 Inactive 0.64 Inactive 0.81 Inactive 0.66 Inactive 0.64
32 500 mg/kg 4 Inactive 0.61 Inactive 0.56 Inactive 0.97 Inactive 0.66 Inactive 0.65

2.5. Chemistry

Synthesis of the compounds was performed by one pot method according to Scheme 1 [44] and for
some compounds by microwave assisted one-pot procedures (Scheme 1). According to conventional
method, the mixture of the suitable aminobenzothiazole, substituted benzaldehyde and mercaptoacetic
acid was refluxed in toluene for 18–32 h. All products were obtained as racemates in low yield. Instead
using microwave assisted one-pot synthetic procedure the reaction time was reduced to 30 min. The
final products were obtained in good yield. All synthesized compounds were characterized by TLC
and spectroscopic methods (IR, 1H NMR, 13C-NMR and MS for some compounds).

In IR spectra stretching absorption bands at 1700 cm−1 (strong) of C=O, 1600 and 1540 cm−1

of -C–C- and 3200 of –OH were detected. In 1H-NMR spectra signal at 8.10–6.89 ppm as well as at
4.35–4.10 ppm are attributed to aromatic protons and proton of the position 2 of thiazolidinone moiety
respectively. The rest of the protons appeared at the expected chemical shifts. In 13C-NMR spectra
peaks were observed for C=O group at δ 172–170 ppm, for C-2 of benzothiazole ring at δ 161–165
ppm and for C-2 and C-5 of thiazolidinone moiety at 53–60 ppm and at 30–34 ppm respectively (see
experimental).
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reflux for 18–32 h, (b) microwave-assisted technic: 100 ◦C, power 100 W, 30 min.

2.6. HIV-1 RT Inhibitory Action

The results of the evaluation of RT inhibitory activity are presented in Table 4. All compounds at
the concentration of 4 µM exhibited inhibitory action varying from 21% to 83%.

Seven compounds were found to have significantly lower IC50 than nevirapine (0.3 µM), the best
of which displayed IC50 value lower than 1µM. The order of the compound’s potency can be presented
as follows: 10 ≥ 9 > 2 > 14 > 3 > 1 > 8 > nevirapine > 20 > 27 > 13 > 28 > 15 > 16 > 23 > 26 > 17 > 19 >

18 > 22 > 4 > 7 = 12 = 21. Nine compounds, the 5, 6, 11, 24, 25, 29, 30, 31, 32, exhibited IC50 values
greater than 4 µM.

The study of structure-activity relationships revealed that the activity of compounds depends
not only on the nature of substituent and its position in benzothiazole ring but also on the nature and
position of substituents in benzene ring. The presence of 6-Cl substitution in the benzothiazole moiety
in combination with the presence of hydroxyl group at position 4′ of the benzene ring (9) appeared to
be beneficial for the HIV RT inhibitory action. The same effect was observed in case of 4-Cl substitution
in the benzothiazole moiety combined with the presence of 4′-F group in benzene ring (10).

The replacement of 4′-F substitution in compound 10, one of the two most active compounds,
by 4′-OH (14) remarkably decreased the activity although compound 14 still remained a very active
compound being more active than nevirapine. On the other hand, compound 2 with the presence of
7-Cl substituent in benzothiazole moiety and 2′-F, 6′-Cl (2) substitution in benzene ring was the third
most active compound. The replacement of 6′-Cl (compound 2) by 6′-F in benzene ring (1) significantly
decreased activity compared to compound 2. While introduction of 6-F in benzothiazole moiety and
4′-F substituent in benzene ring (3) increased the activity compared to compound 1, the replacement
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of 6-F by 6-Cl led to compound 8 with decreased activity in comparison with compounds 1 and 3.
However, despite that compounds 1, 3 and 8 were less active compared to compounds 9, 10, 2 and 14
they still appeared to be more active than the reference compound.

Table 4. HIV-1 RT inhibitory action.

N Inhibition
% (4 µM)

IC50
(µM) N Inhibition

% (4 µM)
IC50
(µM) N Inhibition

% (4 µM)
IC50
(µM)

1 70 0.21 12 50 4 23 73 2.39
2 72 0.0047 13 65 1.99 24 36 >4
3 72 0.15 14 83 0.01 25 44 >4
4 54 3.8 15 69 2.08 26 73 2.48
5 44 >4 16 68 2.20 27 76 1.93
6 35 >4 17 67 2.60 28 62 2.00
7 50 4 18 72 2.69 29 49 4.28
8 83 0.26 19 71 2.62 30 46 >4
9 56 0.001 20 55 1.51 31 46 >4

10 63 0.001 21 50 4 32 46 >4
11 40 >4 22 72 2.76 Nevirapine 0.3

The replacement of 4′-F substituent by nitro-, chloro-, methoxy and hydroxyl group respectively
resulted to compounds with decreased activity (4–7). The 6-F benzothiazole substituted derivatives
4–7 showed IC50 values ≥ 4 µM. On the contrary, the 6-Cl benzothiazole substituted derivatives 8 and
9 exhibited good inhibitory action with compound 9 being one of the most active compounds. It seems
that in this group of compounds the presence of the hydrogen donor 4′-OH group is beneficial (9).
In case of the 4-Cl benzothiazole substituted derivatives (10–14) it appeared that the presence of the
hydrogen acceptor 4′-F group was the most beneficial (10) followed by the hydrogen donor 4′-OH
(14) and 4′-OMe group (13). The rest of compounds exhibited IC50 values ≥ 4 µM. It is interesting to
mention that 4-OCH3 as well as 6-OCH3 benzothiazole substituted derivatives showed activity with
IC50 values between 1.5 and 3 µM, showing small differentiation in concern to phenyl substituents.
An exception was observed only for the 4′-nitrophenyl derivatives with 6-methoxy group in the
benzothiazole moiety (21, IC50 4 µM) being the less active compound of the group. In general, 4′-nitro
substitution in benzene ring was detrimental for all groups of compounds with exception of the
derivatives with methoxy group in benzothiazole moiety.

The derivatives 26–28 (4′-Cl, 4′-OMe, 4′-OH) with 6-ethoxy group in benzothiazole moiety
displayed activity almost similar to that of 6-methoxy substitution (R1) with IC50 1.93–2.48 µM.
Regarding the 4′-fluoro- and 4′-nitrophenyl derivatives (24, 25) IC50 values higher than 4 µM
were observed.

In conclusion, it is interesting to notice that the presence of chlorine in position 4′ (R2) of benzene
ring was negative for all derivatives with halogen substituted benzothiazole moiety independent of
its position. The presence of a chloro- substituent at the benzothiazole ring (R1) at positions 4, 6 or
7 significantly increases the inhibitory effect (1, 2, 8, 9, 10, 14). On the other hand, the introduction
of -OCF3 substituent into the benzothiazole system further reduces the activity as compared to the
chloro-substituted derivatives, with most of the compounds of this group (30–32) displaying IC50

values higher than 4 µM.

2.7. Docking Analysis

Docking analysis effectively predicted RT inhibitory action in most cases as shown in Figure 5.
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Figure 5. Correlation of Predicted Free Binding Energy of the Compounds in the Allosteric Center of
the Enzyme with IC50 of the Compounds.

According to docking results, most of the compounds are placed within the NNRTIs binding
pocket between the place equipped by the classic butterfly shaped compound, nevirapine, and the
binding site of etravirine or within the etravirine binding pocket (Figure 6).
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Figure 6. (Left) Docking of Etravirine (yellow), Nevirapine (blue) and Compounds 8 (magenta), 20 (light
green) and 10 (orange) in the Binding Site of HIV-1RT. (Right) Docked Conformations of Compounds 3
(black), 5 (dark purple), 7 (light blue) and 10 (orange) in the Binding Site of HIV-1RT.

Interestingly, the most active compounds structurally belong to three different groups and adopt
three different orientations.

An orientation most close to the nevirapine binding place is adopted by compound 2, the 2′-F,6′-Cl
derivative of the subgroup of compounds bearing a Cl substituent at the 7-position of the benzothiazolyl
moiety (Figure 7A,B). More precisely, the benzothiazole and thiazolidinone moieties occupy positions
similar with the “wings” of nevirapine. The benzothiazolyl moiety is placed, in vicinity to the amino
acids Trp383 and Ile135 with which it forms pi interactions. The thiazolidinone ring is placed in the
area of Lys103, while the phenyl ring is placed near Glu138, Tyr181 and Lys101, forming pi interactions
with Glu138. Halogen and hydrogen bonds interactions are also formed between the F atom and the
amino acids Glu138 and Lys101, respectively, stabilizing the complex.

A different orientation is adapted by the 2′,6′-di-fluoro derivative of the same subgroup, compound
1 (Figure 7A,C). In this case, the thiazolidinone ring is placed in vicinity to Lys 101, which forms a
hydrogen bond with the CO group of this moiety. The benzothiazolyl group is placed in the same
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area where the central aromatic ring of etravirine is bound, towards Tyr181, Leu100 and Val179 with
which it participates in pi interactions. The two fluoro-atoms at the o-positions of the phenyl moiety
participate in halogen bond interactions, an intramolecular one with CO of the thiazolidinone ring
stabilizing the conformation of the molecule and a second one with Ile180.
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A similar orientation is adopted by several active compounds like compounds 8, 9, the two more
active compounds of the subgroup bearing a Cl-atom at position 6 of the benzothiazolyl moiety (R1)
(Figure 8A,B,D) and compound 14, the most active compound of the subgroup bearing a Cl-atom at the
4-position of the benzothiazolyl moiety (Figure 8A,D). Among these, compounds 9 and 14 belong in
the four more potent out of the thirty-two tested compounds with IC50 values at the nanomolar range.
In case of compounds 9 and 14, a hydrogen bond is formed between the CO group of the thiazolidinone
ring and Lys101 while a second hydrogen bond is formed between hydrogen acceptor substituents of
the 4-position of the phenyl ring and Thr139. An additional hydrogen bond between the H-atom of the
4′-OH substituent and the Glu138 is also formed in compound 14. Pi interactions between the rings of
the benzothiazolyl moieties and the amino acids Leu100 and Val179 were observed in all these cases.

An orientation enabling pi interactions between the aromatic rings of the benzothiazolyl moiety
and the amino acids Leu100 and Val179, as well as hydrogen bond formation between Lys101 and the
CO group of the thiazolidinone ring were also observed in the active compounds of the 4-OMe, 6-OMe
and 6-OEt subgroups such as compounds 18, 20, 27 and 28 (Figure 9).
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On the contrary, the presence of the strongly electro-negative 4′-F (R2) substituent at compound
10 (Figure 8A) leads to a totally different orientation placing the compound with the phenyl moiety in
vicinity to Tyr318 with which the F-atom forms a hydrogen bond and close to Pro236 and His235 forming
halogen bonds. The differentiation of this compound from the other derivatives and most known
NNRTIs where hydrogen bond interactions with Lys101 play a crucial role in complex stabilization
is an interesting characteristic. However, the benzothiazolyl moiety is still placed in the area of
Lys101, Val179 and Leu100 forming pi interactions with the last two amino acids (Figure 8A,C). In this
conformation, the phenyl and the thiazolidinone moieties occupy the places occupied by the edge
aromatic rings of etravirine while the benzothiazolyl moiety is placed in the area of the central ring.

Similar orientations, with the phenyl or benzothiazole moiety placed towards Tyr 318 are also
observed in other cases (Figure 6).

In general, the presence of a Cl substituent at the 7-, 6- or 4- position of the benzothiazolyl
moiety facilitates an orientation which enables complex stabilization via pi-interactions and hydrogen
bond formation involving either the CO group of the thiazolidinone ring or hydrogen acceptor/donor
substituents of the phenyl ring. In case of subgroups bearing hydrogen acceptor substituents at the
benzothiazole moiety, involvement of these substituents in hydrogen bond formation also favors
complex stabilization such as in case of compound 3 of the 6F-subgroup, 18 of the 4-OMe subgroup,
23 of the -OEt subgroup and 33 of the -CF3 subgroup.
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2.8. Cytotoxicity Assessment

For the evaluation of cellular cytotoxicity of the compounds, the MRC-5 normal cells were
incubated for 48 h separately with each compound at the concentration of 10 µM. This concentration
is much higher than IC50 values of all tested compounds (IC50 0.001 (compounds 9, 10) and 0.01
(compound 14). The evaluation revealed that compounds exhibited no evidence of cytotoxicity against
this normal cell line employed, since no statistically significant change was observed with the cell
growth to be ≥80% as compared to control-untreated culture (Figure 10a). Importantly, no significant
dead cells accumulation was observed in the treated cultures, since their maximum number did not
exceed that of 3.3% (Figure 10b).
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Figure 10. Assessment cell growth (a) and cell death (b) of MRC-5 cells exposed to various compounds.
The MRC-5 cell cultures were incubated separately with each of the compounds at 10−5 M (10µM) for
48 h. The cell growth was determined by measuring the cell number in cultures under the microscope
using the Neubauer counting chamber, as described in the “Materials and Methods”. Moreover, the
dead cells accumulated in these cultures were also evaluated using the Trypan-blue exclusion-dye
method, as presented in “Materials and Methods”. The results shown above indicate the mean
numbers ± SD of two independent biological experiments. The diagrams shown above and the t-test
statistical analysis were carried out using the GraphPad Prism 6.0 program. Notably, no statistical
significance between the control-untreated culture with each one of compounds-treated cultures is seen
(p values > 0.05).

3. Materials and Methods

3.1. Computer Simulation Methods

For docking calculations, the software AutoDock 4.2 was used [45]. The free energy of binding
(∆G) of HIV-1 Reverse Transcriptase complex with the tested compounds was generated using this
molecular docking program.

The crystal structure of HIV-1 Reverse Transcriptase in Complex with TMC125 (PDB code: 3MEC)
was downloaded from the Protein Data Bank [46]. For RT preparation, water molecules were deleted,
polar hydrogens were added and Kollman United Atom charges were assigned. For the preparation of
ligand structures, 2D structure was sketched in chemdraw12.0 software (Chemical Structure Drawing
Standard; Perkin Elmer Informatics, Waltham, MA, USA) and converted to three-dimensional structures,
mol2 format, for each ligand. Hydrogens were added to the structures and used for docking. The Grid
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center was calculated: 9.7037 12.7492 16.914 (xyz-coordinates), for HIV-1 Reverse Transcriptase. The
grid size was set to 110 × 110 × 110 xyz points with grid spacing of 0.375 Å. All parameters used in
docking were default. A primary blind docking was performed in order to discriminate the preferential
binding sites of the ligand to the receptor. The ligand TMC125, as it is binded in the crystal structure
was extracted and docked back into the analogous binding pocket to determine the ability of Autodock
to replicate the position and orientation of the inhibitor in the crystal structure. Control docking
showed that Autodock was able to determine the orientation, position and the same interactions of the
crystallographic TMC125. The number of docking runs was 100. After docking, the 100 solutions were
clustered into groups with RMS lower than 1.0 E. The resulting poses and interactions were visualized
in Discovery studio 4.1 silent.

3.2. PASS Prediction

For the prediction of activity spectra of the designed compounds the program PASS was used.
PASS, as already described in our paper [47] predicts the biological activity spectrum of a compound
based on the analysis of structure–activity relationships of more than 1 million of known compounds.
These compounds possess over eight thousand biological activities. The average accuracy of prediction
is about 96%.

3.3. Prediction of Toxicity

For the prediction of toxicity of the designed compounds the Lazar model over the Open Tox
Predict Program was used. OpenTox is a free online program, that provides access to experimental
toxicity data, in Silico models (including (Q)SAR), and validation/reporting procedures. Lazar model
predicts the toxicity of the compounds based on their structure by searching for similar compounds.
Lazar is a k-nearest-neighbor approach to predict chemical endpoints from a training set based on
structural fragments. It uses a SMILES file and precomputed fragments with occurrences as well as
target class information for each compound as training input. It also features regression; in which
case the target activities consist of continuous values. Lazar uses activity-specific similarity (i.e., each
fragment contributes with its significance for the target activity) that is the basis for predictions and
confidence index for every single prediction [48,49].

3.4. Chemistry

3.4.1. General Procedure for the Synthesis of Thiazolidinones by Conventional Method

The appropriate heteroaromatic amine (1.0 mmol) and substituted benzaldehyde (1.2 mmol) were
stirred in dry toluene under reflux condition followed by addition of mercatoacetic acid (2.0 mmol).
The reaction mixture was refluxed for 18–32 h and then concentrated to dryness under reduce pressure.
The residue was diluted in ethyl acetate and the organic layer was washed with 5% aq citric acid,
water and 5% aq sodium hydrogen carbonate. The organic layer was dried over sodium sulfate and
concentrated under reduced pressure to give a clear product. All the synthesized compounds were
characterized by TLC, 1H-NMR, 13C-NMR and MS.

3.4.2. Microwave Irradiation Experiments

All microwave irradiation experiments were carried out in CEM-Discover monomode microwave
device, operating at a frequency of 2.45 GHz. Substituted aminobenzothiazole, equimolar amount of
substituted benzaldehyde (1.5 mmol) and mercaptoacetic acid in absolut ethanol (3 mL) were placed in
a 10 mL reaction vial containing a stirring bar. The vial was sealed with a Teflon septum and placed
into the microwave cavity. It was irradiated at 100 ◦C using 100 W as maximum power for 30 min.
at the end of the reaction the mixture was rapidly cooled with gas jet cooling to room temperature.
The clean product was obtained after filter under reduced pressure.
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3.4.3. Synthesis of 3-(7-Chloro-benzo[d]thiazol-2-yl)-2-(2,6-difluorophenyl)thiazolidin-4-one (1)

Yield: 39%, m.p. 200–202 ◦C, Rf: 0.66 (petroleum ether/ethyl acetate 8:2). IR (Nujol), cm−1: 1705
(C=O), 1541, 1102. 1H-NMR (500 MHz, CHCl3-d): δ = 3.86 (d, J = 16.38 Hz, 1H, CH2), 4.10 (d, J =

16.63 Hz, 1H, CH2), 6.83 (d, J = 18.59 Hz, 1H, N-CH-S), 7.21 (t, J = 8.56 Hz, 2H, Ar-C18, C20), 7.06–7.15
(m, 1H, Ar-C5), 7.61–7.72 (m, 3H, Ar-C5, C6, C19), 8.05 (d, J = 8.02 Hz, 1H, Ar-C4). 13C-NMR (500
MHz, CHCl3-d): δ = 33.12, 60.42, 113.05, 119.34, 123.02, 124.15, 125.03, 126.11, 126.79, 129.01, 130.00,
135.65 150.42, 162.16, 164.17, 171.12. MS: m/z = 382 (M+, 100%), 353 (33.3%), 372 (36%), 363 (28%), 348
(21%), 242 (72%).

3.4.4. Synthesis of 3-(7-Chloro-benzo[d]thiazol-2-yl)-2-(2-chloro-6-fluorophenyl)thiazolidin-4-one (2)

Yield: 48%, m.p. 159–160 ◦C, Rf: 0.52 (petroleum ether/ethyl acetate 8:2). IR (Nujol), cm−1: 1708
(C=O), 1541, 1101, 721. 1H-NMR (500 MHz, CHCl3-d): δ = 3.85 (d, J = 16.38 Hz, 1H, CH2), 4.12 (d, J =

16.63 Hz, 1H, CH2), 6.71 (d, J = 18.59 Hz, 1H, N-CH-S), 7.07 (t, J = 8.56 Hz, 1H, Ar-C19), 7.30–7.55 (m,
4H, Ar-C5, C-6, C18, C19), 8.06 (d, J = 8.02 Hz, 1H, Ar-C4). 13C-NMR (500 MHz, CHCl3-d): δ = 32.88,
63.15, 111.07, 112.25, 119.11, 123.02, 126.53, 128.02, 128.25, 150.44, 162.13, 164.12, 171.02. MS: m/z = 400
(M+, 39%), 363 (100%), 321 (32%), 289 (88%), 254 (13%), 227 (10%), 215 (22%), 169 (23%), 153 (66%), 107
(18%).

3.4.5. Synthesis of 3-(6-Fluoro-benzo[d]thiazol-2-yl)-2-(4-fluorophenyl)thiazolidin-4-one (3)

Yield: 21%, m.p. 192–193 ◦C, Rf: 0.71 (petroleum ether/ethyl acetate 8:2). IR (Nujol), cm−1: 1705
(C=O), 1571, 1231, 1105. 1H-NMR (500 MHz, CHCl3-d): δ = 3.85 (d, J = 16.38 Hz, 1H, CH2), 4.11 (d, J =

16.63 Hz, 1H, CH2), 6.77 (d, J = 18.59 Hz, 1H, N-CH-S), 7.02 (t, J = 8.56 Hz, 1H, Ar-C5), 7.06–7.15 (m,
1H, Ar-C5), 7.27–7.36 (m, 4H, Ar-C17, C18, C20, C21), 7.48 (d, J = 8.02 Hz, 1H, Ar-C7). 13C-NMR (500
MHz, CHCl3-d): δ = 32.79, 63.09, 109.98, 113.94, 115.84, 120.83, 127.49, 127.55, 130.01, 133.32, 146.77,
156.13, 161.98, 163.52, 170.87 (1C, C=O). MS: m/z = 349 (M+, 7%), 288 (3%), 272 (25%), 245 (14%), 244
(100%), 240 (11%), 200 (7%), 163 (5%), 130 (6%).

3.4.6. Synthesis of 3-(6-Fluoro-benzo[d]thiazol-2-yl)-2-(4-nitrophenyl)thiazolidin-4-one (4)

Yield: 55%, m.p. 204–205 ◦C, Rf: 0.44 (petroleum ether/ethyl acetate 8:2). IR (Nujol), cm−1: 1706
(C=O), 1572, 1235. 1H-NMR (500 MHz, CHCl3-d): δ = 4.04 (d, J = 16.63 Hz, 1H, CH2), 4.29 (d, J =

16.63 Hz, 1H, CH2), 6.97 (s, 1H, N-CH-S), 7.22 (t, J = 8.43 Hz, 1H, Ar-C5), 7.62 (br s, 1H, Ar-C4), 7.68
(d, J = 7.34 Hz, 2H, Ar-C17, C21), 7.92 (br d, J = 8.80 Hz, 1H, Ar-C7), 8.17 (d, J = 8.31 Hz, 2H, Ar-C18,
C20). 13C-NMR (500 MHz, CHCl3-d): δ = 32.77, 63.08, 109.95, 113.97, 117.94, 120.83, 123.32, 127.49(2C),
133.32, 145.78, 146.77, 156.12, 163.56, 170.96. MS: m/z = 376 (M+, 100%), 342 (25%), 272 (41%), 150 (38%),
115 (17%), 73 (11%).

3.4.7. Synthesis of 3-(6-Fluoro-benzo[d]thiazol-2-yl)-2-(4-chlorophenyl)thiazolidin-4-one (5)

Yield: 74%, m.p. 175–176 ◦C, Rf: 0.67 (petroleum ether/ethyl acetate 8:2). IR (Nujol), cm−1: 1708
(C=O), 1554, 1231, 721. 1H-NMR (500 MHz, CHCl3-d): δ = 3.86 (d, J = 16.38 Hz, 1H, CH2), 4.10 (br d, J
= 16.63 Hz, 1H, CH2), 6.73 (s, 1H, N-CH-S), 7.06–7.19 (m, 1H, Ar-C5), 7.22–7.40 (m, 4H, Ar-C17, C18,
C20, C21), 7.48 (br d, J = 7.83 Hz, 1H, Ar-C4), 7.56–7.79 (m, 1H, Ar-C7). 13C-NMR (500 MHz, CHCl3-d):
δ = 32.79, 63.09, 109.98, 113.94, 117.94, 127.94, 130.32, 131.31, 132.35, 137.38, 146.77, 156.13, 163.52,
170.87. MS: m/z = 365 (M+, 100%), 343 (47%), 320 (7%), 291 (70%), 279 (34%), 259 (32%), 225 (28%).

3.4.8. Synthesis of 3-(6-Fluoro-benzo[d]thiazol-2-yl)-2-(4-methoxyphenyl)thiazolidin-4-one (6)

Yield: 29%, m.p. 198–200 ◦C, Rf: 0.63 (petroleum ether/ethyl acetate 8:2). IR (Nujol), cm−1: 1706
(C=O), 1572, 1230, 1213. 1H-NMR (500 MHz, CHCl3-d): δ = 3.76 (s, 3H, O-CH3), 3.91 (d, J = 16.38 Hz,
1H, CH2), 4.10 (d, J = 16.63 Hz, 1H, CH2), 6.73 (s, 1H, N-CH-S), 6.84 (d, J = 8.80 Hz, 2H, Ar-C18, C20),
7.12 (t, J = 8.56 Hz, 1H, Ar-C5), 7.23–7.35 (m, 1H, Ar-C4), 7.46–7.55 (m, 2H, Ar-C17, C21), 7.58–7.79
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(m, 1H, Ar-C7). 13C-NMR (500 MHz, CHCl3-d): δ = 32.78, 58.01, 63.08, 109.98, 113.89, 114.13, 117.94,
129.49, 131.98, 132.35, 137.38, 146.73, 156.1, 158.01, 163.51, 171.03. MS: m/z = 361 (M+, 15%), 288 (9%),
272 (25%), 244 (100%), 243 (10%), 153 (13%), 135 (7%).

3.4.9. Synthesis of 3-(6-Fluoro-benzo[d]thiazol-2-yl)-2-(4-hydroxyphenyl)thiazolidin-4-one (7)

Yield: 21%, m.p. 230–231 ◦C, Rf: 0.37 (petroleum ether/ethyl acetate 8:2). IR (Nujol), cm−1: 3258
(-OH), 2361, 1706 (C=O), 1573, 1230. 1H-NMR (500 MHz, CHCl3-d): 4.04 (d, J = 16.63 Hz, 1H, CH2),
4.29 (d, J = 16.63 Hz, 1H, CH2), 5.35 (br s, 1H, -OH), 6.97 (s, N-CH-S), 7.22 (t, J = 8.43 Hz, 1H, Ar-C5),
7.62 (br s, 1H, Ar-C4), 7.68 (d, J = 7.34 Hz, 2H, Ar-C18, C20), 7.92 (br d, J = 8.80 Hz, 1H, Ar-C7), 8.16 (d,
J = 8.31 Hz, 2H, Ar-C17, C21). 13C-NMR (500 MHz, CHCl3-d): δ = 32.81, 63.11, 109.94, 113.91, 115.12,
117.94, 130.00, 131.24, 131.53, 146.68, 156.09, 158.04, 163.52, 171.05. MS: m/z = 347 (M+, 42%), 309 (92%),
279 (40%), 263 (70%), 243 (72%).

3.4.10. Synthesis of 3-(6-Chloro-benzo[d]thiazol-2-yl)-2-(4-fluorophenyl)thiazolidin-4-one (8)

Yield: 51%, m.p. 196–197 ◦C, Rf: 0.76 (petroleum ether/ethyl acetate 8:2). IR (Nujol), cm−1: 2363,
1704 (C=O), 1568, 721. 1H-NMR (500 MHz, CHCl3-d): δ = 3.85 (d, J = 16.38 Hz, 1H, CH2), 4.11 (d, J =

16.63 Hz, 1H, CH2), 6.75 (s, 1H, N-CH-S), 7.10–7.18 (m, 2H, Ar-C18, C20), 7.27–7.36 (m, 2H, Ar-C17,
C21), 7.56 (t, J = 8.56 Hz, 1H, Ar-C5), 7.61 (d, J = 8.02 Hz, 1H, Ar-C4), 8.05 (s, 1H, Ar-C7). 13C-NMR (500
MHz, CHCl3-d): δ = 32.86, 63.10, 115.20, 120.82, 122.73, 126.76, 127.73, 133.30, 136.08, 146.90, 156.05,
163.49, 171.11. MS: m/z = 364 (M+, 100%), 343 (10%), 299 (10%), 290 (100%), 279 (9%), 184 (11%), 115
(80%), 88 (9%), 73 (94%).

3.4.11. Synthesis of 3-(6-Chloro-benzo[d]thiazol-2-yl)-2-(4-hydroxyphenyl)thiazolidin-4-one (9)

Yield: 24%, m.p. 236–237 ◦C, Rf: 0.40 (petroleum ether/ethyl acetate 8:2). IR (Nujol), cm−1: 2359
(-OH), 2361, 1701 (C=O), 1573. 1H-NMR (500 MHz, CHCl3-d): δ = 3.86 (d, J = 16.38 Hz, 1H, CH2), 4.10
(d, J = 16.63 Hz, 1H, CH2), 5.35 (br s, 1H, -OH), 6.73 (s, 1H, N-CH-S), 7.26–7.43 (m, 5H, Ar-C5, C17, C18,
C20, C21), 7.76 (br d, J = 8.80 Hz, 1H, Ar-C4), 8.13 (s, 1H, Ar-C7). 13C-NMR (500 MHz, CHCl3-d): δ =

33.12, 63.71, 115.75, 118.23, 121.55, 125.14, 129.02, 130.01, 131.52, 132.87, 151.68, 156.71, 163.77, 171.12.
MS: m/z = 363 (M+, 100%), 288 (88%), 272 (9%), 225 (33%), 184 (48%), 146 (7%), 136 (21%), 115 (18%), 73
(17%).

3.4.12. Synthesis of 3-(4-Chloro-benzo[d]thiazol-2-yl)-2-(4-fluorophenyl)thiazolidin-4-one (10)

Yield: 33%, m.p. 215–216 ◦C, Rf: 0.74 (petroleum ether/ethyl acetate 8:2). IR (Nujol), cm−1: 2361,
1702 (C=O), 1573, 1101. 1H-NMR (500 MHz, CHCl3-d): δ = 3.93 (d, J = 16.63 Hz, 1H, CH2), 4.21 (d, J =

16.63 Hz, 1H, CH2), 6.81 (s, 1H, N-CH-S), 7.02 (br t, J = 8.56 Hz, 2H, Ar-C18, C20), 7.15–7.24 (m, 1H,
Ar-C6), 7.41 (d, J = 7.34 Hz, 1H, Ar-C5), 7.50 (br dd, J = 8.31, 5.38 Hz, 2H, Ar-C17, C21), 7.68 (d, J = 7.83
Hz, 1H, Ar-C7). 13C-NMR (500 MHz, CHCl3-d): δ = 32.81, 63.87, 115.02, 119.33, 120.77, 121.13, 125.76,
130.71, 132.45, 134.38, 149.11, 161.33, 164.02, 171.05. MS: m/z = 364 (M+, 72%), 343 (35%), 232 (31%), 290
(100%), 292 (79%), 279 (33%), 242 (64%), 225 (65%), 184 (77%), 174 (44%).

3.4.13. Synthesis of 3-(4-Chloro-benzo[d]thiazol-2-yl)-2-(4-nitrophenyl)thiazolidin-4-one (11)

Yield: 41%, m.p. 203–204 ◦C, Rf: 0.45 (petroleum ether/ethyl acetate 8:2). IR (Nujol), cm−1: 2361,
1701 (C=O), 1573. 1H-NMR (500 MHz, CHCl3-d): δ = 3.93 (d, J = 16.63 Hz, 1H, CH2), 4.21 (d, J = 16.63
Hz, 1H, CH2), 6.85 (s, 1H, N-CH-S), 7.21–7.30 (d, J = 7.34 Hz, 2H, Ar-C17, C21), 7.40 (br d, J = 8.80 Hz,
1H, Ar-C6), 7.80 (br d, J = 8.80 Hz, 1H, Ar-C5), 8.20 (d, J = 8.31 Hz, 3H, Ar-C7, C18, C20). 13C-NMR (500
MHz, CHCl3-d): δ = 32.86, 63.35, 119.32, 121.14, 121.58, 123.69, 125.81, 129.66, 132.11, 145.38, 146.37,
149.72, 164.01, 171.02. MS: m/z = 373 (M+, 33%), 349(14%), 343 (46%), 332 (40%), 304 (29%), 292 (92%),
290 (100%), 279 (18%), 259 (7%).
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3.4.14. Synthesis of 3-(4-Chloro-benzo[d]thiazol-2-yl)-2-(4-chlorophenyl)thiazolidin-4-one (12)

Yield: 56%, m.p. 184–185 ◦C, Rf: 0.73 (petroleum ether/ethyl acetate 8:2). IR (Nujol), cm−1: 2361,
1704 (C=O), 1568, 721. 1H-NMR (500 MHz, CHCl3-d): δ = 3.94 (d, J = 16.63 Hz, 1H, CH2), 4.21 (d, J =

16.63 Hz, 1H, CH2), 6.79 (s, 1H, N-CH-S), 7.21–7.31 (m, 3H, Ar-C6, C17, C21), 7.39–7.43 (m, 3H, Ar-C5,
C18, C20), 7.68 (d, J = 7.83 Hz, 1H, Ar-C7). 13C-NMR (500 MHz, CHCl3-d): δ = 32.83, 63.12, 119.89,
121.23, 121.59, 125.83, 128.77, 130.77, 132.31, 132.59, 145.38, 137.36, 149.71, 163.95, 171.03. MS: m/z = 383
(M+, 13%), 381 (43%), 379 (61%), 346 (11%), 341 (11%), 337 (18%), 269 (46%), 227 (32%).

3.4.15. Synthesis of 3-(4-Chloro-benzo[d]thiazol-2-yl)-2-(4-methoxyphenyl)thiazolidin-4-one (13)

Yield: 67%, m.p. 223–224 ◦C, Rf: 0.54 (petroleum ether/ethyl acetate 8:2). IR (Nujol), cm−1: 2361,
1700 (C=O), 1571, 1232. 1H-NMR (500 MHz, CHCl3-d): δ = 3.75 (s, 3H, O-CH3), 3.92 (d, J = 16.38 Hz,
1H, CH2), 4.20 (d, J = 16.63 Hz, 1H, CH2), 6.81 (s, 1H, N-CH-S), 6.84(d, J = 8.80 Hz, 2H, Ar-C18, C20),
7.19 (t, J = 8.56 Hz, 1H, Ar-C6), 7.25 (s, 1H, Ar-C5), 7.41–7.45 (m, 2H, Ar-C17, C21), 7.68 (d, J = 7.83
Hz, 1H, Ar-C7). 13C-NMR (500 MHz, CHCl3-d): δ = 32.85, 55.81, 63.32, 114.21, 119.31, 121.18, 121.57,
125.86, 129.79, 131.28, 132.38, 149.49, 159.00, 163.52, 171.04. MS: m/z = 377 (M+, 100%), 362 (15%), 353
(31%), 326 (27%), 290 (40%), 288 (82%), 136 (36%), 115 (17%) 73 (14%).

3.4.16. Synthesis of 3-(4-Chloro-benzo[d]thiazol-2-yl)-2-(4-hydroxyphenyl)thiazolidin-4-one (14)

Yield: 17%, m.p. 258–259 ◦C, Rf: 0.39 (petroleum ether/ethyl acetate 8:2). IR (Nujol), cm−1: 3205
(-OH), 2361, 1701 (C=O), 1569. 1H-NMR (500 MHz, CHCl3-d): δ = 3.93 (d, J = 16.63 Hz, 1H, CH2), 4.21
(d, J = 16.63 Hz, 1H, CH2), 5.32 (br s, 1H, -OH), 6.81 (s, 1H, N-CH-S), 7.02 (br t, J = 8.56 Hz, 2H, Ar-C18,
C20), 7.15–7.24 (m, 1H, Ar-C6), 7.41 (d, J = 7.34 Hz, 1H, Ar-C5), 7.50 (br dd, J = 8.31, 5.38 Hz, 2H,
Ar-C17, C21), 7.68 (d, J = 7.83 Hz, 1H, Ar-C7). 13C-NMR (500 MHz, CHCl3-d): δ = 33.02, 63.31, 115.18,
119.23, 121.55, 121.89, 125.15, 130.03, 131.52, 132.17, 149.68, 156.73, 163.79, 171.08. MS: m/z = 363 (M+,
75%), 346 (28%), 310 (22%), 290 (21%), 272 (100%), 184 (19%), 136 (22%), 115 (51%), 88 (27%), 73 (15%).

3.4.17. Synthesis of 3-(4-Methoxy-benzo[d]thiazol-2-yl)-2-(4-flurophenyl)thiazolidin-4-one (15)

Yield: 51%, m.p. 251–252 ◦C, Rf: 0.73 (petroleum ether/ethyl acetate 8:2). IR (Nujol), cm−1: 2361,
1968 (C=O), 1587, 1272, 1100. 1H-NMR (500 MHz, DMSO-d6): δ = 3.68–3.86 (m, 3H, O-CH3), 3.91–4.09
(m, 1H, CH2), 4.25 (br d, J = 9.78 Hz, 1H, CH2), 6.88 (s, 1H, N-CH-S), 7.06 (br d, J = 10.27 Hz, 1H,
Ar-C5), 7.26 (br dd, J = 10.03, 8.07 Hz, 1H, Ar-C6), 7.55 (br d, J = 10.27 Hz, 1H, Ar-C7), 7.61–7.76 (m, 2H,
Ar-C17, C21), 8.08–8.26 (m, 2H, Ar-C18, C20). 13C-NMR (500 MHz, DMSO-d6): δ = 32.86, 55.82, 63.18,
108.26, 114.11, 115.43, 121.18, 130.33, 131.99, 135.59, 142.31, 150.23, 161.51, 163.91, 171.08. MS: m/z = 361
(M+, 100%), 343 (42%), 321 (36%), 290 (72%), 288 (31%), 279 (39%), 225 (24%).

3.4.18. Synthesis of 3-(4-Methoxy-benzo[d]thiazol-2-yl)-2-(4-nitrophenyl)thiazolidin-4-one (16)

Yield: 63%, m.p. 298–299 ◦C, Rf: 0.48 (petroleum ether/ethyl acetate 8:2). IR (Nujol), cm−1: 2361,
1705 (C=O), 1585, 1273. 1H-NMR (500 MHz, DMSO-d6): δ = 3.77 (s, 3H, O-CH3), 4.03 (d, J = 17.12 Hz,
1H, CH2), 4.20 (d, J = 17.12 Hz, 1H, CH2), 6.93 (s, 1H, N-CH-S), 7.05 (s, 1H, Ar-C5), 7.26 (s, 1H, Ar-C6),
7.56 (d, J = 7.83 Hz, 2H, Ar-C17, C21), 7.67 (d, J = 8.80 Hz, 1H, Ar-C7), 8.17 (d, J = 8.32 Hz, 2H, Ar-C18,
C20). 13C-NMR (500 MHz, DMSO-d6): δ = 32.85, 55.85, 63.21, 108.25, 114.12, 121.18, 123.84, 129.66,
131.97, 142.31, 145.26, 146.32, 150.21, 163.95, 171.02. MS: m/z = 388 (M+, 100%), 288 (73%), 272 (3%), 225
(42%), 184 (76%), 136 (42%), 115 (31%), 73 (28%).

3.4.19. Synthesis of 3-(4-Methoxy-benzo[d]thiazol-2-yl)-2-(4-chlorophenyl)thiazolidin-4-one (17)

Yield: 43%, m.p. 218–219 ◦C, Rf: 0.53 (petroleum ether/ethyl acetate 8:2). IR (Nujol), cm−1: 2361,
1708 (C=O), 1589, 1276, 1154. 1H-NMR (500 MHz, DMSO-d6): δ = 3.80 (s, 3H, O-CH3), 3.99 (br d, J =

17.12 Hz, 1H, CH2), 4.23 (br d, J = 16.63 Hz, 1H, CH2), 6.93 (s, 1H, N-CH-S), 6.91–6.97 (m, 1H, Ar-C5),
7.26 (br t, J = 8.07 Hz, 1H, Ar-C4), 7.39 (br d, J = 9.29 Hz, 4H, Ar-C17, C18, C20, C21), 7.54 (br d, J = 7.83
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Hz, 1H, Ar-C7). 13C-NMR (500 MHz, DMSO-d6): δ = 32.82, 55.88, 63.27, 108.25, 114.11, 121.32, 128.73,
130.12, 131.93, 132.75, 137.36, 142.32, 150.22, 164.03, 171.00. MS: m/z = 377 (M+, 41%), 272 (23%), 244
(100%), 242 (63%), 165 (17%), 136 (23%).

3.4.20. Synthesis of 3-(4-Methoxy-benzo[d]thiazol-2-yl)-2-(4-methoxyphenyl)thiazolidin-4-one (18)

Yield: 52%, m.p. 196–197 ◦C, Rf: 0.63 (petroleum ether/ethyl acetate 8:2). IR (Nujol), cm−1: 2361,
1701 (C=O), 1556, 1273. 1H-NMR (500 MHz, CHCl3-d): δ = 33.76 (s, 3H, O-CH3benz), 3.94 (d, J = 16.63
Hz, 1H, CH2), 3.95 (s, 3H, O-CH3), 4.13 (d, J = 16.63 Hz, 1H, CH2), 6.81–6.85 (m, 2H, Ar-C18, C20), 7.93
(s, 1H, N-CH-S), 7.25 (br d, J = 9.29 Hz, 3H, Ar-C5, C6, C7), 7.39 (br d, J = 7.83 Hz, 2H, Ar-C17, C21).
13C-NMR (500 MHz, CHCl3-d): δ = 32.86, 55.83, 63.35, 108.25, 114.11, 114.76, 121.82, 129.75, 131.55,
131.96, 142.34, 150.23, 160.82, 164.06, 171.11. MS: m/z = 373 (M+, 76%), 272 (33%), 243 (56%), 244 (100%),
242 (8%), 165 (5%), 164 (7%), 135 (11%).

3.4.21. Synthesis of 3-(4-Methoxy-benzo[d]thiazol-2-yl)-2-(4-hydroxyphenyl)thiazolidin-4-one (19)

Yield: 29%, m.p. 261–262 ◦C, Rf: 0.72 (petroleum ether/ethyl acetate 8:2). IR (Nujol), cm−1: 3205
(-OH), 2361, 1707 (C=O), 1582, 1271. 1H-NMR (500 MHz, DMSO-d6): δ = 3.77 (s, 3H, O-CH3), 4.03 (d, J
= 17.12 Hz, 1H, CH2), 4.20 (d, J = 17.12 Hz, 1H, CH2), 5.32 (br s, 1H, -OH), 6.93 (d, J = 7.83 Hz, 2H,
Ar-C18, C20), 7.05 (s, 1H, N-CH-S), 7.26 (br t, J = 8.56 Hz, 1H, Ar-C5), 7.56 (d, J = 7.83 Hz, 1H, Ar-C6),
7.67 (d, J = 8.80 Hz, 1H, Ar-C7), 8.17 (d, J = 8.32 Hz, 2H, Ar-C17, C21). 13C-NMR (500 MHz, CHCl3-d):
δ = 32.88, 55.82, 63.33, 108.21, 114.13, 115.81, 121.73, 130.13, 131.52, 131.96, 142.31, 150.22, 156.95, 164.13,
171.04. MS: m/z = 359 (M+, 82%), 344 (30%), 328 (64%), 189 (27%), 244 (100%), 165 (54%), 135 (21%).

3.4.22. Synthesis of 3-(6-Methoxy-benzo[d]thiazol-2-yl)-2-(4-fluorophenyl)thiazolidin-4-one (20)

Yield: 52%, m.p. 242–243 ◦C, Rf: 0.62 (petroleum ether/ethyl acetate 8:2). IR (Nujol), cm−1: 2361,
1701 (C=O), 1531, 1225. 1H-NMR (500 MHz, DMSO-d6): δ = 3.76 (s, 3H, O-CH3), 3.99 (br d, J = 16.63
Hz, 1H, CH2), 4.26 (br d, J = 16.63 Hz, 1H, CH2), 6.84 (s, 1H, N-CH-S), 6.97 (dd, J = 8.80, 2.45 Hz,
1H, Ar-C5), 7.13 (br t, J = 8.80 Hz, 2H, Ar-C18, C20), 7.44 (br dd, J = 8.31, 5.38 Hz, 2H, Ar-C17, C21),
7.49–7.71 (m, 2H, Ar-C4, C7). 13C-NMR (500 MHz, DMSO-d6): δ = 32.96, 55.82, 63.33, 108.21, 114.13,
115.81, 121.73, 130.13, 131.52, 131.96, 142.31, 150.22, 156.95, 164.13, 171.04. MS: m/z = 361 (M+, 14%),
288 (8%), 272 (25%), 260 (5%), 258 (8%), 244 (100%), 243 (8%), 153 (13%), 165 (4%), 135 (7%), 109 (8%).

3.4.23. Synthesis of 3-(6-Methoxy-benzo[d]thiazol-2-yl)-2-(4-nitrophenyl)thiazolidin-4-one (21)

Yield: 41%, m.p. 220–221 ◦C, Rf: 0.49 (petroleum ether/ethyl acetate 8:2). IR (Nujol), cm−1: 2361,
1701 (C=O), 1532, 1226. 1H-NMR (500 MHz, DMSO-d6): δ = 3.76 (s, 3H, O-CH3), 4.03 (br d, J = 16.63
Hz, 1H, CH2), 4.27 (br d, J = 16.63Hz, 1H, CH2), 6.89–7.06 (m, 2H, Ar-C5, N-CH-S), 7.51 (br d, J = 9.29
Hz, 1H, Ar-C5), 7.60 (br s, 1H, Ar-C7), 7.67 (br d, J = 7.34 Hz, 2H, Ar-C17, C21), 8.17 (br d, J = 8.31 Hz,
2H, Ar-C18, C20). 13C-NMR (500 MHz, DMSO-d6): δ = 32.87, 55.86, 63.32, 104.12, 114.33, 117.25, 124.38,
125.96, 131.95, 145.13, 145.51, 146.79, 156.81, 164.03, 170.92. MS: m/z = 388 (M+, 62%), 288 (100%), 225
(29%), 184 (61%), 136 (27%), 115 (23%), 107 (27%), 73 (18%).

3.4.24. Synthesis of 3-(6-Methoxy-benzo[d]thiazol-2-yl)-2-(4-chlorophenyl)thiazolidin-4-one (22)

Yield: 52%, m.p. 179–180 ◦C, Rf: 0.53 (petroleum ether/ethyl acetate 8:2). IR (Nujol), cm−1: 2361,
1706 (C=O), 1536, 1219, 1108. 1H-NMR (500 MHz, DMSO-d6): δ = 3.77 (s, 3H, O-CH3), 3.99 (d, J = 17.12
Hz, 1H, CH2), 4.26 (d, J = 16.63 Hz, 1H, CH2), 6.84 (s, 1H, N-CH-S), 6.97 (dd, J = 8.80, 2.45 Hz, 1H,
Ar-C5), 7.32–7.47 (m, 4H, Ar-C17, C18, C20, C21), 7.47–7.65 (m, 2H, Ar-C4, C7). 13C-NMR (500 MHz,
DMSO-d6): δ = 32.76, 55.85, 63.31, 104.99, 114.61, 118.23, 127.81(2C), 129.16, 131.93, 132.15, 137.33,
145.52, 156.74, 164.03, 170.85. MS: m/z = 377 (M+, 100%), 288 (82%), 272 (33%), 225 (21%), 136 (35%),
115 (20%), 73 (18%).
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3.4.25. Synthesis of 3-(6-Methoxy-benzo[d]thiazol-2-yl)-2-(4-methoxyphenyl)thiazolidin-4-one (23)

Yield: 33%, m.p. 225–226 ◦C, Rf: 0.62 (petroleum ether/ethyl acetate 8:2). IR (Nujol), cm−1: 2361,
1700 (C=O), 1540, 1225. 1H-NMR (500 MHz, CHCl3-d): δ = 3.76 (s, 3H, O-CH3benz), 3.94 (d, J = 16.63
Hz, 1H, CH2), 3.98 (s, 3H, O-CH3), 4.13 (d, J = 16.63 Hz, 1H, CH2), 6.84 (s, 1H, N-CH-S), 6.93 (br d, J =

8.31 Hz, 2H, Ar-C18, C20), 7.51 (br d, J = 9.29 Hz, 1H, Ar-C5), 7.25 (br d, J = 9.29 Hz, 2H, Ar-C4, C7,
C21), 7.39 (br d, J = 7.83 Hz, 1H, Ar-C17). 13C-NMR (500 MHz, CHCl3-d): δ = 32.81, 55.84, 63.33, 104.92,
114.81, 115.01, 118.22, 127.79, 131.91, 132.28, 145.55, 156.72, 159.85, 163.92, 170.93. MS: m/z = 373 (M+,
78%), 299 (10%), 344 (10%), 272 (33%), 244 (100%), 242 (7%), 165 (5%), 164 (7%), 150 (9%), 135 (3%).

3.4.26. Synthesis of 3-(6-Ethoxy-benzo[d]thiazol-2-yl)-2-(4-fluorophenyl)thiazolidin-4-one (24)

Yield: 63%, m.p. 144–145 ◦C, Rf: 0.44 (petroleum ether/ethyl acetate 8:2). IR (Nujol), cm−1: 2316,
1701 (C=O), 1531, 1225. 1H-NMR (500 MHz, CHCl3-d): δ = 1.25 (t, J = 6.85 Hz, 3H, -OCH2CH3),
3.82–3.85 (m, 3H, CH2,-OCH2CH3), 4.10 (d, J = 16.63 Hz, 1H, CH2), 6.79 (s, 1H, N-CH-S), 6.97 (dd, J =

8.80, 2.45 Hz, 2H, Ar-C18, C20), 7.25 (s, 1H, Ar-C5), 7.30–7.33 (m, 2H, Ar-C17, C21), 7.59 (d, J = 8.80 Hz,
2H, Ar-C4, C7). 13C-NMR (500 MHz, CHCl3-d): δ = 14.13, 32.35, 55.89, 63.12, 104.52, 115.13, 115.52,
115.61, 130.02, 131.51, 134.03, 144.00, 153.62, 161.13, 164.05, 171.21. MS: m/z = 375 (M+, 100%), 288
(28%), 272 (36%), 225 (18%), 197 (19%), 136 (20%), 115 (16%), 73 (16%).

3.4.27. Synthesis of 3-(6-Ethoxy-benzo[d]thiazol-2-yl)-2-(4-nitrophenyl)thiazolidin-4-one (25)

Yield: 72%, m.p. 155–156 ◦C, Rf: 0.58 (petroleum ether/ethyl acetate 8:2). IR (Nujol), cm−1: 2316,
1701 (C=O), 1527, 1225. 1H-NMR (500 MHz, CHCl3-d): δ = 1.42 (t, J = 6.85 Hz, 3H, -OCH2CH3), 3.89
(d, J = 16.63 Hz, 1H, CH2), 4.10 (d, J = 16.63 Hz, 1H, CH2), 4.25–4.32 (q, J = 6.68 Hz, 2H, -OCH2CH3),
6.80 (s, 1H, N-CH-S), 6.97 (dd, J = 8.80, 2.45 Hz, 1H, Ar-C5), 7.19–7.33 (m, 1H, Ar-C7), 7.42–7.59 (m, 3H,
Ar-C4, C17, C21), 8.19 (d, J = 8.80 Hz, 2H, Ar-C18, C20). 13C-NMR (500 MHz, CHCl3-d): δ = 14.12,
32.31, 55.97, 63.17, 104.52, 115.25, 117.31, 122.15, 129.75, 131.21, 142.02, 143.85, 145.06, 153.72, 164.02,
170.75. MS: m/z = 402 (M+, 100%), 382 (49%), 373 (42%), 357 (21%), 348 (18%), 115 (12%), 73 (7%).

3.4.28. Synthesis of 3-(6-Ethoxy-benzo[d]thiazol-2-yl)-2-(4-chlorophenyl)thiazolidin-4-one (26)

Yield: 82%, m.p. 180–181◦C, Rf: 0.66 (petroleum ether/ethyl acetate 8:2). IR (Nujol), cm−1: 2361,
1696 (C=O), 1546, 1227, 698. 1H-NMR (500 MHz, CHCl3-d): δ = 1.43 (t, J = 6.85 Hz, 3H, -OCH2CH3),
3.83 (d, J = 16.63 Hz, 1H, CH2), 4.04–4.10 (m, 3H, CH2, -OCH2CH3), 6.74 (s, 1H, N-CH-S), 6.98 (dd,
J = 8.80, 2.45 Hz, 1H, Ar-C5), 7.25–7.30 (m, 5H, Ar-c4, C17, C18, C20, C21), 7.59 (d, J = 8.80 Hz, 1H,
Ar-C7). 13C-NMR (500 MHz, CHCl3-d): δ = 14.12, 32.31, 55.92, 63.17, 104.83, 114.77, 117.81, 128.72,
130.05, 131.24, 132.74, 137.52, 144.86, 145.06, 153.59, 164.07, 170.69. MS: m/z = 391 (M+, 100%), 363
(68%), 272 (88%), 244 (67%), 215 (26%), 153 (79%).

3.4.29. Synthesis of 3-(6-Ethoxy-benzo[d]thiazol-2-yl)-2-(4-methoxyphenyl)thiazolidin-4-one (27)

Yield: 55%, m.p. 210–211◦C, Rf: 0.63 (petroleum ether/ethyl acetate 8:2). IR (Nujol), cm−1: 2361,
1700 (C=O), 1531, 1227. 1H-NMR (500 MHz, CHCl3-d): δ = 1.42 (t, J = 6.85 Hz, 3H, -OCH2CH3), 3.89
(d, J = 16.63 Hz, 1H, CH2), 4.03–4.10 (m, 4H, CH2, -OCH3), 4.25–4.32 (q, J = 6.68 Hz, 2H, -OCH2CH3),
6.80 (s, 1H, N-CH-S), 6.97 (dd, J = 8.80, 2.45 Hz, 2H, Ar-C18, C20), 7.19–7.33 (m, 1H, Ar-C5), 7.42–7.59
(m, 2H, Ar-C4, C7), 8.19 (d, J = 8.80 Hz, 2H, Ar-C17, C21). 13C-NMR (500 MHz, CHCl3-d): δ = 14.15,
32.36, 55.81, 55.96, 63.17, 105.26, 114.21, 114.75, 117.82, 129.85, 131.58, 144.82, 153.56, 159.35, 164.15,
170.57. MS: m/z = 387 (M+, 21%), 344 (16%), 313 (15%), 299 (8%), 272 (37%), 244 (100%), 242 (15%), 165
(35%), 164 (9%), 150 (23%), 135 (8%).

3.4.30. Synthesis of 3-(6-Ethoxy-benzo[d]thiazol-2-yl)-2-(4-hydroxyphenyl)thiazolidin-4-one (28)

Yield: 81%, m.p. 191–192◦C, Rf: 0.37 (petroleum ether/ethyl acetate 8:2). IR (Nujol), cm−1: 3200
(-OH), 2361, 1706 (C=O), 1530, 1225. 1H-NMR (500 MHz, DMSO-d6): δ = 1.33 (br t, J = 6.60 Hz, 3 H),
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3.37–3.50 (m, 4 H), 3.51–3.68 (m, 1 H), 4.04 (q, J = 6.68 Hz, 2 H), 5.24 (s, 1 H), 6.71 (m, J = 7.83 Hz, 2 H),
6.99 (br d, J = 8.80 Hz, 1 H), 7.20 (m, J = 7.83 Hz, 2 H), 7.52 (br s, 1 H), 7.60 (br d, J = 8.31 Hz, 1 H), 9.55
(br s, 1 H). 13C-NMR (500 MHz, DMSO-d6): δ = 14.11, 32.31, 55.93, 63.19, 104.97, 114.67, 115.32, 117.82,
130.05, 130.87, 132.56, 144.81, 154.59, 156.73, 164.07, 170.63. MS: m/z = 373 (M+, 9%), 288 (17%), 272
(29%), 244 (100%), 243 (8%), 197 (11%), 109 (4%).

3.4.31. Synthesis of 3-(6-Trifluoromethoxy-benzo[d]thiazol-2-yl)-2-(2,6-dichlorophenyl)
thiazolidin-4-one (29)

Yield: 73%, m.p. 164–165◦C, Rf: 0.53 (petroleum ether/ethyl acetate 8:2). IR (Nujol), cm−1: 2361,
1700 (C=O), 1532, 1209, 1134, 721. 1H-NMR (500 MHz, CHCl3-d): δ = 3.99 (d, J = 16.63 Hz, 1H, CH2),
4.26 (d, J = 16.63 Hz, 1H, CH2), 6.84 (s, 1H, N-CH-S), 6.97 (dd, J = 8.80, 2.45 Hz, 1H, Ar-C5), 7.42–7.46
(m, 3H, Ar-C18, C19, C20), 7.49–7.71 (m, 2H, Ar-C4, C7).13C-NMR (500 MHz, CHCl3-d): δ = 32.86,
63.33, 104.97, 114.22, 118.71, 126.82, 128.53, 129.27, 130.05, 135.11, 139.11, 145.91, 156.74, 164.13, 171.17.
MS: m/z = 446 (M+, 47%), 340 (21%), 336 (16%), 321 (44%), 293 (100%), 292 (11%), 204 (46%), 165 (21%).

3.4.32. Synthesis of 3-(6-Trifluoromethoxy-benzo[d]thiazol-2-yl)-2-(2,3-dichlorophenyl)
thiazolidin-4-one (30)

Yield: 84%, m.p. 142–143 ◦C, Rf: 0.81 (petroleum ether/ethyl acetate 8:2). IR (Nujol), cm−1: 2361,
1700 (C=O), 1532, 1202, 1131, 721. 1H-NMR (500 MHz, CHCl3-d): δ = 3.94 (d, J = 16.63 Hz, 1H, CH2),
4.11 (d, J = 16.63 Hz, 1H, CH2), 6.83 (s, 1H, N-CH-S), 6.91–7.01 (m, 2H, Ar-C5, C17), 7.10–7.18 (m, 1H,
Ar-C18), 7.49–7.53 (m, 2H, Ar-C4, C7), 7.60 (dd, J = 8.80, 2.45 Hz, 1H, Ar-C19). 13C-NMR (500 MHz,
CHCl3-d): δ = 32.85, 63.34, 103.85, 104.92, 114.66, 118.97, 127.95, 128.05, 128.77, 129.23, 129.56, 131.81,
132.05, 145.52, 156.73, 164.13, 170.93. MS: m/z = 466 (M+, 3%), 355 (6%), 272 (18%), 244 (36%), 228 (15%),
226 (22%), 165 (100%).

3.4.33. Synthesis of 3-(6-Trifluoromethoxy-benzo[d]thiazol-2-yl)-2-(4-nitrophenyl)thiazolidin-4-one (31)

Yield: 33%, m.p. 158–159 ◦C, Rf: 0.62 (petroleum ether/ethyl acetate 8:2). IR (Nujol), cm−1:
1706(C=O), 1539, 1209, 1135. 1H-NMR (500 MHz, CHCl3-d): δ = 3.85 (d, J = 16.63 Hz, 1H, CH2), 4.14
(d, J = 16.63 Hz, 1H, CH2), 6.76 (s, 1H, N-CH-S), 7.02 (d, J = 7.83 Hz, 1H, Ar-C5), 7.41–7.45 (m, 4H,
Ar-C4, C7, C17, C21), 8.05 (d, J = 7.83 Hz, 2H, Ar-C18, C20). 13C-NMR (500 MHz, CHCl3-d): δ = 32.76,
63.09, 104.92, 114.02, 118.27 123.88, 129.12, 129.93, 131.95, 145.62, 145.94, 149.79, 156.71, 164.19, 170.92.
MS: m/z = 442 (M+, 56%), 395 (51%), 386 (19%), 272 (100%), 244 (22%), 165 (7%).

3.4.34. Synthesis of 3-(6-Trifluoromethoxy-benzo[d]thiazol-2-yl)-2-(4-chlorophenyl)thiazolidin-4-one (32)

Yield: 35%, m.p. 243–244 ◦C, Rf: 0.77 (petroleum ether/ethyl acetate 8:2). IR (Nujol), cm−1: 1698
(C=O), 1528, 1209, 1198, 1131, 721. 1H-NMR (500 MHz, CHCl3-d): δ = 3.85 (d, J = 16.63 Hz, 1H, CH2),
4.10 (d, J = 16.63 Hz, 1H, CH2), 6.74 (s, 1H, N-CH-S), 7.24–7.31(m, 5H, Ar-C5, C17, C18, C20, C21),
7.66–7.71 (m, 2H, Ar-C4, C7). 13C-NMR (500 MHz, CHCl3-d): δ = 32.75, 63.05, 104.93, 114.01, 120.11,
128.27, 129.65, 129.81, 131.74, 132.92, 137.33, 145.95, 156.63, 161.62, 164.27, 170.94. MS: m/z = 431 (M+,
46%), 395 (27%), 378 (34%), 377 (100%), 373 (18%), 363 (55%).

3.5. Evaluation of RT Inhibitory Action

For the evaluation of the HIV-1 Reverse Transcriptase activity, the colorimetric photometric
immunoassay kit provided by Roche was used. A two hours incubation at 37 ◦C was performed, as
previously described in our paper [44] following a pre-incubation step in which reverse transcriptase
was incubated in the presence of the potential inhibitor for 45 min at room temperature before the
addition of the substrate. The total-activity was measured in the absence of inhibitors (compounds)
with the addition of an equal volume of the solvent of the compounds to the reaction mixture. For the
determination of enzyme activity, incubation in the absence of enzyme was used as blank. Different
inhibitor concentrations were added for the calculation of IC50 values.
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3.6. Toxicity

Cell culture and cytotoxicity assessment.
The normal MRC-5 cell line is stored and used in our laboratory in a routine manner. MRC-5

cells were grown in culture (37 ◦C, humidified atmosphere containing 5% v/v CO2) in DMEM medium
supplemented with 10% v/v FBS, 100 µg/mL penicillin and 100 µg/mL streptomycin. The compounds
under evaluation were dissolved in DMSO and stored in 4 ◦C (DMSO concentration ≤ 0.2% v/v). The
cytotoxicity of the 1, 2, 3, 8, 9, 10, 14 compounds were evaluated in MRC-5 cell cultures. In particular
cells were seeded in a 24- well plate at an initial concentration of 1 × 105 cells/mL and allowed to stand
overnight before the addition of the compounds at high concentration of 10−5 M. Note that DMSO
concentration in culture was 0.2% v/v, where this concentration exhibits no cytotoxicity at all [50]. To
estimate the cytotoxicity of each compound, cells were allowed to grow for additional 48h before being
harvested by trypsinization and counted with the aid of the optical microscope (Neubauer counting
chamber). Cell growth in each treated culture is expressed as a percentage compared to that seen for
the untreated control cells. Moreover, cell death was also determined using the Trypan-blue method,
as previously described [51,52]. Statistical t-test analysis was performed via the use of GraphPad Prism
6.0 program.

4. Conclusions

Thirty two compounds out of a hundred thirty two compounds designed were selected based on
PASS prediction results and molecular docking for the synthesis and evaluation of HIV-1 RT inhibitory
activity. Twenty-four out of the thirty-two tested compounds exhibited inhibitory action equal or lower
than 4 µM. Seven of them showed better activity than nevirapine under experimental condition, while
three of the compounds exhibited IC50 values lower than 5 nM. Two compounds 9 and 10 exhibited
very good inhibitory activity with IC50 1 nM.

According to docking results, most of the compounds are placed within the NNRTIs binding
pocket between the place equipped by the classic butterfly shaped compound, nevirapine and the
binding site of etravirine or within the etravirine binding pocket.

It is interesting to mention that, the most active compounds structurally belong to three different
groups and adopt three different orientations.

In general, according to docking studies and in vitro results, it seems that the presence of a Cl
substituent at the 7-, 6- or 4-position of the benzothiazolyl moiety facilitates an orientation which
enables complex stabilization via pi-interactions and hydrogen bond formation involving either the CO
group of the thiazolidinone ring or hydrogen acceptor/donor substituents of the phenyl ring. In case of
subgroups bearing hydrogen acceptor substituents at the benzothiazole moiety, their involvement in
hydrogen bond formation also is favorable for complex stabilization.

The absence of the traditional hydrogen bond interactions with Lys101, in case of one of the most
active compounds, 10, is an interesting characteristic in concern of a probable use of such structures in
future drugs, since mutations in Lys101 are common in resistant mutants.

Finally, it should be mentioned that no statistically significant changes were observed in cell
growth in normal cell line treated with the tested compounds compared to control.
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