Thermosensitive Nanosystems Associated with Hyperthermia for Cancer Treatment
Abstract
:1. Introduction
2. Hyperthermia
Types of Hyperthermia Treatments
3. Heating Modalities Used to Induce Hyperthermia
4. Thermosensitive Systems for Cancer Treatment
4.1. Polymeric Nanocarriers
4.1.1. Polymer Micelles
4.1.2. Core–Shell Nanoparticles
4.2. Liposomes
5. MRI-Guided Thermometry: A Strategy for Real-Time Monitoring and Control of Drug Release
6. Clinical Trials
7. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Oncoguia Estimativas No Mundo. Available online: http://www.oncoguia.org.br/conteudo/estimativas-no-mundo/1706/1/ (accessed on 25 September 2018).
- Nardecchia, S.; Sánchez-Moreno, P.; De Vicente, J.; Marchal, J.A.; Boulaiz, H. Clinical Trials of Thermosensitive Nanomaterials: An Overview. Nanomaterials 2019, 9, 191. [Google Scholar] [CrossRef] [PubMed]
- Shao, P.; Wang, B.; Wang, Y.; Li, J.; Zhang, Y. The Application of Thermosensitive Nanocarriers in Controlled Drug Delivery. J. Nanomater. 2011, 2011, 17. [Google Scholar] [CrossRef]
- Lopes, C.M.; Barata, P.; Oliveira, R. Drug Targeting and Stimuli Sensitive Drug Delivery Systems; Grumezescu, A.M., Ed.; Elsevier: Porto, Portugal, 2018; ISBN 978-0-12-813689-8. [Google Scholar]
- Ta, T.; Porter, T.M. Thermosensitive liposomes for localized delivery and triggered release of chemotherapy. J. Control. Release 2013, 169, 112–125. [Google Scholar] [CrossRef] [PubMed]
- Behrouzkia, Z.; Joveini, Z.; Keshavarzi, B.; Eyvazzadeh, N.; Aghdam, R.Z. Hyperthermia: How can it be used? Oman Med. J. 2016, 31, 89–97. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Moreno, P.; De Vicente, J.; Nardecchia, S.; Marchal, J.A.; Boulaiz, H. Thermo-Sensitive Nanomaterials: Recent Advance in Synthesis and Biomedical Applications. Nanomaterials 2018, 11, 935. [Google Scholar] [CrossRef]
- Januszewski, A.; Stebbing, J. Hyperthermia in cancer: Is it coming of age? Lancet Oncol. 2014, 15, 565–566. [Google Scholar] [CrossRef]
- Westermark, F. Uber die Behandlung des ulcerirenden Cervix carcinoma mittels Knonstanter Warme. Zentralbl. Gynakol. 1898, 1335–1339. [Google Scholar]
- Vaupel, P. Tumor microenvironmental physiology and its implications for radiation oncology. Semin. Radiat. Oncol. 2004, 14, 198–206. [Google Scholar] [CrossRef]
- Hildebrandt, B.; Wust, P.; Ahlers, O.; Dieing, A.; Sreenivasa, G.; Kerner, T.; Felix, R.; Riess, H. The cellular and molecular basis of hyperthermia. Crit. Rev. Oncol. Hematol. 2002, 43, 33–56. [Google Scholar] [CrossRef]
- Danhier, F. To exploit the tumor microenvironment: Since the EPR effect fails in the clinic, what is the future of nanomedicine? J. Control. Release 2016, 244, 108–121. [Google Scholar] [CrossRef]
- Vaupel, P.; Rallinoâ, F.; Okunieff, P. Blood Flow, Oxygen and Nutrient Supply, and Metabolic Microenvironment Human Tumors: A Review. Cancer Res. 1989, 49, 6449–6465. [Google Scholar] [PubMed]
- May, J.P.; Li, S. Hyperthermia-induced drug targeting. Expert Opin. Drug Deliv. 2013, 10, 511–527. [Google Scholar] [CrossRef] [PubMed]
- Hegyi, G.; Szigeti, G.P.; Szász, A. Hyperthermia versus Oncothermia: Cellular Effects in Complementary Cancer Therapy. Evid. Based Complement. Altern. Med. 2013, 2013, 672873. [Google Scholar] [CrossRef] [PubMed]
- Vaupel, P.; Horsman, M.R. Tumour perfusion and associated physiology: Characterization and significance for hyperthermia. Int. J. Hyperth. 2010, 26, 209–210. [Google Scholar] [CrossRef]
- Ahmed, K.; Zaidi, S.F. Treating cancer with heat: Hyperthermia as promising strategy to enhance apoptosis. J. Pak. Med. Assoc. 2013, 63, 504–508. [Google Scholar]
- Roti Roti, J.; Kampinga, H.; Malyapa, R.; Wright, W.; VanderWaal, R.; Xu, M. Nuclear matrix as a target for hyperthmic killing of cancer cells. Cell Stress Chaperones 1998, 3, 245–255. [Google Scholar] [CrossRef]
- Peeken, J.C.; Vaupel, P.; Combs, S.E.; Combs, S.E. Integrating Hyperthermia into Modern Radiation Oncology: What Evidence Is Necessary? Front. Oncol. 2017, 7, 132. [Google Scholar] [CrossRef]
- Rau, B.; Wust, P.; Tilly, W.; Gellermann, J.; Harder, C.; Riess, H.; Budach, V.; Felix, R.; Schlag, P.M. Preoperative radiochemotherapy in locally advanced or recurrent rectal cancer: Regional radiofrequency hyperthermia correlates with clinical parameters. Int. J. Radiat. Oncol. Biol. Phys. 2000, 48, 381–391. [Google Scholar] [CrossRef]
- Vujaskovic, Z.; Poulson, J.M.; Gaskin, A.A.; Thrall, D.E.; Page, R.L.; Charles, H.C.; MacFall, J.R.; Brizel, D.M.; Meyer, R.E.; Prescott, D.M.; et al. Temperature-dependent changes in physiologic parameters of spontaneous canine soft tissue sarcomas after combined radiotherapy and hyperthermia treatment. Int. J. Radiat. Oncol. Biol. Phys. 2000, 46, 179–185. [Google Scholar] [CrossRef]
- Lepock, J.R. Role of nuclear protein denaturation and aggregation in thermal radiosensitization. Int. J. Hyperth. 2009, 20, 115–130. [Google Scholar] [CrossRef]
- Issels, R.; Kampmann, E.; Kanaar, R.; Lindner, L.H. Hallmarks of hyperthermia in driving the future of clinical hyperthermia as targeted therapy: Translation into clinical application. Int. J. Hyperth. 2016, 32, 89–95. [Google Scholar] [CrossRef] [PubMed]
- Dou, Y.; Hynynen, K.; Allen, C. To heat or not to heat: Challenges with clinical translation of thermosensitive liposomes. J. Control. Release 2017, 249, 63–73. [Google Scholar] [CrossRef] [PubMed]
- Koning, G.A.; Eggermont, A.M.M.; Lindner, L.H.; Ten Hagen, T.L.M. Hyperthermia and thermosensitive liposomes for improved delivery of chemotherapeutic drugs to solid tumors. Pharm. Res. 2010, 27, 1750–1754. [Google Scholar] [CrossRef] [PubMed]
- Van Der Zee, J.; González González, D.; Van Rhoon, G.C.; Van Dijk, J.D.P.; Van Putten, W.L.J.; Hart, A.A.M. Comparison of radiotherapy alone with radiotherapy plus hyperthermia in locally advanced pelvic tumours: A prospective, randomised, multicentre trial. Lancet Oncol. 2000, 355, 1119–1125. [Google Scholar] [CrossRef]
- Chatterjee, D.K.; Diagaradjane, P.; Krishnan, S. Nanoparticle-mediated hyperthermia in cancer therapy. Ther. Deliv. 2011, 2, 1001–1014. [Google Scholar] [CrossRef]
- Wessalowski, R.; Schneider, D.T.; Mils, O.; Friemann, V.; Kyrillopoulou, O.; Schaper, J.; Matuschek, C.; Rothe, K.; Leuschner, I.; Willers, R.; et al. Regional deep hyperthermia for salvage treatment of children and adolescents with refractory or recurrent non-testicular malignant germ-cell tumours: An open-label, non-randomised, single-institution, phase 2 study. Lancet Oncol. 2013, 14, 843–852. [Google Scholar] [CrossRef]
- Issels, R.D. Hyperthermia adds to chemotherapy. Eur. J. Cancer 2008, 44, 2546–2554. [Google Scholar] [CrossRef]
- Issels, R.D.; Lindner, L.H.; Verweij, J.; Wust, P.; Reichardt, P.; Schem, B.C.; Abdel-Rahman, S.; Daugaard, S.; Salat, C.; Wendtner, C.M.; et al. Neo-adjuvant chemotherapy alone or with regional hyperthermia for localised high-risk soft-tissue sarcoma: A randomised phase 3 multicentre study. Lancet Oncol. 2010, 11, 561–570. [Google Scholar] [CrossRef]
- Fan, Y.; Qin, Y.; Li, D.-G.; Kerr, D. Retrospective Clinical Study of Advanced Pancreatic Cancer Treated With Chemotherapy and Abdominal Hyperthermia. J. Glob. Oncol. 2017, 4, 1–4. [Google Scholar] [CrossRef]
- Okonogi, N.; Ebara, T.; Ishikawa, H.; Yoshida, D.; Ueno, M.; Maeno, T. A seven-year disease-free survivor of malignant pleural mesothelioma treated with hyperthermia and chemotherapy: A case report. J. Med. Case Rep. 2012, 6, 427. [Google Scholar] [CrossRef]
- Wismeth, C.; Dudel, C.; Pascher, C.; Ramm, P.; Ru, P. Transcranial electro-hyperthermia combined with alkylating chemotherapy in patients with relapsed high-grade gliomas: Phase I clinical results. J. Neurooncol. 2010, 98, 395–405. [Google Scholar] [CrossRef] [PubMed]
- Franckena, M.; Stalpers, L.J.A.; Koper, P.C.M.; Wiggenraad, R.G.J.; Hoogenraad, W.J.; van Dijk, J.D.P.; Wárlám-Rodenhuis, C.C.; Jobsen, J.J.; van Rhoon, G.C.; van der Zee, J. Long-Term Improvement in Treatment Outcome After Radiotherapy and Hyperthermia in Locoregionally Advanced Cervix Cancer: An Update of the Dutch Deep Hyperthermia Trial. Int. J. Radiat. Oncol. Biol. Phys. 2008, 70, 1176–1182. [Google Scholar] [CrossRef] [PubMed]
- Refaat, T.; Sachdev, S.; Sathiaseelan, V.; Helenowski, I.; Abdelmoneim, S.; Pierce, M.C.; Woloschak, G.; Small, W., Jr.; Mittal, B.; Kiel, K.D. Hyperthermia and radiation therapy for locally advanced or recurrent breast cancer. Breast 2016, 24, 418–425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wust, P.; Hildebrandt, B.; Sreenivasa, G.; Rau, B.; Gellermann, J.; Riess, H.; Felix, R.; Schlag, P. Hyperthermia in combined treatment of cancer. Lancet Oncol. 2002, 3, 487–497. [Google Scholar] [CrossRef]
- National Cancer Institute. Hyperthermia in Cancer Treatment. Available online: https://www.cancer.gov/about-cancer/treatment/type (accessed on 9 September 2018).
- Habash, R.W.Y.; Bansal, R.; Krewski, D.; Alhafid, H.T. Thermal Therapy, Part 2: Hyperthermia Techniques. Biomed. Eng. (NY) 2006, 34, 491–542. [Google Scholar] [CrossRef]
- Dupré, A.; Melodelima, D.; Pflieger, H.; Chen, Y.; Vincenot, J.; Kocot, A.; Langonnet, S.; Rivoire, M. Thermal Ablation of the Pancreas With Intraoperative High-Intensity Focused Ultrasound Safety and Efficacy in a Porcine Model. Pancreas J. 2017, 46, 219–224. [Google Scholar] [CrossRef]
- Thermosome Deep Regional Radiofrequency (RF) Hyperthermia. Available online: http://www.thermosome.com/heating-technologies (accessed on 7 March 2019).
- Okhai, T.A.; Smith, C.J. Principles and Application of RF System for Hyperthermia Therapy; Huilgol, N., Ed.; Intech: Rijeka, Croatia, 2013; ISBN 978-0-7695-3453-4. [Google Scholar]
- Nguyen, P.T.; Abbosh, A.; Member, S.; Crozier, S. Three-Dimensional Microwave Hyperthermia for Breast Cancer Treatment in a Realistic Environment Using Particle Swarm Optimization. Biomed. Eng. (NY) 2017, 64, 1335–1344. [Google Scholar] [CrossRef]
- Dombrovsky, L.A.; Randrianalisoa, J.H.; Lipi, W.; Timchenko, V. Simplified approaches to radiative transfer simulations in laser-induced hyperthermia of superficial tumors. Comput. Therm. Sci. 2013, 5, 521–530. [Google Scholar] [CrossRef]
- Singh, R.; Das, K.; Okajima, J.; Maruyama, S.; Mishra, S.C. Modeling skin cooling using optical windows and cryogens during laser induced hyperthermia in a multilayer vascularized tissue. Appl. Therm. Eng. 2015, 89, 28–35. [Google Scholar] [CrossRef]
- Kappiyoor, R.; Liangruksa, M.; Ganguly, R.; Puri, I.K. The effects of magnetic nanoparticle properties on magnetic fluid hyperthermia. J. Appl. Phys. 2010, 108, 094702. [Google Scholar] [CrossRef]
- Liu, X.L.; Fan, H.M. Innovative magnetic nanoparticle platform for magnetic resonance imaging and magnetic fluid hyperthermia applications. Curr. Opin. Chem. Eng. 2014, 4, 38–46. [Google Scholar] [CrossRef]
- Wang, H.; Kumar, R.; Nagesha, D.; Duclos, R.I.; Sridhar, S.; Gatley, S.J. Integrity of 111In-radiolabeled superparamagnetic iron oxide nanoparticles in the mouse. Nucl. Med. Biol. 2015, 42, 65–70. [Google Scholar] [CrossRef] [PubMed]
- Mokhodoeva, O.; Vlk, M.; Málková, E.; Kukleva, E.; Mičolová, P.; Štamberg, K.; Šlouf, M.; Dzhenloda, R.; Kozempel, J. Study of 223Ra uptake mechanism by Fe3O4 nanoparticles: Towards new prospective theranostic SPIONs. J. Nanopart. Res. 2016, 18, 301. [Google Scholar] [CrossRef]
- Ognjanović, M.; Radović, M.; Mirković, M.; Prijović, Ž.; Del Puerto Morales, M.; Čeh, M.; Vranješ-Đurić, S.; Antić, B. 99m Tc-, 90 Y-, and 177 Lu-Labeled Iron Oxide Nanoflowers Designed for Potential Use in Dual Magnetic Hyperthermia/Radionuclide Cancer Therapy and Diagnosis. Appl. Mater. Interfaces 2019, 44, 41109–41117. [Google Scholar] [CrossRef]
- Pospisilova, M.; Zapotocky, V.; Nesporova, K.; Laznicek, M.; Laznickova, A.; Zidek, O.; Cepa, M.; Vagnerova, H.; Velebny, V. Preparation and biodistribution of59Fe-radiolabelled iron oxide nanoparticles. J. Nanopart. Res. 2017, 19, 80. [Google Scholar] [CrossRef]
- Jordan, A.; Wust, P.; Fähling, H.; John, W.; Hinz, A.; Felix, R. Inductive heating of ferrimagnetic particles and magnetic fluids: Physical evaluation of their potential for hyperthermia. Int. J. Hyperth. 1993, 9, 51–68. [Google Scholar] [CrossRef]
- De Simone, M.; Panetta, D.; Bramanti, E.; Giordano, C.; Salvatici, M.C.; Gherardini, L.; Menciassi, A.; Burchielli, S.; Cinti, C.; Salvadori, P.A. Magnetically driven nanoparticles: 18FDG-radiolabelling and positron emission tomography biodistribution study. Contrast Media Mol. Imaging 2016, 11, 561–571. [Google Scholar] [CrossRef]
- Ganta, S.; Devalapally, H.; Shahiwala, A.; Amiji, M. A review of stimuli-responsive nanocarriers for drug and gene delivery. J. Control. Release 2008, 126, 187–204. [Google Scholar] [CrossRef]
- Xin, Y.; Yin, M.; Zhao, L.; Meng, F.; Luo, L. Recent progress on nanoparticle-based drug delivery systems Tumor targeting by nanoparticles. Cancer Biol. Med. 2017, 14, 228–241. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-moreno, P.; Ortega-vinuesa, J.L.; Peula-garcía, J.M. Smart Drug-Delivery Systems for Cancer Nanotherapy Smart Drug-Delivery Systems for Cancer Nanotherapy. Curr. Drug Targets 2016, 17, 1–22. [Google Scholar]
- Cho, K.; Wang, X.; Nie, S.; Chen, Z.G.; Shin, D.M. Therapeutic Nanoparticles for Drug Delivery in Cancer. Clin. Cancer Res. 2008, 14, 1310–1317. [Google Scholar] [CrossRef] [Green Version]
- Seo, H.I.; Cheon, Y.A.; Chung, B.G. Graphene and Thermo-responsive Polymeric Nanocomposites for Therapeutic Applications. Biomed. Eng. Lett. 2016, 6, 10–15. [Google Scholar] [CrossRef]
- Deshpande, S.; Sharma, S.; Koul, V.; Singh, N. Core–Shell Nanoparticles as an E ffi cient, Sustained, and Triggered Drug-Delivery System. Am. Chem. Soc. Omega 2017, 2, 6455–6463. [Google Scholar]
- Torchilin, V.P. Micellar Nanocarriers: Pharmaceutical Perspectives. Pharm. Res. 2007, 24, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Sideratou, Z.; Agathokleous, M.; Theodossiou, T.A.; Tsiourvas, D. Functionalized Hyperbranched Polyethyleneimines as Thermosensitive Drug Delivery Nanocarriers with Controlled Transition Temperatures. Biomacromolecules 2018, 2, 315–328. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Srivastava, A.; Yu, I.; Mattiasson, B. Smart polymers: Physical forms and bioengineering applications. Prog. Polym. Sci. 2007, 32, 1205–1237. [Google Scholar] [CrossRef]
- Matanovic, M.R.; Kristl, J.; Grabnar, P.A. Thermoresponsive polymers: Insights into decisive hydrogel characteristics, mechanisms of gelation, and promising biomedical applications. Int. J. Pharm. 2014, 472, 262–275. [Google Scholar] [CrossRef]
- Tu, X.; Meng, C.; Wang, Y.; Ma, L.; Wang, B.; He, J. Fabrication of Thermosensitive Cyclic Brush Copolymer with Enhanced Therapeutic Efficacy for Anticancer Drug Delivery. Macromolecular 2018, 39, 1700744. [Google Scholar] [CrossRef]
- Yoshida, R.; Uchida, K.; Kaneko, Y.; Sakai, K.; Kikuchi, A.; Sakurai, Y.; Okano, T. Comb-type grafted hydrogels with rapid de-swelling response to temperature changes. Nature 1995, 374, 240–242. [Google Scholar] [CrossRef]
- Hrubý, M.; Šubr, V.; Kučka, J.; Kozempel, J.; Lebeda, O.; Sikora, A. Thermoresponsive polymers as promising new materials for local radiotherapy. Appl. Radiat. Isot. 2005, 63, 423–431. [Google Scholar] [CrossRef]
- Hruby, M.; Kucka, J.; Lebeda, O.; Mackova, H.; Babic, M.; Konak, C.; Studenovsky, M.; Sikora, A.; Kozempel, J.; Ulbrich, K. New bioerodable thermoresponsive polymers for possible radiotherapeutic applications. J. Control. Release 2007, 119, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Hrubý, M.; Kucka, J.; Mackova, H.; Konak, C.; Vetrik, M.; Kozempel, J.; Lebeda, O. New binary thermoresponsive polymeric system for local chemoradiotherapy. J. Appl. Polym. Sci. 2009, 111, 2220–2228. [Google Scholar] [CrossRef]
- Sedláček, O.; Černoch, P.; Kučka, J.; Konefal, R.; Štěpánek, P.; Vetrík, M.; Lodge, T.P.; Hrubý, M. Thermoresponsive Polymers for Nuclear Medicine: Which Polymer Is the Best? Langmuir 2016, 32, 6115–6122. [Google Scholar] [CrossRef] [PubMed]
- Jeong, B.; Gutowska, A. Lessons from nature: Stimuli-responsive polymers and their biomedical applications. Trends Biotechnol. 2002, 20, 305–311. [Google Scholar] [CrossRef]
- Kim, S.; Kim, J.-H.; Jeon, O.; Kwon, I.C.; Park, K. Engineered Polymers for Advanced Drug Delivery. Eur. J. Pharm. Biopharm. 2010, 71, 420–430. [Google Scholar] [CrossRef] [Green Version]
- Bodratti, A.M.; Alexandridis, P. Amphiphilic block copolymers in drug delivery: Advances in formulation structure and performance. Expert Opin. Drug Deliv. 2018, 15, 1085–1104. [Google Scholar] [CrossRef]
- Liu, A.H.; Wang, K.; Yang, C.; Huang, S.; Wang, M. Multifunctional polymeric micelles loaded with doxorubicin and poly(dithienyl-diketopyrrolopyrrole) for near-infrared light-controlled chemo-phototherapy of cancer cells. Colloids Surf. B Biointerfaces 2017, 157, 398–406. [Google Scholar] [CrossRef]
- Peralta, M.E.; Jadhav, S.A.; Magnacca, G.; Scalarone, D.; Mártire, D.O.; Parolo, M.E.; Carlos, L. Synthesis and in vitro testing of thermoresponsive polymer-grafted core-shell magnetic mesoporous silica nanoparticles for efficient controlled and targeted drug delivery. J. Colloid Interface Sci. 2019, 544, 198–205. [Google Scholar] [CrossRef]
- Talelli, M.; Hennink, W.E. Thermosensitive polymeric micelles for targeted drug delivery R eview. Nanomedicine 2011, 6, 1245–1255. [Google Scholar] [CrossRef]
- Chen, C.; Kim, T.H.; Wu, W.; Huang, C.; Wei, H. pH-Dependent, Thermosensitive Polymeric Nanocarriers for Drug Delivery to Solid Tumors. Biomaterials 2014, 34, 4501–4509. [Google Scholar] [CrossRef] [Green Version]
- Liu, B.; Yang, M.; Li, R.; Ding, Y.; Qian, X. The antitumor effect of novel docetaxel-loaded thermosensitive micelles. Eur. J. Pharm. Biopharm. 2008, 69, 527–534. [Google Scholar] [CrossRef]
- Liu, B.; Yang, M.I.; Li, X.; Qian, X.; Shen, Z.; Ding, Y.; Yu, L. Enhanced Efficiency of Thermally Targeted Taxanes Delivery in a Human Xenograft Model of Gastric Cancer. J. Pharm. Sci. 2008, 97, 3170–3181. [Google Scholar] [CrossRef] [PubMed]
- Reyes-ortega, F.; Delgado, A.V.; Scheneider, E.K.; Fernandez, B.L.C.; Iglesias, G.R. Magnetic Nanoparticles Coated with a Thermosensitive Polymer with Hyperthermia Properties. Polymers (Basel) 2018, 10, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schroffenegger, M.; Reimhult, E. Thermoresponsive Core-Shell Nanoparticles: Does Core size matter? Materials (Basel) 2018, 11, 1654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cazares-cortes, E.; Nerantzaki, M.; Wilhelm, C.; Christine, M. Magnetic Nanoparticles Create Hot Spots in Polymer Matrix for Controlled Drug Release. Nanomaterials 2018, 8, 850. [Google Scholar] [CrossRef] [Green Version]
- Shin, T.; Choi, Y.; Kim, S.; Cheon, J. Recent advances in magnetic nanoparticle-based multi-modal. Chem. Soc. Rev. 2015, 44, 4501–4516. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, H.; Yang, Y.; Xie, X.; Yang, Y.; Li, Z.; Li, Y.; Gong, W.; Yu, F.; Yang, Z.; et al. Preparation, characterization, and efficacy of thermosensitive liposomes containing paclitaxel Preparation, characterization, and efficacy of thermosensitive liposomes. Drug Deliv. 2016, 23, 1222–1231. [Google Scholar] [CrossRef] [Green Version]
- Li, P.; Han, J. Synthetic Glycopolypeptide Micelle for Targeted Drug Delivery to Hepatic Carcinoma. Polymers (Basel) 2018, 10, 611. [Google Scholar] [CrossRef] [Green Version]
- Shen, B.B.; Gao, X.C.; Yu, S.Y.; Ma, Y.; Ji, C.H. Fabrication and potential application of di-functional magnetic system: Magnetic hyperthermia therapy and drug delivery. CrystEngComm 2013, 18, 1133–1138. [Google Scholar] [CrossRef]
- Hoffman, A.S. Hydrogels for biomedical applications. Adv. Drug Deliv. Rev. 2012, 64, 18–23. [Google Scholar] [CrossRef]
- Bajpai, A.K.; Shukla, S.K.; Bhanu, S.; Kankane, S. Responsive polymers in controlled drug delivery. Prog. Polym. Sci. 2008, 33, 1088–1118. [Google Scholar] [CrossRef]
- Yin, X.; Hoffman, A.S.; Stayton, P.S. Poly(N-isopropylacrylamide-co-propylacrylic acid) copolymers that respond sharply to temperature and pH. Biomacromolecules 2006, 7, 1381–1385. [Google Scholar] [CrossRef] [PubMed]
- Canal, T.; Peppas, N.A. Correlation between mesh size and equilibrium degree of swelling of polymeric networks. J. Biomed. Mater. Res. 1989, 23, 1183–1193. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Qi, X.; Chen, Y.; Wu, Z. Thermo-sensitive hydrogels for delivering biotherapeutic molecules: A review. Saudi Pharm. J. 2019. [Google Scholar] [CrossRef]
- Arteche Pujana, M.; Pérez-Álvarez, L.; Cesteros Iturbe, L.C.; Katime, I. Biodegradable chitosan nanogels crosslinked with genipin. Carbohydr. Polym. 2013, 94, 836–842. [Google Scholar] [CrossRef]
- Turabee, M.H.; Jeong, T.H.; Ramalingam, P.; Kang, J.H.; Ko, Y.T. N,N,N-trimethyl chitosan embedded in situ Pluronic F127 hydrogel for the treatment of brain tumor. Carbohydr. Polym. 2019, 203, 302–309. [Google Scholar] [CrossRef]
- Pesoa, J.I.; Rico, M.J.; Rozados, V.R.; Scharovsky, O.G.; Luna, J.A.; Mengatto, L.N. Paclitaxel delivery system based on poly(lactide-co-glycolide) microparticles and chitosan thermo-sensitive gel for mammary adenocarcinoma treatment. J. Pharm. Pharmacol. 2018, 70, 1494–1502. [Google Scholar] [CrossRef]
- Magin, R.L.; Wright, S.M.; Niesman, M.R.; Chan, H.C.; Swartzs, H.M. Liposome Delivery of NMR Contrast Agents for Improved Tissue Imaging. Magn. Ressonance Med. 1986, 3, 440–447. [Google Scholar] [CrossRef]
- Needham, D.; Anyarambhatla, G.; Kong, G.; Dewhirst, M.W. A New Temperature-sensitive Liposome for Use with Mild Hyperthermia: Characterization and Testing in a Human Tumor Xenograft Model. Cancer Res. 2000, 60, 1197–1201. [Google Scholar]
- Frézard, F.; Mg, B.H.; Rocha, O.G.F. Lipossomas: Propriedades físico-químicas e farmacológicas, aplicações na quimioterapia à base de antimônio. Quim Nova 2005, 28, 511–518. [Google Scholar] [CrossRef] [Green Version]
- Yatvin, M.; Weinstein, J.; Dennis, W.; Blumenthal, R. Design of liposomes for enhanced local release of drugs by hyperthermia. Science 1978, 202, 1290–1293. [Google Scholar] [CrossRef] [PubMed]
- Nibu, Y.; Inoue, T.; Motoda, I. Effect of headgroup type on the miscibility of homologous phospholipids with different acyl chain lengths in hydrated bilayer. Biophys. Chem. 1995, 56, 273–280. [Google Scholar] [CrossRef]
- Arouri, A.; Mouritsen, O.G. Progress in Lipid Research Membrane-perturbing effect of fatty acids and lysolipids. Prog. Lipid Res. 2013, 52, 130–140. [Google Scholar] [CrossRef] [PubMed]
- Sandstro, M.C.; Mayer, L.D.; Edwards, K. Effects of lipid segregation and lysolipid dissociation on drug release from thermosensitive liposomes. J. Control. Release 2005, 107, 131–142. [Google Scholar] [CrossRef]
- Limmer, S.; Hahn, J.; Schmidt, R.; Wachholz, K.; Zengerle, A.; Lechner, K.; Eibl, H.; Issels, R.D.; Hossann, M.; Lindner, L.H. Gemcitabine Treatment of Rat Soft Tissue Sarcoma with Phosphatidyldiglycerol-Based Thermosensitive Liposomes. Pharm. Res. 2014, 31, 2276–2286. [Google Scholar] [CrossRef]
- Peller, M.; Willerding, L.; Limmer, S.; Hossann, M.; Dietrich, O.; Ingrisch, M.; Sroka, R.; Lindner, L.H. Surrogate MRI markers for hyperthermia-induced release of doxorubicin from thermosensitive liposomes in tumors. J. Control. Release 2016, 237, 138–146. [Google Scholar] [CrossRef]
- Willerding, L.; Limmer, S.; Hossann, M.; Zengerle, A.; Wachholz, K.; Timo, L.M.; Ten, H.; Koning, G.A.; Sroka, R.; Lindner, L.H.; et al. Method of hyperthermia and tumor size in fl uence effectiveness of doxorubicin release from thermosensitive liposomes in experimental tumors. J. Control. Release 2016, 222, 47–55. [Google Scholar] [CrossRef]
- Lokerse, W.J.M.; Bolkestein, M.; Dalm, S.U.; Eggermont, A.M.M.; De Jong, M.; Grüll, H.; Koning, G.A. Comparing the therapeutic potential of thermosensitive liposomes and hyperthermia in two distinct subtypes of breast cancer. J. Control. Release 2017, 258, 34–42. [Google Scholar] [CrossRef]
- Rizzitelli, S.; Giustetto, P.; Faletto, D.; Castelli, D.D.; Aime, S.; Terreno, E. The release of Doxorubicin from liposomes monitored by MRI and triggered by a combination of US stimuli led to a complete tumor regression in a breast cancer mouse model. J. Control. Release 2016, 230, 57–63. [Google Scholar] [CrossRef] [Green Version]
- Rizzitelli, S.; Giustetto, P.; Cutrin, J.C.; Castelli, D.D.; Boffa, C.; Ruzza, M.; Menchise, V.; Molinari, F.; Aime, S.; Terreno, E. Sonosensitive theranostic liposomes for preclinical in vivo MRI-guided visualization of doxorubicin release stimulated by pulsed low intensity non-focused ultrasound. J. Control. Release 2015, 202, 21–30. [Google Scholar] [CrossRef]
- Negussie, A.H.; Yarmolenko, P.S.; Partanen, A.; Ranjan, A.; Jacobs, G.; Woods, D.; Bryant, H.; Thomasson, D.; Mark, W.; Wood, B.J.; et al. Formulation and characterisation of magnetic resonance imageable thermally sensitive liposomes for use with magnetic resonance- guided high intensity focused ultrasound. Int. J. Hyperth. 2011, 27, 140–155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Smet, M.; Heijman, E.; Langereis, S.; Hijnen, N.M.; Grüll, H. Magnetic resonance imaging of high intensity focused ultrasound mediated drug delivery from temperature-sensitive liposomes: An in vivo proof-of-concept study. J. Control. Release 2011, 150, 102–110. [Google Scholar] [CrossRef] [PubMed]
- Staruch, R.M.; Hynynen, K.; Chopra, R. Hyperthermia-mediated doxorubicin release from thermosensitive liposomes using MR-HIFU: Therapeutic effect in rabbit Vx2 tumours. Int. J. Hyperth. 2015, 31, 118–133. [Google Scholar] [CrossRef] [PubMed]
- Hijnen, N.; Kneepkens, E.; De Smet, M.; Langereis, S.; Heijman, E.; Grüll, H. Thermal combination therapies for local drug delivery by magnetic resonance-guided high-intensity focused ultrasound. Proc. Natl. Acad. Sci. USA 2017, 114, 4802–4811. [Google Scholar] [CrossRef] [Green Version]
- Singh, P.; Pandit, S.; Mokkapati, V.R.S.S.; Garg, A.; Ravikumar, V.; Mijakovic, I. Gold nanoparticles in diagnostics and therapeutics for human cancer. Int. J. Mol. Sci. 2018, 19, 1917. [Google Scholar] [CrossRef]
- U.S. National Librery of Medicine. Pilot Study of AuroLase(tm) Therapy in Refractory and/or Recurrent Tumors of the Head and Neck. Available online: https://clinicaltrials.gov/ct2/show/study/NCT00848042?term=Aurolase&draw=2&rank=1 (accessed on 6 November 2019).
Hyperthermia and Chemotherapy | ||||
Drug | Target | Clinical Trial | Response | Reference |
Etoposide, ifosfamide, and doxorubicin | High-risk soft tissue sarcoma | Randomized phase III multicenter study | Local control, overall survival and response rate were better with HT+CT | [30] |
Cisplatin and gemcitabine | Pancreatic carcinoma | Retrospective clinical study | HT+CT was well tolerated, and had an acceptable survival profile | [31] |
Cisplatin and irinotecan | Malignant mesothelioma of the pleura | Case report | Increase in survival without any disease for more than 7 years | [32] |
Nimustine | High-grade glioma | Phase I clinical study | HT+CT was tolerable in patients with relapse of high-grade gliomas | [33] |
Trabectedin | Soft tissue sarcoma | Randomized clinical trial | High feasibility, no uncommon side effects, did not increase toxicity, and progression-free survival | [23] |
Hyperthermia and Radiotherapy | ||||
Drug | Target | Clinical Trial | Response | Reference |
- | Cervical carcinoma | Long-term result after the 12-year segment | Local control and survival were better with HT+RT | [34] |
- | Bladder, cervix, and rectum | Prospective, randomized, multicenter study | Complete response rates, local control, and survival were better with HT+RT | [26] |
- | Breast cancer | Toxicity study | HT+RT was more effective for locally advanced or recurrent breast cancer than RT alone | [35] |
Thermosensitive Micelles | |||||
---|---|---|---|---|---|
Composition | HT | Drug | Target | Response | Ref. |
Poly(N-isopropylacrylamide-co-acrylamide)-b-poly(DL-lactide) | Water bath | Docetaxel | Lung cancer | Higher antitumor efficacy in mice treated with docetaxel-loaded micelles accompanied by hyperthermia | [76] |
Poly(N-isopropylacrylamide-co-acrylamide)-b-poly(DL-lactide) | Water bath | Docetaxel and Paclitaxel | Gastric Cancer | Weight growth percentage inhibition of more than 80% | [77] |
P(FAA-NIPA-co-AAm-co-ODA) and P(FPA-NIPA-co-AAm-co-ODA) | Water bath | Paclitaxel | Lung cancer | Increased accumulation of paclitaxel at tumor sites, local drug concentration was greatly enhanced | [75] |
Thermosensitive Liposomes | |||||
---|---|---|---|---|---|
Composition | HT | Drug | Target | Response | Ref. |
DPPC/DSPC/DSPE–PEG2000 70/25/5 | Water bath | DOX | Breast cancer | Significant increase in tumor response to liposome and HT treatment | [103] |
DPPC/DSPC/DPPG2 50/20/30 | Laser light | DOX | Soft tissue sarcoma | High selective DOX uptake and increase of DOX concentration in the heated tumor tissue | [101] |
DPPC/DSPC/DPPG2 50/20/30 | Laser light | DOX | Soft tissue sarcoma | Effective DOX delivery by liposome found in the heated tumors in comparison with the non-heated tumors | [102] |
DPPC/DSPC/DPPG2 50/20/30 | HIFU | Gemcitabine | Soft tissue sarcoma | Significant improvement in tumor growth delay | [100] |
DPPC/MSPC/DSPE–PEG2000/DSPG 83/3/10/4 | Water bath | Paclitaxel | Lung cancer | Tumor growth suppression, compared with non-temperature-sensitive liposome and free drug | [82] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pereira Gomes, I.; Aparecida Duarte, J.; Chaves Maia, A.L.; Rubello, D.; Townsend, D.M.; Branco de Barros, A.L.; Leite, E.A. Thermosensitive Nanosystems Associated with Hyperthermia for Cancer Treatment. Pharmaceuticals 2019, 12, 171. https://doi.org/10.3390/ph12040171
Pereira Gomes I, Aparecida Duarte J, Chaves Maia AL, Rubello D, Townsend DM, Branco de Barros AL, Leite EA. Thermosensitive Nanosystems Associated with Hyperthermia for Cancer Treatment. Pharmaceuticals. 2019; 12(4):171. https://doi.org/10.3390/ph12040171
Chicago/Turabian StylePereira Gomes, Isabela, Jaqueline Aparecida Duarte, Ana Luiza Chaves Maia, Domenico Rubello, Danyelle M. Townsend, André Luís Branco de Barros, and Elaine Amaral Leite. 2019. "Thermosensitive Nanosystems Associated with Hyperthermia for Cancer Treatment" Pharmaceuticals 12, no. 4: 171. https://doi.org/10.3390/ph12040171
APA StylePereira Gomes, I., Aparecida Duarte, J., Chaves Maia, A. L., Rubello, D., Townsend, D. M., Branco de Barros, A. L., & Leite, E. A. (2019). Thermosensitive Nanosystems Associated with Hyperthermia for Cancer Treatment. Pharmaceuticals, 12(4), 171. https://doi.org/10.3390/ph12040171