Power Without Wires: Advancing KHz, MHz and Microwave Rectennas for Wireless Power Transfer with a Focus on India-Based R&D
Abstract
1. Introduction
- Synthesize near-field WPT advancements from India, with focus on misalignment-tolerant magnetic coupling systems, adaptive power electronics, and applications in electric vehicle charging and biomedical devices.
- Analyze far-field WPT contributions, including rectenna designs with enhanced angular coverage, metasurface-assisted focusing elements, and implementations for IoT and sensor networks.
- Examine emerging convergence between near-field and far-field approaches within the Indian research context, identifying hybrid architectures and adaptive interfaces.
- Quantify performance metrics from the literature to establish benchmarks and reveal trends specific to the Indian research ecosystem.
- Identify persistent research gaps and propose a research agenda aligned with India’s sustainable development objectives and technological self-reliance goals.
2. Methodology
2.1. Scope and Research Questions
- RQ1 What are the dominant technological themes and innovation patterns in Indian near-field and far-field WPT research?
- RQ2 How do Indian contributions compare with global benchmarks in terms of performance metrics and application focus?
- RQ3 What research gaps and opportunities define the future trajectory of WPT development within the Indian ecosystem?
2.2. Search Strategy and Source Databases
2.3. Screening and Selection Criteria
2.4. Data Extraction and Synthesis Framework
3. Developments in High-Frequency Near-Field Charging Systems (KHz–MHz Range)
3.1. Circuit-Level Modeling and Mutual Inductance Estimation
3.2. Advancements in Power Electronic Converter Systems
3.3. Magnetic Field Forming and Misalignment Compensation Techniques
3.4. Synthesis
4. Microwave Rectennas
4.1. Overview and Application Focus
4.2. Novel Rectenna Designs
4.3. Angular Misalignment Mitigation

4.4. Metasurface-Assisted Lens Based Rectenna
4.5. Scalable Rectenna Systems for Adaptive WPT
5. Future Research Directions and Strategic Agenda
5.1. Near-Term Priorities (1–3 Years)
5.2. Medium-Term Directions (3–5 Years)
5.3. Long-Term Vision (5+ Years)
5.4. Cross-Cutting Enablers and Infrastructure Development
5.5. Implementation Roadmap and Stakeholder Roles
5.6. Alignment with National Priorities
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mahesh, A.; Chokkalingam, B.; Mihet-Popa, L. Inductive Wireless Power Transfer Charging for Electric Vehicles—A Review. IEEE Access 2021, 9, 137667–137713. [Google Scholar] [CrossRef]
- Chittoor, P.K.; Chokkalingam, B.; Mihet-Popa, L. A Review on UAV Wireless Charging: Fundamentals, Applications, Charging Techniques and Standards. IEEE Access 2021, 9, 69235–69266. [Google Scholar] [CrossRef]
- Mukherjee, D.; Rainu, S.K.; Singh, N.; Mallick, D. A Miniaturized, Low-Frequency Magnetoelectric Wireless Power Transfer System for Powering Biomedical Implants. IEEE Trans. Biomed. Circuits Syst. 2024, 18, 438–450. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, K.; Kumar, S.; Kumar, P.; Tripathi, C.C. Highly Efficient 2.4 and 5.8 GHz Dual-Band Rectenna for Energy Harvesting Applications. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 2637–2641. [Google Scholar] [CrossRef]
- Chandravanshi, S.; Katare, K.K.; Akhtar, M.J. A Flexible Dual-Band Rectenna with Full Azimuth Coverage. IEEE Access 2021, 9, 27476–27484. [Google Scholar] [CrossRef]
- Bharadwaj, A.; Srivastava, V.K.; Sharma, A.; Reddy, C. A Novel Trapezoidal Multi-Coil Antenna for Wireless Charging of Electric Vehicles. In Proceedings of the 2020 IEEE 15th International Conference on Industrial and Information Systems (ICIIS), Rupnagar, India, 26–28 November 2020; pp. 13–17. [Google Scholar] [CrossRef]
- Bharadwaj, A.; Sharma, A.; Reddy, C.C. A Multi-Turn Coil Antenna with Nonuniform Clustered Turns Optimized Using Q-Assisted MMSE Procedure to Enhance Misalignment Tolerance in WPT Systems. IEEE Trans. Antennas Propag. 2022, 70, 5302–5311. [Google Scholar] [CrossRef]
- Chandravanshi, S.; Sarma, S.S.; Akhtar, M.J. Design of Triple Band Differential Rectenna for RF Energy Harvesting. IEEE Trans. Antennas Propag. 2018, 66, 2716–2726. [Google Scholar] [CrossRef]
- Arrawatia, M.; Baghini, M.S.; Kumar, G. Broadband Bent Triangular Omnidirectional Antenna for RF Energy Harvesting. IEEE Antennas Wirel. Propag. Lett. 2016, 15, 36–39. [Google Scholar] [CrossRef]
- Wireless Power Consortium. Available online: https://www.wirelesspowerconsortium.com/ (accessed on 23 December 2025).
- AirFuel Alliance. AirFuel Alliance. Available online: https://airfuel.org/ (accessed on 23 December 2025).
- Patil, D.D.; Subramanian, K.S. Additively Manufactured and Liquid Metal-Sprayed Rectenna for Energy-Harvesting Application. IEEE Trans. Components Packag. Manuf. Technol. 2022, 12, 2013–2018. [Google Scholar] [CrossRef]
- Kumar Bairappaka, S.; Ghosh, A.; Kaiwartya, O.; Aljaidi, M.; Cao, Y.; Kharel, R. A Novel Design of Broadband Circularly Polarized Rectenna with Enhanced Gain for Energy Harvesting. IEEE Access 2024, 12, 65583–65594. [Google Scholar] [CrossRef]
- Varma, D.S.; Ram, G.; Kumar, G.A. Design of Integrated Simultaneous Information and Power Receiver for WIPT Application. IEEE Microw. Wirel. Technol. Lett. 2023, 33, 487–490. [Google Scholar] [CrossRef]
- Reghunadhan, G.; Saha, C. A Dual-Port Grid Array Rectenna for Third-Harmonic Feedback Enabled Wireless Power Transfer Systems. IEEE Antennas Wirel. Propag. Lett. 2025, 24, 2612–2616. [Google Scholar] [CrossRef]
- Raghav, K.S.; Paliwal, R.; Singhal, N.; Kumar, M.S.; Bansal, D. Design and Development of Self-Sustained RF Energy Harvested Rectenna for Sensor Node Application. IEEE Trans. Instrum. Meas. 2025, 74, 8003012. [Google Scholar] [CrossRef]
- Malav, V.K.; Sharma, A. μWSense: A Self-Sustainable Microwave-Powered Battery-Less Wireless Sensor Node for Temperature and Humidity Monitoring. IEEE Sens. Lett. 2024, 8, 6013904. [Google Scholar] [CrossRef]
- Halimi, M.A.; Khan, T.; Koul, S.K.; Rengarajan, S.R. A Dual-Band Rectifier Using Half-Wave Transmission Line Matching for 5G and Wi-Fi Bands RFEH/MPT Applications. IEEE Microw. Wirel. Technol. Lett. 2023, 33, 74–77. [Google Scholar] [CrossRef]
- Kodeeswaran, S.; Gayathri, M.N.; Kannabhiran, A.; Williamson, S.S. Design of a Static Capacitive Power Transfer System with Six-Plate Coupler for Electric Vehicle Wireless Charging. IEEE Trans. Transp. Electrif. 2024, 10, 3927–3939. [Google Scholar] [CrossRef]
- Varghese, B.J.; Sealy, K.; Gupta, S.; Pantic, Z. Experimental and Usability Evaluation of Wireless Power Devices Based on the AirFuel Alliance Magnetic Resonance Standard. In Proceedings of the 2021 IEEE Applied Power Electronics Conference and Exposition (APEC), Phoenix, AZ, USA, 14–17 June 2021; pp. 2586–2592. [Google Scholar] [CrossRef]
- Srivastava, V.K.; Ahmad, A.; Sharma, A. A Machine-Learning-Assisted Localization and Magnetic Field Forming for Wireless Powering of Biomedical Implant Devices. IEEE Trans. Antennas Propag. 2024, 72, 8590–8599. [Google Scholar] [CrossRef]
- Bharadwaj, A.; Sharma, A.; Reddy, C.C. An Unconventional Measurement Technique to Estimate Power Transfer Efficiency in Series–Series Resonant WPT System Using S-Parameters. IEEE Trans. Instrum. Meas. 2022, 71, 8004009. [Google Scholar] [CrossRef]
- Ullah, M.A.; Keshavarz, R.; Abolhasan, M.; Lipman, J.; Esselle, K.P.; Shariati, N. A Review on Antenna Technologies for Ambient RF Energy Harvesting and Wireless Power Transfer: Designs, Challenges and Applications. IEEE Access 2022, 10, 17231–17267. [Google Scholar] [CrossRef]
- Khan, W.A.; Raad, R.; Tubbal, F.; Theoharis, P.I.; Iranmanesh, S. RF Energy Harvesting Using Multidirectional Rectennas: A Review. IEEE Sens. J. 2024, 24, 18762–18790. [Google Scholar] [CrossRef]
- Eteng, A.A.; Goh, H.H.; Rahim, S.K.A.; Alomainy, A. A Review of Metasurfaces for Microwave Energy Transmission and Harvesting in Wireless Powered Networks. IEEE Access 2021, 9, 27518–27539. [Google Scholar] [CrossRef]
- Camarchia, V.; Quaglia, R.; Piacibello, A.; Nguyen, D.P.; Wang, H.; Pham, A.V. A Review of Technologies and Design Techniques of Millimeter-Wave Power Amplifiers. IEEE Trans. Microw. Theory Tech. 2020, 68, 2957–2983. [Google Scholar] [CrossRef]
- Gayen, S.; Biswas, B.; Karmakar, A. The quest for a miniaturized antenna in the wireless capsule endoscopy application: A review. Int. J. Microw. Wirel. Technol. 2021, 14, 1195–1205. [Google Scholar] [CrossRef]
- Wagih, M.; Weddell, A.S.; Beeby, S. Rectennas for Radio-Frequency Energy Harvesting and Wireless Power Transfer: A Review of Antenna Design [Antenna Applications Corner]. IEEE Antennas Propag. Mag. 2020, 62, 95–107. [Google Scholar] [CrossRef]
- Ramalingam, L.; Mariappan, S.; Parameswaran, P.; Rajendran, J.; Nitesh, R.S.; Kumar, N.; Nathan, A.; Yarman, B.S. The Advancement of Radio Frequency Energy Harvesters (RFEHs) as a Revolutionary Approach for Solving Energy Crisis in Wireless Communication Devices: A Review. IEEE Access 2021, 9, 106107–106139. [Google Scholar] [CrossRef]
- Wagih, M.; Weddell, A.S.; Beeby, S. Millimeter-Wave Power Harvesting: A Review. IEEE Open J. Antennas Propag. 2020, 1, 560–578. [Google Scholar] [CrossRef]
- Saifullah, Y.; He, Y.; Boag, A.; Yang, G.M.; Xu, F. Recent Progress in Reconfigurable and Intelligent Metasurfaces: A Comprehensive Review of Tuning Mechanisms, Hardware Designs, and Applications. Adv. Sci. 2022, 9, 2203747. [Google Scholar] [CrossRef]
- Ramadoss, V.; Chandrasekar, B.; Ahmed, M.; Savio A, D.; Rajamanickam, N.; Alghamdi, T.A.H. Research Insights on Recent Power Converter Topologies and Control Strategies for Wireless EV Chargers: A Comprehensive Study. IEEE Open J. Power Electron. 2024, 5, 1641–1658. [Google Scholar] [CrossRef]
- Purushothaman, D.; Narayanamoorthi, R.; Elrashidi, A.; Kotb, H. A Comprehensive Review on Single-Stage WPT Converter Topologies and Power Factor Correction Methodologies in EV Charging. IEEE Access 2023, 11, 135529–135555. [Google Scholar] [CrossRef]
- Halimi, M.A.; Khan, T.; Surender, D.; Nasimuddin, N.; Rengarajan, S.R. Dielectric Resonator Antennas for RF Energy-Harvesting/Wireless Power Transmission Applications: A state-of-the-art review. IEEE Antennas Propag. Mag. 2024, 66, 34–45. [Google Scholar] [CrossRef]
- Halimi, M.A.; Khan, T.; Nasimuddin; Kishk, A.A.; Antar, Y.M. Rectifier Circuits for RF Energy Harvesting and Wireless Power Transfer Applications: A Comprehensive Review Based on Operating Conditions. IEEE Microw. Mag. 2023, 24, 46–61. [Google Scholar] [CrossRef]
- Surender, D.; Khan, T.; Talukdar, F.A.; Antar, Y.M. Rectenna Design and Development Strategies for Wireless Applications: A review. IEEE Antennas Propag. Mag. 2022, 64, 16–29. [Google Scholar] [CrossRef]
- R, G.; Saha, C.; Antar, Y.M.M. An Insight to Compact Rectenna Architectures: Potential Battery Alternatives. IEEE Microw. Mag. 2024, 25, 43–55. [Google Scholar] [CrossRef]
- Khan, S.R.; Pavuluri, S.K.; Desmulliez, M.P.Y. Accurate Modeling of Coil Inductance for Near-Field Wireless Power Transfer. IEEE Trans. Microw. Theory Tech. 2018, 66, 4158–4169. [Google Scholar] [CrossRef]
- Yadav, P.; Veerachary, M. Auxiliary Coil Based Square Coupler for Wireless Power Transfer System. IEEE Trans. Ind. Appl. 2022, 58, 4980–4993. [Google Scholar] [CrossRef]
- Nakkeeran, R.; Bharatiraja, C. A Sensing Coil in Inductive EV Charging Systems for Estimating the Coupling Coefficient and Receiver Resonant Frequency. In Proceedings of the 2024 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), Mangalore, India, 18–21 December 2024; pp. 1–6. [Google Scholar] [CrossRef]
- Bharadwaj, A.; Sharma, A.; Reddy, C.C. Analytical Framework of S-Parameter-Based Efficiency for Secondary-Parallel Compensation WPT System to Authenticate Data Using VNA. IEEE Trans. Instrum. Meas. 2023, 72, 8001010. [Google Scholar] [CrossRef]
- Kushwaha, B.K.; Rituraj, G.; Kumar, P. A Subdomain Analytical Model of Coil System with Magnetic Shields of Finite Dimensions and Finite Permeability for Wireless Power Transfer Systems. IEEE Trans. Magn. 2020, 56, 8400511. [Google Scholar] [CrossRef]
- Kushwaha, B.K.; Rituraj, G.; Kumar, P. 3-D Analytical Model for Computation of Mutual Inductance for Different Misalignments with Shielding in Wireless Power Transfer System. IEEE Trans. Transp. Electrif. 2017, 3, 332–342. [Google Scholar] [CrossRef]
- Bharadwaj, A.; Makhetha, M.J. Integrated Resonant Track for High-Efficiency Wireless Power Transfer in ISM Bands. In Proceedings of the 2025 IEEE Wireless Power Technology Conference and Expo (WPTCE), Rome, Italy, 3–6 June 2025; pp. 1–5. [Google Scholar] [CrossRef]
- Venkatesan, M.; Narayanamoorthi, R.; AboRas, K.M.; Emara, A. Efficient Bidirectional Wireless Power Transfer System Control Using Dual Phase Shift PWM Technique for Electric Vehicle Applications. IEEE Access 2024, 12, 27739–27755. [Google Scholar] [CrossRef]
- Ramakrishnan, V.; Savio A, D.; Shorfuzzaman, M.; Mohammed Abdelfattah, W. An Enhanced Vehicle-to-Vehicle Wireless Power Transfer System for Electric Vehicle Applications Using a Reconfigurable Coil Approach. IEEE Access 2025, 13, 9931–9941. [Google Scholar] [CrossRef]
- Yakala, R.K.; Nayak, D.P.; Pramanick, S.K. Input Reactive Power Control of Bidirectional WPT to Improve System Efficiency. IEEE Trans. Ind. Appl. 2024, 60, 5813–5824. [Google Scholar] [CrossRef]
- Bharatiraja, C.; Mahesh, A.; Lehman, B. Power Electronic Converters in Inductive Wireless Charging Applications for Electric Transportation. IEEE J. Emerg. Sel. Top. Power Electron. 2025, 13, 2647–2683. [Google Scholar] [CrossRef]
- Vardani, B.; Tummuru, N.R. A Single-Stage Bidirectional Inductive Power Transfer System with Closed-Loop Current Control Strategy. IEEE Trans. Transp. Electrif. 2020, 6, 948–957. [Google Scholar] [CrossRef]
- Prasad, K.K.; Agarwal, V. Design Recommendations Considering Charging Pads’ Self-Inductance Variation with LCC–S and LCC–LCC Compensation Based IPT Chargers in Low Clearance EVs. IEEE Trans. Transp. Electrif. 2024, 10, 1758–1770. [Google Scholar] [CrossRef]
- Sharma, A.; Singh, G.; Bhatnagar, D.; Garcia Zuazola, I.J.; Perallos, A. Magnetic field forming Using Planar Multicoil Antenna to Generate Orthogonal H-Field Components. IEEE Trans. Antennas Propag. 2017, 65, 2906–2915. [Google Scholar] [CrossRef]
- Reddy, G.K.; Mishra, D.; Devi, L.N. Optimal Relay Coil Placement in Magnetic Resonant Coupling-Based Power Transfer. IEEE Commun. Lett. 2021, 25, 2874–2878. [Google Scholar] [CrossRef]
- Sharma, A.; Bharadwaj, A.; Srivastava, V.K. An Analytical Framework to Design Planar Transmitting Array Antennas to Mitigate Lateral Misalignment in Wireless Power Transfer Systems. IEEE Trans. Antennas Propag. 2021, 69, 5559–5569. [Google Scholar] [CrossRef]
- Bharadwaj, A.; Srivastava, V.K.; Sharma, A.; Reddy, C.C. A Switchable Multicoil Antenna with Booster Coil to Improve Coverage in WPT Systems. IEEE Trans. Antennas Propag. 2022, 70, 2490–2498. [Google Scholar] [CrossRef]
- Bharadwaj, A.; Sharma, A.; Chandupatla, C.R. A Switched Modular Multi-Coil Array Transmitter Pad with Coil Rectenna Sensors to Improve Lateral Misalignment Tolerance in Wireless Power Charging of Drone Systems. IEEE Trans. Intell. Transp. Syst. 2023, 24, 2010–2023. [Google Scholar] [CrossRef]
- Srivastava, V.K.; Sharma, A.; Bharadwaj, A. A Planar Distributed Multicoil Antenna to Generate 3-D Ellipsoidally Polarized H-Field for Angular Misalignment Tolerant WPT System. IEEE Trans. Antennas Propag. 2022, 70, 2969–2978. [Google Scholar] [CrossRef]
- Srivastava, V.K.; Sharma, A.; Bharadwaj, A. A Magnetic Resonance Coupling Based Touchless Pad for Human-Computer Interfacing. In Proceedings of the 2020 IEEE 15th International Conference on Industrial and Information Systems (ICIIS), Rupnagar, India, 26–28 November 2020; pp. 601–605. [Google Scholar] [CrossRef]
- Bharadwaj, A.; Srivastava, V.K.; Sharma, A.; Reddy, C.C. A Tilted-Orthogonal Receiver Coil Antenna to Improve Misalignment Tolerance in WPT Systems. IEEE Trans. Antennas Propag. 2022, 70, 11434–11441. [Google Scholar] [CrossRef]
- Srivastava, V.K.; Sharma, A. Optimized 3-D Polarized H-Field Forming for Orientation-Insensitive Wireless Power Transfer Systems. IEEE Trans. Antennas Propag. 2021, 69, 4999–5007. [Google Scholar] [CrossRef]
- Srivastava, V.K.; Sharma, A. Switched Polarized H-Field Forming Using a Planar Switchable Double-Dumbbell Coil Antenna for Orientation-Oblivion Wireless Power Transfer. IEEE Trans. Antennas Propag. 2022, 70, 4234–4242. [Google Scholar] [CrossRef]
- Srivastava, V.K.; Sharma, A. A Planar Switching Integrated Quadrant Coil Antenna to Form Widespread Switched Polarized H-Field for Misalignment Resilient WPT System. IEEE Trans. Antennas Propag. 2022, 70, 10294–10303. [Google Scholar] [CrossRef]
- Sharma, A.; Srivastava, V.K. A Switched Planar Multicoil Transmitter Antenna Designed with Nonuniform H-Field Forming for Small Device Localization. IEEE Trans. Antennas Propag. 2022, 70, 10261–10269. [Google Scholar] [CrossRef]
- Lu, Y.; Ma, D.B. Wireless power transfer system architectures for portable or implantable applications. Energies 2016, 9, 1087. [Google Scholar] [CrossRef]
- Shinoda, R.; Tomita, K.; Hasegawa, Y.; Ishikuro, H. Voltage-boosting wireless power delivery system with fast load tracker by ΔΣ-modulated sub-harmonic resonant switching. In Proceedings of the 2012 IEEE International Solid-State Circuits Conference, San Francisco, CA, USA, 19–23 February 2012; IEEE: Piscataway, NJ, USA; pp. 288–290.
- Tomita, K.; Shinoda, R.; Kuroda, T.; Ishikuro, H. 1-W 3.3–16.3-V boosting wireless power transfer circuits with vector summing power controller. IEEE J. Solid-State Circuits 2012, 47, 2576–2585. [Google Scholar] [CrossRef]
- Kumar Malav, V.; Sharma, A. A Miniaturized Coupler-Integrated Rectenna Element to Eliminate Hybrid-Coupler Circuit for Polarization Insensitive Wireless Power Transmission. IEEE Trans. Microw. Theory Tech. 2025, 73, 2453–2460. [Google Scholar] [CrossRef]
- Surender, D.; Halimi, M.A.; Khan, T.; Talukdar, F.A.; Antar, Y.M.M. A 90° Twisted Quarter-Sectored Compact and Circularly Polarized DR-Rectenna for RF Energy Harvesting Applications. IEEE Antennas Wirel. Propag. Lett. 2022, 21, 1139–1143. [Google Scholar] [CrossRef]
- Malav, V.K.; Sharma, A. Analytical Formulation of Rectenna System Performance and Fully Integrated Design for Polarization Insensitive Wireless Power Transmission. IEEE Trans. Microw. Theory Tech. 2024, 72, 5014–5026. [Google Scholar] [CrossRef]
- Patil, D.D.; Subramanian, K.S.; Pradhan, N.C. 3-D-Printed Dual-Band Rectenna System for Green IoT Application. IEEE Trans. Circuits Syst. II Express Briefs 2023, 70, 2864–2868. [Google Scholar] [CrossRef]
- Gupta, S.K.; Sharma, A. Octa-Port Dual-Polarized Antenna/Rectenna for MIMO Simultaneous Wireless Information and Power Transfer (SWIPT). IEEE Microw. Wirel. Technol. Lett. 2025, 35, 99–102. [Google Scholar] [CrossRef]
- Pathak, D.; G, S.V.; Dutta, A. A Compact and Efficient RF Rectifier Using Series–Parallel LC Network for UHF Battery-Less RFIDs. IEEE Sens. Lett. 2024, 8, 2501404. [Google Scholar] [CrossRef]
- Kumar, M.; Kumar, S.; Sharma, A. An Analytical Framework of Multisector Rectenna Array Design for Angular Misalignment Tolerant RF Power Transfer Systems. IEEE Trans Microw Theory Tech. 2022, 71, 1835–1847. [Google Scholar] [CrossRef]
- Kumar, M.; Kumar, S.; Sharma, A. A Compact 3-D Multisector Orientation Insensitive Wireless Power Transfer System. IEEE Microw. Wirel. Compon. Lett. 2022, 33, 363–366. [Google Scholar] [CrossRef]
- Prajapat, P.; R, A.K.; R, G.; Saha, C. Near-Omnidirectional 3D Rectenna Array for Ambient Microwave Energy Harvesting. In Proceedings of the 2021 IEEE Indian Conference on Antennas and Propagation (InCAP), Jaipur, India, 13–16 December 2021; pp. 747–749. [Google Scholar] [CrossRef]
- Sood, D.; Kumar, M.; Singh Ubhi, J. A DC Combining-Free Miniaturized Mirror-Like Rectenna System with Full-Wave Rectification for Robust Wireless Power Transfer in IoT at 2.45 GHz. IEEE Microw. Wirel. Technol. Lett. 2025, 35, 448–451. [Google Scholar] [CrossRef]
- Kumar, M.; Sharma, A. A Compact Planar Multisector Rectenna Array with Full-Wave Rectification for 3D Uniform Wireless Powering of IoT nodes. IEEE Trans. Antennas Propag. 2025, 73, 3470–3480. [Google Scholar] [CrossRef]
- Kumar, S.; Kumar, M.; Sharma, A. A Compact Stacked Multisector Near-Isotropic Coverage Rectenna Array System for IoT Applications. IEEE Microw. Wirel. Technol. Lett. 2024, 34, 123–126. [Google Scholar] [CrossRef]
- Vinnakota, S.S.; Kumari, R.; Meena, H.; Majumder, B. Rectifier Integrated Multibeam Luneburg Lens Employing Artificial Dielectric as a Wireless Power Transfer Medium at Mm Wave Band. IEEE Photonics J. 2021, 13, 5500314. [Google Scholar] [CrossRef]
- Majumder, B.; Vinnakota, S.S.; Sreekavya, M.K.; Ghosh, B. Microstrip Fed All Metal Lens Antenna—As a Power Transfer Medium for 5G Application. In Proceedings of the 2023 IEEE Microwaves, Antennas, and Propagation Conference (MAPCON), Ahmedabad, India, 11–14 December 2023; pp. 1–5. [Google Scholar] [CrossRef]
- Majumder, B.; Vinnakota, S.S.; Upadhyay, S.; Kandasamy, K. Dielectric Metasurface Inspired Directional Multi-Port Luneburg Lens as a Medium for 5G Wireless Power Transfer—A Design Methodology. IEEE Photonics J. 2022, 14, 5526810. [Google Scholar] [CrossRef]
- Majumder, B.; Vinnakota, S.S.; Madhusudhan, R.; Krishnamoorthy, K. Beam Switchable Compact Retroreflector Based on Dielectric Based Metasurface. In Proceedings of the 2023 IEEE 11th Asia-Pacific Conference on Antennas and Propagation (APCAP), Guangzhou, China, 22–24 November 2023; Volume 1, pp. 1–2. [Google Scholar] [CrossRef]
- Kumar, M.; Kumar, S.; Bhadauria, A.; Sharma, A. A Planar Integrated Rectenna Array with 3D-Spherical DC Coverage for Orientation-Tolerant Wireless Power Transfer Enabled IoT Sensor Nodes. IEEE Trans. Antennas Propag. 2022, 71, 1285–1294. [Google Scholar] [CrossRef]
- Kumar, M.; Kumar, S.; Sharma, A. A Planar Orbicular Rectenna Array System with 3D Uniform Coverage for Wireless Powering of IoT Nodes. IEEE Trans. Microw. Theory Techn. 2022, 71, 1366–1373. [Google Scholar] [CrossRef]
- Kumar, M.; Kumar, S.; Sharma, A.; Malav, V.K.; Rattanpal, P. An Orthogonally Polarized Multibeam Rectenna System to Imitate Isotropic DC Pattern for Orientation-Insensitive Microwave Power Delivery. IEEE Trans. Components Packag. Manuf. Technol. 2024, 14, 659–668. [Google Scholar] [CrossRef]
- Vinnakota, S.S.; Kumari, R.; Majumder, B. Metasurface-Assisted Broadband Compact Dual-Polarized Dipole Antenna for RF Energy Harvesting. IEEE Antennas Wirel. Propag. Lett. 2023, 22, 1912–1916. [Google Scholar] [CrossRef]
- Vinnakota, S.S.; Kumari, R.; Majumder, B. Dual-polarized high gain resonant cavity antenna for radio frequency energy harvesting. Int. J. RF Microw. Comput.-Aided Eng. 2019, 29, 22003. [Google Scholar] [CrossRef]
- Vinnakota, S.S.; Kumari, R.; Majumder, B.; Abbasi, Q.H. Numerical demonstration of a dispersion engineered metallic metasurface assisted mm-wave wireless sensor. Opt. Contin. 2022, 1, 1795–1810. [Google Scholar] [CrossRef]
- Kumar, M.; Kumar, S.; Jain, S.; Sharma, A. A Plug-in Type Integrated Rectenna Cell for Scalable RF Battery Using Wireless Energy Harvesting System. IEEE Microw. Wirel. Technol. Lett. 2023, 33, 98–101. [Google Scholar] [CrossRef]
- Kumar Gupta, S.; Kumar, M.; Kumar, S.; Sharma, A. Adaptive Wireless Power Transfer Enabled IoT Sensor Nodes by a Polarization-Insensitive Scalable Planar Rectenna Module. IEEE Sens. J. 2024, 24, 33139–33147. [Google Scholar] [CrossRef]




| Ref | Size (Tx) | Size (Rx) | Resonant Freq | Material |
|---|---|---|---|---|
| [7] | 200 mm | 100 mm | 488.6 KHz | FR-4 |
| [56] | 59 mm | 20 mm | 500 KHz | FR-4 |
| [53] | NA | NA | 488.6 KHz | FR-4 |
| [54] | 200 mm | NA | 488.6 KHz | FR-4 |
| [55] | 241.8 mm | 93.2 mm | 300 KHz | Litz Wire/ PCB Copper Wire |
| [57] | 62 mm | 18 mm | 13.56 MHz | FR-4 |
| [58] | 200 mm | 100 mm | 400 KHz | FR-4 |
| [6] | 100 mm | 100 mm | 488.6 KHz | PCB Material |
| Ref | Frequency Band(s) | Peak RF-DC Efficiency | Output Power/Volatge | Polarization | Key Innovation/Application |
|---|---|---|---|---|---|
| [4] | 2.4, 5.8 GHz | 63%, 54.8% | 3 V, 2.6 V | Linear | Dual-band sickle-shaped antenna for RFID/wearables |
| [5] | 1.8, 2.45 GHz | 40% @ 12 dBm | — | Dual-band flexible | Cylindrical array with AMC for wide azimuth coverage |
| [8] | 2.1, 2.4, 3.5 GHz | 68% (3-tone) | — | Differential | Triple-band slot antenna + Villard doubler |
| [9] | 0.85–1.94 GHz | 60% @ 980 MHz | 3.76 V @ 25 m | Dual | Bent triangular omnidirectional rectenna |
| [13] | Wi-Fi band | 65% @ 7 dBm | — | Circular | AMC-backed CP antenna for indoor IoT sensors |
| [15] | 2.4 GHz | 72% | — | Linear | Grid array rectenna with harmonic feedback |
| [66] | 5.8 GHz | 35.13% @ −10.07 dBm | — | Dual CP | Coupler-free integrated DCPR for IoT nodes |
| [67] | 5.8 GHz | 70.5% @ 5.75 dBm | — | Circular | 90° twisted dielectric resonator rectenna |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Agarwal, S.; Bharadwaj, A.; Kumar, M.; Iodice, A.; Riccio, D. Power Without Wires: Advancing KHz, MHz and Microwave Rectennas for Wireless Power Transfer with a Focus on India-Based R&D. Sensors 2026, 26, 317. https://doi.org/10.3390/s26010317
Agarwal S, Bharadwaj A, Kumar M, Iodice A, Riccio D. Power Without Wires: Advancing KHz, MHz and Microwave Rectennas for Wireless Power Transfer with a Focus on India-Based R&D. Sensors. 2026; 26(1):317. https://doi.org/10.3390/s26010317
Chicago/Turabian StyleAgarwal, Shobit, Ananth Bharadwaj, Manoj Kumar, Antonio Iodice, and Daniele Riccio. 2026. "Power Without Wires: Advancing KHz, MHz and Microwave Rectennas for Wireless Power Transfer with a Focus on India-Based R&D" Sensors 26, no. 1: 317. https://doi.org/10.3390/s26010317
APA StyleAgarwal, S., Bharadwaj, A., Kumar, M., Iodice, A., & Riccio, D. (2026). Power Without Wires: Advancing KHz, MHz and Microwave Rectennas for Wireless Power Transfer with a Focus on India-Based R&D. Sensors, 26(1), 317. https://doi.org/10.3390/s26010317

