From Accelerometer to Cognition: Hand Motion Can Reflect Effects of Cardiac Coherence on Cognitive Flexibility
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedure
2.3. The Cognitive Task—Card Sorting (WCST)
2.3.1. Task Description
2.3.2. Analysis of WCST Performance
2.4. Cardiac Coherence and Measurement of Heart Rate Variability
2.5. Data Collection
2.6. Multifractal Multiscale DFA
2.7. Statistical Analysis
2.7.1. Performance and NASA-TLX
2.7.2. MFMS-DFA Metrics
3. Results
3.1. Analysis of Hand Acceleration Series
3.1.1. MFMS-DFA
3.1.2. Multifractality and Surrogates
3.2. Perseverative Errors and Cognitive Load
3.3. Cardiac Coherence Efficiency and Performance
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
WCST | Wisconsin Card Sorting Test |
MFMS-DFA | Multifractal-multiscale detrended fluctuation analysis |
CC | Cardiac coherence |
EXP | Experimental group |
CTRL | Control group |
IAAFT | Iterative Amplitude Adjusted Fourier Transform |
References
- Anastas, J.R.; Kelty-Stephen, D.G.; Dixon, J.A. Executive Function as an Interaction-Dominant Process. Ecol. Psychol. 2014, 26, 262–282. [Google Scholar] [CrossRef]
- Kelty-Stephen, D.G.; Lane, E.; Bloomfield, L.; Mangalam, M. Multifractal Test for Nonlinearity of Interactions across Scales in Time Series. Behav. Res. 2023, 55, 2249–2282. [Google Scholar] [CrossRef] [PubMed]
- Kelty-Stephen, D.G.; Palatinus, K.; Saltzman, E.; Dixon, J.A. A Tutorial on Multifractality, Cascades, and Interactivity for Empirical Time Series in Ecological Science. Ecol. Psychol. 2013, 25, 1–62. [Google Scholar] [CrossRef]
- Anastas, J.R.; Stephen, D.G.; Dixon, J.A. The Scaling Behavior of Hand Motions Reveals Self-Organization during an Executive Function Task. Phys. A Stat. Mech. Its Appl. 2011, 390, 1539–1545. [Google Scholar] [CrossRef]
- Dixon, J.A.; Holden, J.G.; Mirman, D.; Stephen, D.G. Multifractal Dynamics in the Emergence of Cognitive Structure. Top. Cogn. Sci. 2012, 4, 51–62. [Google Scholar] [CrossRef]
- Diniz, A.; Wijnants, M.L.; Torre, K.; Barreiros, J.; Crato, N.; Bosman, A.M.T.; Hasselman, F.; Cox, R.F.A.; Van Orden, G.C.; Delignières, D. Contemporary Theories of 1/f Noise in Motor Control. Hum. Mov. Sci. 2011, 30, 889–905. [Google Scholar] [CrossRef]
- Wijnants, M.L. A review of theoretical perspectives in cognitive science on the presence of scaling in coordinated physiological and cognitive processes. J. Nonlinear Dyn. 2014, 2014, 962043. [Google Scholar] [CrossRef]
- Bell, C.A.; Carver, N.S.; Zbaracki, J.A.; Kelty-Stephen, D.G. Non-Linear Amplification of Variability Through Interaction Across Scales Supports Greater Accuracy in Manual Aiming: Evidence From a Multifractal Analysis With Comparisons to Linear Surrogates in the Fitts Task. Front. Physiol. 2019, 10, 998. [Google Scholar] [CrossRef]
- Dale, R.; Kehoe, C.; Spivey, M.J. Graded Motor Responses in the Time Course of Categorizing Atypical Exemplars. Mem. Cogn. 2007, 35, 15–28. [Google Scholar] [CrossRef]
- Stephen, D.G.; Dixon, J.A.; Isenhower, R.W. Dynamics of Representational Change: Entropy, Action, and Cognition. J. Exp. Psychol. Hum. Percept. Perform. 2009, 35, 1811–1832. [Google Scholar] [CrossRef]
- Stephen, D.G.; Hajnal, A. Transfer of Calibration between Hand and Foot: Functional Equivalence and Fractal Fluctuations. Atten. Percept. Psychophys. 2011, 73, 1302–1328. [Google Scholar] [CrossRef]
- Uddin, L.Q. Cognitive and Behavioural Flexibility: Neural Mechanisms and Clinical Considerations. Nat. Rev. Neurosci. 2021, 22, 167–179. [Google Scholar] [CrossRef]
- Varangis, E.; Qi, W.; Stern, Y.; Lee, S. The Role of Neural Flexibility in Cognitive Aging. Neuroimage 2022, 247, 118784. [Google Scholar] [CrossRef]
- Lehrer, P. My Life in HRV Biofeedback Research. Appl. Psychophysiol. Biofeedback 2022, 47, 289–298. [Google Scholar] [CrossRef]
- Lehrer, P.M.; Gevirtz, R. Heart Rate Variability Biofeedback: How and Why Does It Work? Front. Psychol. 2014, 5, 756. [Google Scholar] [CrossRef] [PubMed]
- Deschodt-Arsac, V.; Lalanne, R.; Spiluttini, B.; Bertin, C.; Arsac, L.M. Effects of Heart Rate Variability Biofeedback Training in Athletes Exposed to Stress of University Examinations. PLoS ONE 2018, 13, e0201388. [Google Scholar] [CrossRef] [PubMed]
- Peng, C.-K.; Havlin, S.; Hausdorff, J.M.; Mietus, J.E.; Stanley, H.E.; Goldberger, A.L. Fractal Mechanisms and Heart Rate Dynamics. J. Electrocardiol. 1995, 28, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Goldberger, A.L.; Amaral, L.A.N.; Hausdorff, J.M.; Ivanov, P.C.; Peng, C.-K.; Stanley, H.E. Fractal Dynamics in Physiology: Alterations with Disease and Aging. Proc. Natl. Acad. Sci. USA 2002, 99 (Suppl. S1), 2466–2472. [Google Scholar] [CrossRef]
- Wijnants, M.L.; Bosman, A.M.T.; Hasselman, F.; Cox, R.F.A. 1/f Scaling in Movement Time Changes with Practice in Precision. Nonlinear Dyn. Psychol. Life Sci. 2009, 13, 75–94. [Google Scholar]
- Castiglioni, P.; Lazzeroni, D.; Coruzzi, P.; Faini, A. Multifractal-Multiscale Analysis of Cardiovascular Signals: A DFA-Based Characterization of Blood Pressure and Heart-Rate Complexity by Gender. Complexity 2018, 2018, 4801924. [Google Scholar] [CrossRef]
- Mangalam, M.; Kelty-Stephen, D. Hypothetical Control of Postural Sway. J. R. Soc. Interface 2021, 18, 20200951. [Google Scholar] [CrossRef] [PubMed]
- Faini, A.; Arsac, L.M.; Deschodt-Arsac, V.; Castiglioni, P. Multifractal Multiscale Analysis of Human Movements during Cognitive Tasks. Entropy 2024, 26, 148. [Google Scholar] [CrossRef] [PubMed]
- Castiglioni, P.; Faini, A. A Fast DFA Algorithm for Multifractal Multiscale Analysis of Physiological Time Series. Front. Physiol. 2019, 10, 115. [Google Scholar] [CrossRef] [PubMed]
- Grant, D.A.; Berg, E. A behavioral analysis of degree of reinforcement and ease of shifting to new responses in a Weigl-type card-sorting problem. J. Exp. Psychol. 1948, 38, 404–411. [Google Scholar] [CrossRef]
- Bouny, P.; Arsac, L.M.; Touré Cuq, E.; Deschodt-Arsac, V. Entropy and Multifractal-Multiscale Indices of Heart Rate Time Series to Evaluate Intricate Cognitive-Autonomic Interactions. Entropy 2021, 23, 663. [Google Scholar] [CrossRef]
- Bouny, P.; Arsac, L.M.; Guérin, A.; Nerincx, G.; Deschodt-Arsac, V. Guiding Breathing at the Resonance Frequency with Haptic Sensors Potentiates Cardiac Coherence. Sensors 2023, 23, 4494. [Google Scholar] [CrossRef]
- Szczepanski, S.M.; Pinsk, M.A.; Douglas, M.M.; Kastner, S.; Saalmann, Y.B. Functional and Structural Architecture of the Human Dorsal Frontoparietal Attention Network. Proc. Natl. Acad. Sci. USA 2013, 110, 15806–15811. [Google Scholar] [CrossRef]
- Parris, B.A.; Wadsley, M.G.; Arabaci, G.; Hasshim, N.; Augustinova, M.; Ferrand, L. The Effect of High-Frequency rTMS of the Left Dorsolateral Prefrontal Cortex on the Resolution of Response, Semantic and Task Conflict in the Colour-Word Stroop Task. Brain Struct. Funct. 2021, 226, 1241–1252. [Google Scholar] [CrossRef]
- Buttelmann, F.; Karbach, J. Development and Plasticity of Cognitive Flexibility in Early and Middle Childhood. Front. Psychol. 2017, 8, 1040. [Google Scholar] [CrossRef]
- Koechlin, E. Prefrontal Executive Function and Adaptive Behavior in Complex Environments. Curr. Opin. Neurobiol. 2016, 37, 1–6. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, J.; Lian, C.; Liu, Y.; Ren, X.; Lou, J.; Chen, M.; Li, W.J. A Single Smart Ring for Monitoring 20 Kinds of Multi-Intensity Daily Activities––From Kitchen Work to Fierce Exercises. Adv. Intell. Syst. 2022, 4, 2200204. [Google Scholar] [CrossRef]
- Pratviel, Y.; Deschodt-Arsac, V.; Larrue, F.; Arsac, L.M. Tool Embodiment Is Reflected in Movement Multifractal Nonlinearity. Fractal Fract. 2022, 6, 240. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bouni, A.; Arsac, L.M.; Chevalerias, O.; Deschodt-Arsac, V. From Accelerometer to Cognition: Hand Motion Can Reflect Effects of Cardiac Coherence on Cognitive Flexibility. Sensors 2025, 25, 2942. https://doi.org/10.3390/s25092942
Bouni A, Arsac LM, Chevalerias O, Deschodt-Arsac V. From Accelerometer to Cognition: Hand Motion Can Reflect Effects of Cardiac Coherence on Cognitive Flexibility. Sensors. 2025; 25(9):2942. https://doi.org/10.3390/s25092942
Chicago/Turabian StyleBouni, Alix, Laurent M. Arsac, Olivier Chevalerias, and Véronique Deschodt-Arsac. 2025. "From Accelerometer to Cognition: Hand Motion Can Reflect Effects of Cardiac Coherence on Cognitive Flexibility" Sensors 25, no. 9: 2942. https://doi.org/10.3390/s25092942
APA StyleBouni, A., Arsac, L. M., Chevalerias, O., & Deschodt-Arsac, V. (2025). From Accelerometer to Cognition: Hand Motion Can Reflect Effects of Cardiac Coherence on Cognitive Flexibility. Sensors, 25(9), 2942. https://doi.org/10.3390/s25092942