From Sensors to Care: How Robotic Skin Is Transforming Modern Healthcare—A Mini Review
Abstract
:1. Introduction
2. Types of Robotic Skin in Healthcare and Rehabilitation
Sensors | Functions | Challenges |
---|---|---|
Tactile and pressure sensor [19,20,21,22,23,24,25,26,27] | Touch/contact sensor—senses an object’s presence or absence; Force/pressure sensor—measures forces, including normal and shear forces | Cost; tactile sensor arrangement; wireless communication and crosstalk; software in real applications; modularization design; and transportability |
Temperature/thermal sensor [28,29,30,31] | Magnitude and directions. Detects the surrounding temperature changes | Wireless communication and crosstalk; poor air permeability; incompatibility; instability; complex structural design; and costly manufacturing process |
Proximity sensor [22,32,33,34,35] | Non-contact detection of objects/detecting nearby objects | Crosstalk; high cost; and large size |
2.1. Tactile- and Pressure-Sensing Skins
- Rehabilitation Devices: Tactile sensors allow devices such as robotic gloves or exoskeletons to monitor the amount of force a patient is applying during exercises [55,56]. This feedback is crucial for ensuring that the patient is performing movements correctly and safely, helping to guide therapy and track progress. For example, in hand therapy, tactile sensors can measure the pressure exerted by each finger, enabling precise adjustments to the therapy regimen based on real-time data [57];
- Companion Robots: Tactile sensors are key to making interactions with humans feel natural and comfortable. By detecting the pressure and texture of a human touch, these sensors enable the robot to respond appropriately, whether by offering a gentle hug, holding a hand, or providing a reassuring pat [58,59]. This ability to sense and react to touch enhances the robot’s role as a therapeutic tool, particularly in providing emotional support to individuals who may be lonely, anxious, or stressed;
- Healthcare Robots: Tactile sensors allow robots to interact delicately with patients and sensitive materials, such as handling medical instruments or assisting in patient transfers. The ability to detect the force being applied ensures that the robot can perform tasks safely without causing discomfort or injury to patients [60,61]. This is especially important in delicate procedures where precision is paramount.
2.2. Temperature-Sensing Skins
2.3. Proximity-Sensing Skins
3. Materials and Configurations in Healthcare and Rehabilitation Robotic Skins
Biocompatible and Flexible Materials and Sensor Configurations
4. Applications in Healthcare and Rehabilitation
4.1. Prosthetics
4.2. Companion Robots
4.3. Therapeutic Devices
- Pressure Sensors in Robotic Gloves [153,154,155]: One of the most prominent applications of robotic skins in rehabilitation is in robotic gloves used for hand therapy exercises. These gloves are equipped with pressure sensors that can measure the force applied by the patient during exercise and provide detailed feedback on their performance. For instance, during a grip-strengthening exercise, the sensors can detect the amount of force exerted by each finger, allowing therapists to assess the patient’s strength, coordination, and progress over time. These data are invaluable for tailoring therapy to the patient’s specific needs, identifying areas of improvement, and making necessary adjustments to the treatment plan;
- Monitoring and Adjusting Therapy [138,156]: The feedback provided by robotic skins in therapeutic devices allows for continuous monitoring of patient progress. Therapists can use this information to adjust the intensity, frequency, and type of exercises prescribed, ensuring that the therapy remains aligned with the patient’s capabilities and goals. For example, if a patient improves in hand strength, the therapist might increase the exercise’s resistance level to challenge the patient further. Conversely, if the sensors indicate that the patient is struggling, the therapist can modify the exercises to prevent overexertion and reduce the risk of injury;
- Interactive Rehabilitation with Companion Robots [157,158]: Robotic skins are also integrated into companion robots that offer interactive exercises designed to physically and emotionally engage patients. These robots can guide patients through various therapeutic activities, such as stretching, lifting, or balancing exercises, while providing real-time feedback through their sensory capabilities. These robots can create a more immersive and motivating therapy experience by responding to the patient’s movements and touch. Moreover, the interactive nature of these exercises helps keep patients engaged, which is particularly important in long-term rehabilitation, where maintaining motivation can be challenging.
- Personalized Therapy [159]: The data collected by sensors in robotic skins allow for highly personalized therapy, where exercises and treatment plans are tailored to teach the patient’s individual needs and progress. This level of customization is critical for achieving optimal rehabilitation outcomes as it ensures that the therapy is neither too easy nor too difficult for the patient;
- Objective Progress Tracking [160,161]: Robotic skins provide objective, quantifiable data on patient performance, which is essential for tracking progress over time. These data can be used to create detailed progress reports, helping patients and therapists see the improvements made and identify areas needing further attention. This objective tracking also supports evidence-based adjustments to therapy, thereby making the rehabilitation process more efficient and effective;
- Enhanced Patient Engagement [160,162]: The interactive capabilities of robotic skins, particularly when integrated into companion robots, help to enhance patient engagement during rehabilitation exercises. Making therapy more interactive and responsive makes patients more likely to stay motivated and committed to their rehabilitation program. The emotional connection fostered by companion robots can also reduce feelings of frustration or isolation, which sometimes accompany long-term rehabilitation;
- Improved Therapy Outcomes [163]: Ultimately, the integration of robotic skins into therapeutic devices contributes to improved therapy outcomes. The ability to provide real-time feedback, adjust treatments based on objective data, and engage patients more effectively all combine to create a more effective rehabilitation process. Patients can achieve better results in a shorter amount of time, which is particularly beneficial for those recovering from injuries or surgeries where time-sensitive recovery is crucial.
5. Challenges in the Development of Practical Applications
6. Future Directions in Healthcare and Rehabilitation
6.1. Advanced Material Development
6.2. Integration with Artificial Intelligence
6.3. Expanded Applications
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dahl, T.S.; Boulos, M.N.K. Robots in Health and Social Care: A Complementary Technology to Home Care and Telehealthcare? Robotics 2014, 3, 1–21. [Google Scholar] [CrossRef]
- Cirillo, A.; Ficuciello, F.; Natale, C.; Pirozzi, S.; Villani, L. A conformable force/tactile skin for physical human-robot interaction. IEEE Robot. Autom. Lett. 2016, 1, 41–48. [Google Scholar] [CrossRef]
- Najarian, S.; Fallahnezhad, M.; Afshari, E. Advances in medical robotic systems with specific applications in surgery—A review. J. Med Eng. Technol. 2011, 35, 19–33. [Google Scholar] [CrossRef] [PubMed]
- Ciuti, G.; Skonieczna-Żydecka, K.; Marlicz, W.; Iacovacci, V.; Liu, H.; Stoyanov, D.; Arezzo, A.; Chiurazzi, M.; Toth, E.; Thorlacius, H.; et al. Frontiers of robotic colonoscopy: A comprehensive review of robotic colonoscopes and technologies. J. Clin. Med. 2020, 9, 1648. [Google Scholar] [CrossRef]
- Gbouna, Z.V.; Pang, G.; Yang, G.; Hou, Z.; Lyu, H.; Yu, Z.; Pang, Z. User-Interactive Robot Skin with Large-Area Scalability for Safer and Natural Human-Robot Collaboration in Future Telehealthcare. IEEE J. Biomed. Health Inform. 2021, 25, 4276–4288. [Google Scholar] [CrossRef] [PubMed]
- Pang, G.; Yang, G.; Pang, Z. Review of Robot Skin: A Potential Enabler for Safe Collaboration, Immersive Teleoperation, and Affective Interaction of Future Collaborative Robots; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2021. [Google Scholar] [CrossRef]
- Yogeswaran, N.; Dang, W.; Navaraj, W.T.; Shakthivel, D.; Khan, S.; Polat, E.O.; Gupta, S.; Heidari, H.; Kaboli, M.; Dahiya, R.; et al. New materials and advances in making electronic skin for interactive robots. In Advanced Robotics; Robotics Society of Japan: Tokyo, Japan, 2015; pp. 1359–1373. [Google Scholar] [CrossRef]
- Silvera-Tawil, D.; Rye, D.; Soleimani, M.; Velonaki, M. Electrical impedance tomography for artificial sensitive robotic skin: A review. IEEE Sens. J. 2015, 15, 2001–2016. [Google Scholar] [CrossRef]
- Liu, F.; Deswal, S.; Christou, A.; Sandamirskaya, Y.; Kaboli, M.; Dahiya, R. Neuro-Inspired Electronic Skin for Robots. Sci. Robot. 2022, 7, eabl7344. [Google Scholar] [CrossRef]
- Zhu, M.; Biswas, S.; Dinulescu, S.I.; Kastor, N.; Hawkes, E.W.; Visell, Y. Soft, Wearable Robotics and Haptics: Technologies, Trends, and Emerging Applications. Proc. IEEE 2022, 110, 246–272. [Google Scholar] [CrossRef]
- Yang, M.J.; Park, K.; Kim, W.D.; Kim, J. Robotic Skin Mimicking Human Skin Layer and Pacinian Corpuscle for Social Interaction. IEEE/ASME Trans. Mechatron. 2023, 29, 2709–2719. [Google Scholar] [CrossRef]
- Hedayati, H.; Bhaduri, S.; Sumner, T.; Szafir, D.; Gross, M.D. HugBot: A soft robot designed to give human-like hugs. In Proceedings of the 18th ACM International Conference on Interaction Design and Children, IDC 2019, Boise, ID, USA, 12–15 June 2019; Association for Computing Machinery, Inc.: New York, NY, USA, 2019; pp. 556–561. [Google Scholar] [CrossRef]
- Bicchi, A.; Peshkin, M.A.; Colgate, J.E. Safety for Physical Human–Robot Interaction; Springer Handbook of Robotics; Siciliano, B., Khatib, O., Eds.; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar] [CrossRef]
- Elkmann, N.; Fritzsche, M.; Schulenburg, E. Tactile sensing for safe physical human-robot interaction. In Proceedings of the International Conference on Advances in Computer-Human Interactions, Le Gosier, France, 23–28 February 2011; pp. 212–217. [Google Scholar]
- Heinzmann, J.; Zelinsky, A. Quantitative Safety Guarantees for Physical Human-Robot Interaction. Available online: http://www.brooke-ocean.com/ (accessed on 24 April 2025).
- Zhang, S.; Yang, Y.; Sun, F.; Bao, L.; Shan, J.; Gao, Y.; Fang, B. A Compact Visuo-Tactile Robotic Skin for Micron-Level Tactile Perception. IEEE Sens. J. 2024, 24, 15273–15282. [Google Scholar] [CrossRef]
- Ahmed, F.; Waqas, M.; Jawed, B.; Soomro, A.M.; Kumar, S.; Hina, A.; Khan, U.; Kim, K.H.; Choi, K.H. Decade of bio-inspired soft robots: A review. Smart Mater. Struct. 2022, 31, 073002. [Google Scholar] [CrossRef]
- Yang, J.C.; Mun, J.; Kwon, S.Y.; Park, S.; Bao, Z.; Park, S. Electronic Skin: Recent Progress and Future Prospects for Skin-Attachable Devices for Health Monitoring, Robotics, and Prosthetics; Wiley-VCH: Hoboken, NJ, USA, 2019. [Google Scholar] [CrossRef]
- Zou, L.; Ge, C.; Wang, Z.J.; Cretu, E.; Li, X. Novel tactile sensor technology and smart tactile sensing systems: A review. Sensors 2017, 17, 2653. [Google Scholar] [CrossRef]
- Rocha, J.G.; Lanceros-Mendez, S. Sensors: Focus on Tactile Force and Stress Sensors; Sciyo: Shenzhen, China, 2008. [Google Scholar]
- Meribout, M.; Takele, N.A.; Derege, O.; Rifiki, N.; El Khalil, M.; Tiwari, V.; Zhong, J. Tactile sensors: A review. Measurement 2024, 238, 115332. [Google Scholar] [CrossRef]
- Göger, D.; Alagi, H.; Wörn, H. Tactile proximity sensors for robotic applications. In Proceedings of the 2013 IEEE International Conference on Industrial Technology (ICIT), Cape Town, South Africa, 25–28 February 2013; pp. 978–983. [Google Scholar]
- Cannata, G.; Maggiali, M. An embedded tactile and force sensor for robotic manipulation and grasping. In Proceedings of the 5th IEEE-RAS International Conference on Humanoid Robots, Tsukuba, Japan, 5 December 2005; Volume 2005, pp. 80–85. [Google Scholar]
- Kerpa, O.; Weiss, K.; Worn, H. Development of a flexible tactile sensor system for a humanoid robot. In Proceedings of the 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003), Las Vegas, NV, USA, 27–31 October 2003; pp. 1–6. [Google Scholar]
- Jiong, S.; Billing, E.; Seoane, F.; Zhou, B.; Högberg, D.; Hemeren, P. Categories of touch: Classifying human touch using a soft tactile sensor. In Proceedings of the Robotic Sense of Touch: From Sensing to Understanding, Workshop at the IEEE International Conference on Robotics and Automation (ICRA), Singapore, 29 May 2017. [Google Scholar]
- Lee, S.; Byun, S.H.; Kim, C.Y.; Cho, S.; Park, S.; Sim, Y.; Jeong, J.W. Beyond Human Touch Perception: An Adaptive Robotic Skin Based on Gallium Microgranules for Pressure Sensory Augmentation. Adv. Mater. 2022, 34, e2204805. [Google Scholar] [CrossRef]
- Zhu, Y.; Giffney, T.; Aw, K. A Dielectric Elastomer-Based Multimodal Capacitive Sensor. Sensors 2022, 22, 622. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhu, M.; Wei, X.; Yu, J.; Li, Z.; Ding, B. A dual-mode electronic skin textile for pressure and temperature sensing. Chem. Eng. J. 2021, 425, 130599. [Google Scholar] [CrossRef]
- Fastier-Wooller, J.W.; Dau, V.T.; Dinh, T.; Tran, C.D.; Dao, D.V. Pressure and temperature sensitive e-skin for in situ robotic applications. Mater. Des. 2021, 208, 109886. [Google Scholar] [CrossRef]
- Kanao, K.; Harada, S.; Yamamoto, W.; Arie, T.; Akita, S.; Takei, K. Highly selective flexible tactile strain and temperature sensors against substrate bending for an artificial skin. RSC Adv. 2015, 5, 30170–30174. [Google Scholar] [CrossRef]
- Harada, S.; Kanao, K.; Yamamoto, Y.; Arie, T.; Akita, S.; Takei, K. Fully printed flexible fingerprint-like three-axis tactile and slip force and temperature sensors for artificial skin. ACS Nano 2014, 8, 12851–12857. [Google Scholar] [CrossRef]
- Patel, R.; Cox, R.; Correll, N. Integrated proximity, contact and force sensing using elastomer-embedded commodity proximity sensors. Auton. Robot. 2018, 42, 1443–1458. [Google Scholar] [CrossRef]
- Lee, H.-K.; Chang, S.-I.; Yoon, E. Dual-mode capacitive proximity sensor for robot application: Implementation of tactile and proximity sensing capability on a single polymer platform using shared electrodes. IEEE Sens. J. 2009, 9, 1748–1755. [Google Scholar] [CrossRef]
- Han, H.S.; Park, J.; Nguyen, T.D.; Kim, U.; Nguyen, C.T.; Phung, H.; Choi, P.H. A highly sensitive dual mode tactile and proximity sensor using Carbon Microcoils for robotic applications. In Proceedings of the 2016 IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, 16–21 May 2016; pp. 97–102. [Google Scholar]
- Klimaszewski, J.; Władziński, M. Human body parts proximity measurement using distributed tactile robotic skin. Sensors 2021, 21, 2138. [Google Scholar] [CrossRef]
- Duan, S.; Shi, Q.; Hong, J.; Zhu, D.; Lin, Y.; Li, Y.; Lei, W.; Lee, C.; Wu, J. Water-Modulated Biomimetic Hyper-Attribute-Gel Electronic Skin for Robotics and Skin-Attachable Wearables. ACS Nano 2023, 17, 1355–1371. [Google Scholar] [CrossRef]
- Li, K.; Li, Z.; Xiong, Z.; Wang, Y.; Yang, H.; Xu, W.; Jing, L.; Ding, M.; Zhu, J.; Go, J.S.; et al. Thermal Camouflaging MXene Robotic Skin with Bio-Inspired Stimulus Sensation and Wireless Communication. Adv. Funct. Mater. 2022, 32, 2110534. [Google Scholar] [CrossRef]
- Tsuji, S.; Kohama, T. Proximity and Contact Sensor for Human Cooperative Robot by Combining Time-of-Flight and Self-Capacitance Sensors. IEEE Sens. J. 2020, 20, 5519–5526. [Google Scholar] [CrossRef]
- Liu, G.; Tan, Q.; Kou, H.; Zhang, L.; Wang, J.; Lv, W.; Dong, H.; Xiong, J. A flexible temperature sensor based on reduced graphene oxide for robot skin used in internet of things. Sensors 2018, 18, 1400. [Google Scholar] [CrossRef]
- Zhu, Y.; Giffney, T. A review of shear/slip sensor for improving robotic and human dexterity. Int. J. Biomechatronics Biomed. Robot. 2022, 4, 32. [Google Scholar] [CrossRef]
- Bardi, E.; Gandolla, M.; Braghin, F.; Resta, F.; Pedrocchi, A.L.G.; Ambrosini, E. Upper Limb Soft Robotic Wearable Devices: A Systematic Review; BioMed Central Ltd.: London, UK, 2022. [Google Scholar] [CrossRef]
- Tamez-Duque, J.; Cobian-Ugalde, R.; Kilicarslan, A.; Venkatakrishnan, A.; Soto, R.; Contreras-Vidal, J.L. Real-time strap pressure sensor system for powered exoskeletons. Sensors 2015, 15, 4550–4563. [Google Scholar] [CrossRef]
- Xu, H.; Gao, L.; Zhao, H.; Huang, H.; Wang, Y.; Chen, G.; Qin, Y.; Zhao, N.; Xu, D.; Duan, L.; et al. Stretchable and anti-impact iontronic pressure sensor with an ultrabroad linear range for biophysical monitoring and deep learning-aided knee rehabilitation. Microsyst. Nanoeng. 2021, 7, 92. [Google Scholar] [CrossRef]
- Klimaszewski, J.; Janczak, D.; Piorun, P. Tactile robotic skin with pressure direction detection. Sensors 2019, 19, 4697. [Google Scholar] [CrossRef]
- Guadarrama-Olvera, J.R.; Dean-Leon, E.; Bergner, F.; Cheng, G. Pressure-Driven Body Compliance Using Robot Skin. IEEE Robot. Autom. Lett. 2019, 4, 4418–4423. [Google Scholar] [CrossRef]
- Boutry, C.M.; Negre, M.; Jorda, M.; Vardoulis, O.; Chortos, A.; Khatib, O.; Bao, Z. A hierarchically Patterned, Bioinspired E-Skin Able to Detect the Direction of Applied Pressure for Robotics. Sci. Robot. 2018, 3, eaau6914. [Google Scholar] [CrossRef]
- Devaraj, H.; Schober, R.; Picard, M.; Teo, M.Y.; Lo, C.-Y.; Gan, W.C.; Aw, K.C. Highly elastic and flexible multi-layered carbon black/elastomer composite based capacitive sensor arrays for soft robotics. Meas. Sens. 2019, 2–4, 100004. [Google Scholar] [CrossRef]
- Liu, X.; Yang, W.; Meng, F.; Sun, T. Material Recognition Using Robotic Hand with Capacitive Tactile Sensor Array and Machine Learning. IEEE Trans. Instrum. Meas. 2024, 73, 9508309. [Google Scholar] [CrossRef]
- Devaraj, H.; Giffney, T.; Petit, A.; Assadian, M.; Aw, K. The development of highly flexible stretch sensors for a Robotic Hand. Robotics 2018, 7, 54. [Google Scholar] [CrossRef]
- Yong, S.; Chapman, J.; Aw, K. Soft and flexible large-strain piezoresistive sensors: On implementing proprioception, object classification and curvature estimation systems in adaptive, human-like robot hands. Sens. Actuators A Phys. 2022, 341, 113609. [Google Scholar] [CrossRef]
- Wang, Y.; Ding, W.; Mei, D. Development of flexible tactile sensor for the envelop of curved robotic hand finger in grasping force sensing. Measurement 2021, 180, 109524. [Google Scholar] [CrossRef]
- Dai, Y.; Gao, S. A Flexible Multi-Functional Smart Skin for Force, Touch Position, Proximity, and Humidity Sensing for Humanoid Robots. IEEE Sens. J. 2021, 21, 26355–26363. [Google Scholar] [CrossRef]
- Sankar, S.; Cheng, W.Y.; Zhang, J.; Slepyan, A.; Iskarous, M.M.; Greene, R.J.; DeBrabander, R.; Chen, J.; Gupta, A.; Thakor, N.V. A Natural Biomimetic Prosthetic Hand with Neuromorphic Tactile Sensing for Precise and Compliant Grasping. Sci. Adv. 2025, 11, eadr9300. [Google Scholar] [CrossRef]
- Zhu, Y.; Aw, K.; Giffney, T. Dielectric Elastomer-Based Multi-Location Capacitive Sensor. Ph.D. Thesis, The University of Auckland, Auckland, New Zealand, 2021. [Google Scholar]
- Ozioko, O.; Dahiya, R. Smart Tactile Gloves for Haptic Interaction, Communication, and Rehabilitation. Adv. Intell. Syst. 2022, 4, 2100091. [Google Scholar] [CrossRef]
- Demolder, C.; Molina, A.; Hammond, F.L.; Yeo, W.H. Recent advances in wearable biosensing gloves and sensory feedback biosystems for enhancing rehabilitation, prostheses, healthcare, and virtual reality. Biosens. Bioelectron. 2021, 190, 113443. [Google Scholar] [CrossRef]
- Yumna, H.; Arifin, A.; Babgei, A.F. Robotic Hand Exoskeleton with Tactile Force Feedback for Post-Stroke Spasticity Rehabilitation. In Proceedings of the 2021 International Seminar on Intelligent Technology and Its Application: Intelligent Systems for the New Normal Era, ISITIA 2021, Virtual, 21–22 July 2021; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2021; pp. 266–271. [Google Scholar] [CrossRef]
- Guo, S.; Zhan, L.; Cao, Y.; Zheng, C.; Zhou, G.; Gong, J. Touch-and-Heal: Data-driven Affective Computing in Tactile Interaction with Robotic Dog. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2023, 7, 1–33. [Google Scholar] [CrossRef]
- Burns, R.B.; Seifi, H.; Lee, H.; Kuchenbecker, K.J. A haptic empathetic robot animal for children with autism. In Proceedings of the HRI ‘21 Companion: Companion of the 2021 ACM/IEEE International Conference on Human-Robot Interaction, Boulder, CO, USA, 8–11 March 2021; pp. 583–585. [Google Scholar] [CrossRef]
- Kyrarini, M.; Lygerakis, F.; Rajavenkatanarayanan, A.; Sevastopoulos, C.; Nambiappan, H.R.; Chaitanya, K.K.; Babu, A.R.; Mathew, J.; Makedon, F. A Survey of Robots in Healthcare. Technologies 2021, 9, 8. [Google Scholar] [CrossRef]
- Lee, H.; Piao, M.; Lee, J.; Byun, A.; Kim, J. The purpose of bedside robots: Exploring the needs of inpatients and healthcare professionals. CIN—Comput. Inform. Nurs. 2020, 38, 8–17. [Google Scholar] [CrossRef]
- Luo, Z.; Cheng, W.; Zhao, T.; Xiang, N. Intelligent Sensory Systems Toward Soft Robotics; Elsevier Ltd.: Amsterdam, The Netherlands, 2024. [Google Scholar] [CrossRef]
- Somlor, S.; Hartanto, R.S.; Schmitz, A.; Sugano, S. A novel tri-axial capacitive-type skin sensor. Adv. Robot. 2015, 29, 1375–1391. [Google Scholar] [CrossRef]
- Must, I.; Kaasik, F.; Põldsalu, I.; Mihkels, L.; Johanson, U.; Punning, A.; Aabloo, A. Ionic and capacitive artificial muscle for biomimetic soft robotics. Adv. Eng. Mater. 2015, 17, 84–94. [Google Scholar] [CrossRef]
- Liao, K.-W.; Huang, Y.-W.; Hou, M.T.; Yeh, J.A. A dielectric liquid based capacitive tactile sensor for humanoid robots. In Proceedings of the 2012 Ninth International Conference on Networked Sensing Systems (INSS), Antwerp, Belgium, 11–14 June 2012; pp. 1–4. [Google Scholar]
- Maiolino, P.; Maggiali, M.; Cannata, G.; Metta, G.; Natale, L. A flexible and robust large scale capacitive tactile system for robots. Sens. J. IEEE 2013, 13, 3910–3917. [Google Scholar] [CrossRef]
- Kim, S.W.; Lee, J.H.; Ko, H.J.; Lee, S.; Bae, G.Y.; Kim, D.; Lee, G.; Lee, S.G.; Cho, K. Mechanically Robust and Linearly Sensitive Soft Piezoresistive Pressure Sensor for a Wearable Human-Robot Interaction System. ACS Nano 2024, 18, 3151–3160. [Google Scholar] [CrossRef]
- Canavese, G.; Canavese, G.; Stassi, S.; Fallauto, C.; Corbellini, S.; Cauda, V.; Camarchia, V.; Pirola, M. Piezoresistive flexible composite for robotic tactile applications. Sens. Actuators A Phys. 2014, 208, 1–9. [Google Scholar] [CrossRef]
- Zhang, H.; Li, H.; Li, Y. Biomimetic Electronic Skin for Robots Aiming at Superior Dynamic-Static Perception and Material Cognition Based on Triboelectric-Piezoresistive Effects. Nano Lett. 2024, 24, 4002–4011. [Google Scholar] [CrossRef]
- Huang, X.; Ma, Z.; Xia, W.; Hao, L.; Wu, Y.; Lu, S.; Luo, Y.; Qin, L.; Dong, G. A high-sensitivity flexible piezoelectric tactile sensor utilizing an innovative rigid-in-soft structure. Nano Energy 2024, 129, 110019. [Google Scholar] [CrossRef]
- Gao, S.; Chen, J.L.; Dai, Y.N.; Wang, R.; Kang, S.B.; Xu, L.J. Piezoelectric-Based Insole Force Sensing for Gait Analysis in the Internet of Health Things. IEEE Consum. Electron. Mag. 2021, 10, 39–44. [Google Scholar] [CrossRef]
- Kolesar, E.S.; Reston, R.R.; Ford, D.G.; Fitch, R.C. Multiplexed piezoelectric polymer tactile sensor. J. Field Robot. 1992, 9, 37–63. [Google Scholar] [CrossRef]
- Wu, Y.; Ma, Y.; Zheng, H.; Ramakrishna, S. Piezoelectric Materials for Flexible and Wearable Electronics: A Review; Elsevier Ltd.: Amsterdam, The Netherlands, 2021. [Google Scholar] [CrossRef]
- Pan, M.; Yuan, C.; Liang, X.; Zou, J.; Zhang, Y.; Bowen, C. iScience Triboelectric and Piezoelectric Nanogenerators for Future Soft Robots and Machines. iScience 2020, 23, 101682. [Google Scholar] [CrossRef]
- Khanbareh, H.; Boom, K.; Schelen, B.; Scharff, R.B.N.; Wang, C.C.L.; van der Zwaag, S.; Groen, P. Large area and flexible micro-porous piezoelectric materials for soft robotic skin. Sens. Actuators A Phys. 2017, 263, 554–562. [Google Scholar] [CrossRef]
- Hu, Y.; Hoffman, G. What Can a Robot’s Skin Be? Designing Texture-changing Skin for Human-Robot Social Interaction. ACM Trans. Hum. Robot. Interact. 2023, 12, 1–19. [Google Scholar] [CrossRef]
- Rao, Z.; Ershad, F.; Almasri, A.; Gonzalez, L.; Wu, X.; Yu, C. Soft Electronics for the Skin: From Health Monitors to Human–Machine Interfaces; Wiley-Blackwell: Hoboken, NJ, USA, 2020. [Google Scholar] [CrossRef]
- Zarei, M.; Lee, G.; Lee, S.G.; Cho, K. Advances in Biodegradable Electronic Skin: Material Progress and Recent Applications in Sensing, Robotics, and Human–Machine Interfaces; John Wiley and Sons Inc.: Hoboken, NJ, USA, 2023. [Google Scholar] [CrossRef]
- Li, S.; Zhang, Y.; Wang, Y.; Xia, K.; Yin, Z.; Wang, H.; Zhang, M.; Liang, X.; Lu, H.; Zhu, M. Physical Sensors for Skin-Inspired Electronics; Blackwell Publishing Ltd.: Hoboken, NJ, USA, 2020. [Google Scholar] [CrossRef]
- Li, G.; Liu, S.; Wang, L.; Zhu, R. Skin-inspired quadruple tactile sensors integrated on a robot hand enable object recognition. Sci. Robot. 2020, 5, eabc8134. [Google Scholar] [CrossRef]
- Wu, B.; Jiang, T.; Yu, Z.; Zhou, Q.; Jiao, J.; Jin, M.L. Proximity Sensing Electronic Skin: Principles, Characteristics, and Applications; John Wiley and Sons Inc.: Hoboken, NJ, USA, 2024. [Google Scholar] [CrossRef]
- Markvicka, E.J.; Rogers, J.M.; Majidi, C. Wireless electronic skin with integrated pressure and optical proximity sensing. In Proceedings of the IEEE International Conference on Intelligent Robots and Systems, Las Vegas, NV, USA, 25–29 October 2020; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2020; pp. 8882–8888. [Google Scholar] [CrossRef]
- Lozano, M. Optical Proximity Sensor and Orientation Control of Autonomous, Underwater Robot. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2012. [Google Scholar]
- Lancaster, P.; Gyawali, P.; Mavrogiannis, C.; Srinivasa, S.S.; Smith, J.R. Optical Proximity Sensing for Pose Estimation During In-Hand Manipulation. In Proceedings of the IEEE International Conference on Intelligent Robots and Systems, Kyoto, Japon, 23–27 October 2022; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2022; pp. 11818–11825. [Google Scholar] [CrossRef]
- Tsun, M.T.K.; Lau, B.T.; Jo, H.S. An improved indoor robot human-following navigation model using depth camera, active IR marker and proximity sensors fusion. Robotics 2018, 7, 4. [Google Scholar] [CrossRef]
- Chen, E.-C.; Shih, C.Y.; Dai, M.Z.; Yeh, H.C.; Chao, Y.C.; Meng, H.F. Polymer Infrared Proximity Sensor Array. IEEE Trans. Electron Devices 2011, 58, 1215–1220. [Google Scholar] [CrossRef]
- Mühlbacher-Karrer, S.; Faller, L.-M.; Zangl, H.; Schlegl, T.; Moser, M. Short range capacitive proximity sensing. In Proceedings of the 2nd Workshop on Alternative Sensing for Robot Perception Beyond Laser and Vision, Hamburg, Germany, 2 October 2015. [Google Scholar]
- Braun, A.; Wichert, R.; Kuijper, A.; Fellner, D.W. Capacitive proximity sensing in smart environments. J. Ambient. Intell. Smart Environ. 2015, 7, 483–510. [Google Scholar] [CrossRef]
- Zhao, X.; Zhu, Z.; Liu, M.; Zhao, C.; Zhao, Y.; Pan, J.; Wang, Z.; Wu, C. A Smart Robotic Walker with Intelligent Close-Proximity Interaction Capabilities for Elderly Mobility Safety. Front. Neurorobot 2020, 14, 575889. [Google Scholar] [CrossRef]
- Alshawabkeh, M.; Alagi, H.; Navarro, S.E.; Duriez, C.; Hein, B.; Zangl, H.; Faller, L.M. Highly Stretchable Additively Manufactured Capacitive Proximity and Tactile Sensors for Soft Robotic Systems. IEEE Trans. Instrum. Meas. 2023, 72, 7502210. [Google Scholar] [CrossRef]
- Holland, J.; Kingston, L.; McCarthy, C.; Armstrong, E.; O’Dwyer, P.; Merz, F.; McConnell, M. Service robots in the healthcare sector. Robotics 2021, 10, 47. [Google Scholar] [CrossRef]
- Navarro, S.E.; Marufo, M.; Ding, Y.; Puls, S.; Göger, D.; Hein, B.; Wörn, H. Methods for safe human-robot-interaction using capacitive tactile proximity sensors. In Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, Japan, 3–7 November 2013; pp. 1149–1154. [Google Scholar] [CrossRef]
- Tong, Z.; Hu, H.; Wu, Z.; Xie, S.; Chen, G.; Zhang, S.; Lou, L.; Liu, H. An Ultrasonic Proximity Sensing Skin for Robot Safety Control by Using Piezoelectric Micromachined Ultrasonic Transducers (PMUTs). IEEE Sens. J. 2022, 22, 17351–17361. [Google Scholar] [CrossRef]
- Čoko, D.; Stančić, I.; Rodić, L.D.; Čošić, D. TheraProx: Capacitive Proximity Sensing. Electronics 2022, 11, 393. [Google Scholar] [CrossRef]
- Long, J.; Wang, B. A multidirectional capacitive proximity sensor array. SPIE Sens. Technol. Appl. 2014, 9116, 66–73. [Google Scholar]
- Braun, A.; Frank, S.; Majewski, M.; Wang, X. CapSeat: Capacitive proximity sensing for automotive activity recognition. In Proceedings of the 7th International Conference on Automotive User Interfaces and Interactive Vehicular Applications, Nottingham, UK, 1–3 September 2015; pp. 225–232. [Google Scholar]
- Braun, A.; Zander-Walz, S.; Majewski, M.; Kuijper, A. Curved-free-form interaction using capacitive proximity sensors. Procedia Comput. Sci. 2017, 109, 59–66. [Google Scholar] [CrossRef]
- Hajra, S.; Panda, S.; Khanberh, H.; Vivekananthan, V.; Chamanehpour, E.; Mishra, Y.K.; Kim, H.J. Revolutionizing self-powered robotic systems with triboelectric nanogenerators. Nano Energy 2023, 115, 108729. [Google Scholar] [CrossRef]
- Jiang, D.; Wang, T.; Wang, E.; Xue, J.; Diao, W.; Xu, M.; Luo, L.; Zhao, Y.; Yuan, X.; Wang, J.; et al. Triboelectric and iontronic dual-responsive bioinspired ionic skin for human–like dexterous robotic manipulation. Nano Energy 2024, 131, 110257. [Google Scholar] [CrossRef]
- Zhu, M.; Xie, M.; Lu, X.; Okada, S.; Kawamura, S. A soft robotic finger with self-powered triboelectric curvature sensor based on multi-material 3D printing. Nano Energy 2020, 73, 104772. [Google Scholar] [CrossRef]
- Wang, F.; Ren, Z.; Nie, J.; Tian, J.; Ding, Y.; Chen, X. Self-Powered Sensor Based on Bionic Antennae Arrays and Triboelectric Nanogenerator for Identifying Noncontact Motions. Adv. Mater. Technol. 2020, 5, 1900789. [Google Scholar] [CrossRef]
- Nguyen, T.D.; Kim, T.; Noh, J.; Phung, H.; Kang, G.; Choi, H.R. Skin-Type Proximity Sensor by Using the Change of Electromagnetic Field. IEEE Trans. Ind. Electron. 2021, 68, 2379–2388. [Google Scholar] [CrossRef]
- Zhang, W.; Guo, Q.; Duan, Y.; Xing, C.; Peng, Z. A Textile Proximity/Pressure Dual-Mode Sensor Based on Magneto-Straining and Piezoresistive Effects. IEEE Sens. J. 2022, 22, 10420–10427. [Google Scholar] [CrossRef]
- Moon, S.J.; Kim, J.; Yim, H.; Kim, Y.; Choi, H.R. Real-time obstacle avoidance using dual-type proximity sensor for safe human-robot interaction. IEEE Robot. Autom. Lett. 2021, 6, 8021–8028. [Google Scholar] [CrossRef]
- Wade, J.; Bhattacharjee, T.; Williams, R.D.; Kemp, C.C. A force and thermal sensing skin for robots in human environments. Robot. Auton. Syst. 2017, 96, 1–14. [Google Scholar] [CrossRef]
- Shao, W.; Zhang, L.; Jiang, Z.; Xu, M.; Chen, Y.; Li, S.; Liu, C. Bioinspired conductive structural color hydrogels as a robotic knuckle rehabilitation electrical skin. Nanoscale Horiz. 2022, 7, 1411–1417. [Google Scholar] [CrossRef]
- Chung, H.; Parsons, A.M.; Zheng, L. Magnetically Controlled Soft Robotics Utilizing Elastomers and Gels in Actuation: A Review. Adv. Intell. Syst. 2021, 3, 2000186. [Google Scholar] [CrossRef]
- Zhalmuratova, D.; Chung, H.J. Reinforced Gels and Elastomers for Biomedical and Soft Robotics Applications; American Chemical Society: Washington, DC, USA, 2020. [Google Scholar] [CrossRef]
- Chu, C.; Sun, W.; Chen, S.; Jia, Y.; Ni, Y.; Wang, S.; Han, Y.; Zuo, H.; Chen, H.; You, Z. Squid-Inspired Anti-Salt Skin-Like Elastomers with Superhigh Damage Resistance for Aquatic Soft Robots. Adv. Mater. 2024, 36, 2406480. [Google Scholar] [CrossRef]
- Tian, Y.; Wang, Z.; Cao, S.; Liu, D.; Zhang, Y.; Chen, C.; Jiang, Z.; Ma, J.; Wang, Y. Connective tissue inspired elastomer-based hydrogel for artificial skin via radiation-indued penetrating polymerization. Nat. Commun. 2024, 15, 636. [Google Scholar] [CrossRef]
- Hsiao, L.Y.; Jing, L.; Li, K.; Yang, H.; Li, Y.; Chen, P.Y. Carbon nanotube-integrated conductive hydrogels as multifunctional robotic skin. Carbon. 2020, 161, 784–793. [Google Scholar] [CrossRef]
- Simons, M.F.; Digumarti, K.M.; Le, N.H.; Chen, H.Y.; Carreira, S.C.; Zaghloul, N.S.; Diteesawat, R.S.; Garrad, M.; Conn, A.T.; Kent, C.; et al. B:Ionic Glove: A soft smart wearable sensory feedback device for upper limb robotic prostheses. IEEE Robot. Autom. Lett. 2021, 6, 3311–3316. [Google Scholar] [CrossRef]
- Liu, Y.; Pharr, M.; Salvatore, G.A. Lab-on-Skin: A Review of Flexible and Stretchable Electronics for Wearable Health Monitoring; American Chemical Society: Washington, DC, USA, 2017. [Google Scholar] [CrossRef]
- Zhao, X.; Hua, Q.; Yu, R.; Zhang, Y.; Pan, C. Flexible, Stretchable and Wearable Multifunctional Sensor Array as Artificial Electronic Skin for Static and Dynamic Strain Mapping. Adv. Electron. Mater. 2015, 1, 1500142. [Google Scholar] [CrossRef]
- Law, M.; Ahn, H.S.; Broadbent, E.; Peri, K.; Kerse, N.; Topou, E.; Gasteiger, N.; MacDonald, B. Case studies on the usability, acceptability and functionality of autonomous mobile delivery robots in real-world healthcare settings. Intell. Serv. Robot. 2021, 14, 387–398. [Google Scholar] [CrossRef]
- Jin, H.; Abu-Raya, Y.S.; Haick, H. Advanced Materials for Health Monitoring with Skin-Based Wearable Devices; Wiley-VCH: Hoboken, NJ, USA, 2017. [Google Scholar] [CrossRef]
- Lee, Y.; Park, J.; Choe, A.; Cho, S.; Kim, J.; Ko, H. Mimicking Human and Biological Skins for Multifunctional Skin Electronics; Wiley-VCH: Hoboken, NJ, USA, 2020. [Google Scholar] [CrossRef]
- Balachandran, L. Improving Prosthetics by Using Silicone as an Artificial Skin. In Proceedings of the 2020 IEEE MIT Undergraduate Research Technology Conference, URTC 2020, Cambridge, MA, USA, 9–11 October 2020; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2020. [Google Scholar] [CrossRef]
- Snyder, D.E.; Sapper, E.D.; Me, A.S.; Me, F.; Me, T. Heal Me: A Contextual Overview of Conductive Polymer Composites as Synthetic Human Skin. J. Compos. Sci. 2022, 6, 141. [Google Scholar] [CrossRef]
- Lin, J.C.; Liatsis, P.; Alexandridis, P. Flexible and Stretchable Electrically Conductive Polymer Materials for Physical Sensing Applications; Taylor and Francis Ltd.: London, UK, 2023. [Google Scholar] [CrossRef]
- Martinez, S.R.; Le Floch, P.; Liu, J.; Howe, R.D. Pure Conducting Polymer Hydrogels Increase Signal-to-Noise of Cutaneous Electrodes by Lowering Skin Interface Impedance. Adv. Healthc. Mater. 2023, 12, e2202661. [Google Scholar] [CrossRef]
- Zhou, K.; Dai, K.; Liu, C.; Shen, C. Flexible conductive polymer composites for smart wearable strain sensors. SmartMat 2020, 1, e1010. [Google Scholar] [CrossRef]
- Peng, S.; Yu, Y.; Wu, S.; Wang, C.H. Conductive Polymer Nanocomposites for Stretchable Electronics: Material Selection, Design, and Applications; American Chemical Society: Washington, DC, USA, 2021. [Google Scholar] [CrossRef]
- Cheng, X.; Zhang, F.; Dong, W. Soft Conductive Hydrogel-Based Electronic Skin for Robot Finger Grasping Manipulation. Polymers 2022, 14, 3930. [Google Scholar] [CrossRef]
- Wang, J.; Herath, D. What Makes Robots? Sensors, Actuators, and Algorithms. In Foundations of Robotics; Herath, D., St-Onge, D., Eds.; Springer: Singapore, 2022. [Google Scholar] [CrossRef]
- Zhu, Y.; Tairych, A. Using a flexible substrate to enhance the sensitivity of dielectric elastomer force sensors. Sens. Actuators A Phys. 2021, 332, 113167. [Google Scholar] [CrossRef]
- Lin, K.Y.; Gamboa-Gonzalez, A.; Wehner, M. Soft robotic sensing, proprioception via cable and microfluidic transmission. Electronics 2021, 10, 3166. [Google Scholar] [CrossRef]
- Hegde, C.; Su, J.; Tan, J.M.R.; He, K.; Chen, X.; Magdassi, S. Sensing in Soft Robotics; American Chemical Society: Washington, DC, USA, 2023. [Google Scholar] [CrossRef]
- Luu, Q.K.; Albini, A.; Maiolino, P.; Ho, V.A. TacLink-Integrated Robot Arm toward Safe Human-Robot Interaction. In Proceedings of the 2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Abu Dhabi, United Arab Emirates, 14–18 October 2024; pp. 12356–12362. [Google Scholar] [CrossRef]
- Felt, W. Sensing Methods for Soft Robotics. Ph.D. Thesis, University of Michigan Library, Ann Arbor, MI, USA, 2017. [Google Scholar]
- Agarwal, A.; Wilson, A.; Man, T.; Adelson, E.; Gkioulekas, I.; Yuan, W. Vision-based tactile sensor design using physically based rendering. Commun. Eng. 2025, 4, 21. [Google Scholar] [CrossRef]
- Yang, G.; Pang, Z.; Deen, M.J.; Dong, M.; Zhang, Y.T.; Lovell, N.; Rahmani, A.M. Homecare Robotic Systems for Healthcare 4.0: Visions and Enabling Technologies. IEEE J. Biomed. Health Inform. 2020, 24, 2535–2549. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Liu, Y.; Zhou, Y.; Man, Q.; Hu, C.; Asghar, W.; Li, F.; Yu, Z.; Shang, J.; Liu, G.; et al. A Skin-Inspired Tactile Sensor for Smart Prosthetics. Sci. Robot. 2018, 3, eaat0429. [Google Scholar] [CrossRef] [PubMed]
- Duan, S.; Yang, H.; Hong, J.; Li, Y.; Lin, Y.; Zhu, D.; Lei, W.; Wu, J. A skin-beyond tactile sensor as interfaces between the prosthetics and biological systems. Nano Energy 2022, 102, 107665. [Google Scholar] [CrossRef]
- Gerratt, A.P.; Michaud, H.O.; Lacour, S.P. Elastomeric electronic skin for prosthetic tactile sensation. Adv. Funct. Mater. 2015, 25, 2287–2295. [Google Scholar] [CrossRef]
- Mendez, V.; Iberite, F.; Shokur, S.; Micera, S. Current Solutions and Future Trends for Robotic Prosthetic Hands Neuroprosthesis: A device that connects to the nervous system and either replaces missing parts of it or improves it. Robot. Auton. Syst. Annu. Rev. Control Robot. Auton. Syst. 2021, 4, 7. [Google Scholar] [CrossRef]
- Gu, G.; Zhang, N.; Chen, C.; Xu, H.; Zhu, X. Soft Robotics Enables Neuroprosthetic Hand Design; American Chemical Society: Washington, DC, USA, 2023. [Google Scholar] [CrossRef]
- Chen, H.; Dejace, L.; Lacour, S.P. Electronic Skins for Healthcare Monitoring and Smart Prostheses. Robot. Auton. Syst. Annu. Rev. Control Robot. Auton. Syst. 2024, 42, 43. [Google Scholar] [CrossRef]
- Silvera-Tawil, D.; Rye, D.; Velonaki, M. Artificial skin and tactile sensing for socially interactive robots: A review. Robot. Auton. Syst. 2015, 63, 230–243. [Google Scholar] [CrossRef]
- Bradwell, H.L.; Edwards, K.; Shenton, D.; Winnington, R.; Thill, S.; Jones, R.B. User-centered design of companion robot pets involving care home resident-robot interactions and focus groups with residents, staff, and family: Qualitative study. JMIR Rehabil. Assist. Technol. 2021, 8, e30337. [Google Scholar] [CrossRef]
- Amer, Y.; Singh, S.; Doan, L.T.T. Partial soft body robots—A literature review. In IOP Conference Series: Materials Science and Engineering; Institute of Physics Publishing: Bristol, UK, 2020. [Google Scholar] [CrossRef]
- Collins, S.; Hicks, D.; Henkel, Z.; Henkel, K.B.; Piatt, J.A.; Bethel, C.L.; Šabanović, S. What Skin Is Your Robot In? Co-Design of a Personalizable Robot for People Living with Depression. In ACM/IEEE International Conference on Human-Robot Interaction; IEEE Computer Society: Washington, DC, USA, 2023; pp. 511–515. [Google Scholar] [CrossRef]
- O’Brien, C.; O’Mara, M.; Issartel, J.; McGinn, C. Exploring the design space of therapeutic robot companions for children. In ACM/IEEE International Conference on Human-Robot Interaction; IEEE Computer Society: Washington, DC, USA, 2021; pp. 243–251. [Google Scholar] [CrossRef]
- Park, S.; Bak, A.; Kim, S.; Nam, Y.; Kim, H.S.; Yoo, D.H.; Moon, M. Animal-assisted and pet-robot interventions for ameliorating behavioral and psychological symptoms of dementia: A systematic review and meta-analysis. Biomedicines 2020, 8, 150. [Google Scholar] [CrossRef]
- Jung, M.M.; van der Leij, L.; Kelders, S.M. An exploration of the benefits of an animallike robot companion with more advanced touch interaction capabilities for dementia care. Front. ICT 2017, 4, 16. [Google Scholar] [CrossRef]
- Stiehl, W.D.; Lee, J.K.; Toscano, R.; Breazeal, C. The Huggable: A Platform for Research in Robotic Companions for Eldercare. Available online: https://aaai.org/papers/0017-fs08-02-017-the-huggable-a-platform-for-research-in-robotic-companions-for-eldercare/ (accessed on 24 April 2025).
- Stiehl, W.D.; Lieberman, J.; Breazeal, C.; Basel, L.; Lalla, L.; Wolf, M. Design of a Therapeutic Robotic Companion for Relational, Affective Touch *. Available online: www.peratech.co.uk (accessed on 24 April 2025).
- Bogue, R. Robots in healthcare. Ind. Robot. Int. J. 2011, 38, 218–223. [Google Scholar] [CrossRef]
- Riek, L.D. Healthcare Robotics; Association for Computing Machinery: New York, NY, USA, 2017. [Google Scholar] [CrossRef]
- Long, Y.; Li, J.; Yang, F.; Wang, J.; Wang, X. Wearable and Implantable Electroceuticals for Therapeutic Electrostimulations; John Wiley and Sons Inc.: Hoboken, NJ, USA, 2021. [Google Scholar] [CrossRef]
- Oliveira, A.; Simões, S.; Ascenso, A.; Reis, C.P. Therapeutic Advances in Wound Healing; Taylor and Francis Ltd.: London, UK, 2022. [Google Scholar] [CrossRef]
- Gogurla, N.; Kim, Y.; Cho, S.; Kim, J.; Kim, S. Multifunctional and Ultrathin Electronic Tattoo for On-Skin Diagnostic and Therapeutic Applications. Adv. Mater. 2021, 33, 2008308. [Google Scholar] [CrossRef] [PubMed]
- Hughes, J.; Spielberg, A.; Chounlakone, M.; Chang, G.; Matusik, W.; Rus, D. A Simple, Inexpensive, Wearable Glove with Hybrid Resistive-Pressure Sensors for Computational Sensing, Proprioception, and Task Identification. Adv. Intell. Syst. 2020, 2, 2000002. [Google Scholar] [CrossRef]
- Carneiro, M.R.; Rosa, L.P.; De Almeida, A.T.; Tavakoli, M. Tailor-made smart glove for robot teleoperation, using printed stretchable sensors. In Proceedings of the 2022 IEEE 5th International Conference on Soft Robotics, RoboSoft 2022, Edinburgh, UK, 4–8 April 2022; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2022; pp. 722–728. [Google Scholar] [CrossRef]
- Sinha, A.K.; Goh, G.L.; Yeong, W.Y.; Cai, Y. Ultra-Low-Cost, Crosstalk-Free, Fast-Responding, Wide-Sensing-Range Tactile Fingertip Sensor for Smart Gloves. Adv. Mater. Interfaces 2022, 9, 2200621. [Google Scholar] [CrossRef]
- Han, Y.; Varadarajan, A.; Kim, T.; Zheng, G.; Kitani, K.; Kelliher, A.; Rikakis, T.; Park, Y.L. Smart Skin: Vision-Based Soft Pressure Sensing System for In-Home Hand Rehabilitation. Soft Robot. 2022, 9, 473–485. [Google Scholar] [CrossRef]
- Hu, Y.; Benallegue, M.; Venture, G.; Yoshida, E. Interact with Me: An Exploratory Study on Interaction Factors for Active Physical Human-Robot Interaction. IEEE Robot. Autom. Lett. 2020, 5, 6764–6771. [Google Scholar] [CrossRef]
- Robinson, F.; Nejat, G. An analysis of design recommendations for socially assistive robot helpers for effective human-robot interactions in senior care. J. Rehabil. Assist. Technol. Eng. 2022, 9, 205566832211013. [Google Scholar] [CrossRef]
- Gonzalez-Vazquez, A.; Garcia, L.; Kilby, J.; McNair, P. Soft Wearable Rehabilitation Robots with Artificial Muscles Based on Smart Materials: A Review; John Wiley and Sons Inc.: Hoboken, NJ, USA, 2023. [Google Scholar] [CrossRef]
- Wang, Z.; Xiao, C.; Roy, M.; Yuan, Z.; Zhao, L.; Liu, Y.; Guo, X.; Lu, P. Bioinspired Skin Towards Next-Generation Rehabilitation Medicine; Frontiers Media S.A.: Lausanne, Switzerland, 2023. [Google Scholar] [CrossRef]
- Zhang, X.; Mo, X.; Li, C.; Li, F.; Jin, J.; Xie, P.; Yao, G.; Lin, Y.; Yao, D.; Xu, P. A Wearable Master–Slave Rehabilitation Robot Based on an Epidermal Array Electrode Sleeve and Multichannel Electromyography Network. Adv. Intell. Syst. 2023, 5, 2200313. [Google Scholar] [CrossRef]
- Mousa, M.A.; Soliman, M.; Saleh, M.A.; Radwan, A.G. Biohybrid Soft Robots, E-Skin, and Bioimpedance Potential to Build up Their Applications: A Review; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2020. [Google Scholar] [CrossRef]
- Ma, J.; Sun, X.; Liu, B. A Review of Sensor-Based Interventions for Supporting Patient Adherence to Inhalation Therapy. Patient Prefer. Adherence 2024, 18, 2397–2413. [Google Scholar] [CrossRef]
- Yeon, H.; Lee, H.; Kim, Y.; Lee, D.; Lee, Y.; Lee, J.S.; Shin, J.; Choi, C.; Kang, J.H.; Suh, J.M.; et al. Long-Term Reliable Physical Health Monitoring by Sweat Pore-Inspired Perforated Electronic Skins. Sci. Adv. 2021, 7, eabg8459. [Google Scholar] [CrossRef]
- Ye, Z.; Pang, G.; Xu, K.; Hou, Z.; Lyu, H.; Shen, Y.; Yang, G. Soft Robot Skin with Conformal Adaptability for On-Body Tactile Perception of Collaborative Robots. IEEE Robot. Autom. Lett. 2022, 7, 5127–5134. [Google Scholar] [CrossRef]
- Yang, G.; Ye, Z.; Wu, H.; Li, C.; Wang, R.; Kong, D.; Hou, Z.; Wang, H.; Huang, X.; Pang, Z.; et al. A Digital Twin-Based Large-Area Robot Skin System for Safer Human-Centered Healthcare Robots Toward Healthcare 4.0. IEEE Trans. Med. Robot. Bionics 2024, 6, 1104–1115. [Google Scholar] [CrossRef]
- Escobedo, P.; Ntagios, M.; Shakthivel, D.; Navaraj, W.T.; Dahiya, R. Energy Generating Electronic Skin with Intrinsic Tactile Sensing without Touch Sensors. IEEE Trans. Robot. 2021, 37, 683–690. [Google Scholar] [CrossRef]
- Mylo, M.D.; Speck, O. Longevity of System Functions in Biology and Biomimetics: A Matter of Robustness and Resilience. Biomimetics 2023, 8, 173. [Google Scholar] [CrossRef]
- Tan, Y.J.; Susanto, G.J.; Ali, H.P.A.; Tee, B.C.K. Progress and Roadmap for Intelligent Self-Healing Materials in Autonomous Robotics; John Wiley and Sons Inc.: Hoboken, NJ, USA, 2021. [Google Scholar] [CrossRef]
- Zhang, R.; Lv, S.; Li, Z.; Dong, Y.; Zhao, Y.; Gong, W.; Sun, Y.; Zou, X.; Lu, X.; Yuan, G. Low-Power-Consumption Electronic Skins Based on Carbon Nanotube/Graphene Hybrid Films for Human-Machine Interactions and Wearable Devices. ACS Appl. Nano Mater. 2023, 6, 12338–12350. [Google Scholar] [CrossRef]
- Yuan, G.; Lv, S.; Zhang, R.; Liu, Z.; Zhao, Y.; Dong, Y.; Li, Z.; Gong, W.; Sun, Y. Flexible, Wearable, and Ultralow-Power-Consumption Electronic Skins Based on a Thermally Reduced Graphene Oxide/Carbon Nanotube Composite Film. ACS Appl. Electron. Mater. 2023, 5, 4451–4461. [Google Scholar] [CrossRef]
- del Rosario-Gilabert, D.; Carbajo, J.; Hernández-Pozo, M.; Valenzuela-Miralles, A.; Ruiz, D.; Poveda-Martínez, P.; Esquiva, G.; Gómez-Vicente, V. Eco-Friendly and Biocompatible Material to Reduce Noise Pollution and Improve Acoustic Comfort in Healthcare Environments. Buildings 2024, 14, 3151. [Google Scholar] [CrossRef]
- Xiong, J.; Chen, J.; Lee, P.S. Functional Fibers and Fabrics for Soft Robotics, Wearables, and Human–Robot Interface; John Wiley and Sons Inc.: Hoboken, NJ, USA, 2021. [Google Scholar] [CrossRef]
- Wang, Y.; Xie, Z.; Huang, H.; Liang, X. Pioneering healthcare with soft robotic devices: A review. Smart Med. 2024, 3, e20230045. [Google Scholar] [CrossRef]
- Cremer, S.; Saadatzi, M.N.; Wijayasinghe, I.B.; Das, S.K.; Saadatzi, M.H.; Popa, D.O. SkinSim: A Design and Simulation Tool for Robot Skin with Closed-Loop pHRI Controllers. IEEE Trans. Autom. Sci. Eng. 2021, 18, 1302–1314. [Google Scholar] [CrossRef]
- Fan, X.; Lee, D.; Jackel, L.; Howard, R.; Lee, D.; Isler, V. Enabling Low-Cost Full Surface Tactile Skin for Human Robot Interaction. IEEE Robot. Autom. Lett. 2022, 7, 1800–1807. [Google Scholar] [CrossRef]
- 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 31 May–31 August 2020; Institute of Electrical and Electronics Engineers: Piscatway, NJ, USA, 2020.
- Reis, M.J.C.S. Data, Signal and Image Processing and Applications in Sensors. Sensors 2021, 21, 3323. [Google Scholar] [CrossRef] [PubMed]
- Park, K.; Shin, K.; Yamsani, S.; Gim, K.; Kim, J. Low-Cost and Easy-to-Build Soft Robotic Skin for Safe and Contact-Rich Human-Robot Collaboration. IEEE Trans. Robot. 2024, 40, 2327–2338. [Google Scholar] [CrossRef]
- Mazzolai, B.; Mondini, A.; Del Dottore, E.; Margheri, L.; Carpi, F.; Suzumori, K.; Cianchetti, M.; Speck, T.; Smoukov, S.K.; Burgert, I.; et al. Roadmap on soft robotics: Multifunctionality, adaptability and growth without borders. Multifunct. Mater. 2022, 5, 032001. [Google Scholar] [CrossRef]
- Alam, N.; Hasan, S.; Mashud, G.A.; Bhujel, S. Neural Network for Enhancing Robot-Assisted Rehabilitation: A Systematic Review. Actuators 2025, 14, 16. [Google Scholar] [CrossRef]
- Yip, M.; Salcudean, S.; Goldberg, K.; Althoefer, K.; Menciassi, A.; Opfermann, J.D.; Krieger, A.; Swaminathan, K.; Walsh, C.J.; Lee, I. Artificial intelligence meets medical robotics. Science 2023, 381, 141–146. [Google Scholar] [CrossRef] [PubMed]
- Guo, B.; Ma, Y.; Yang, J.; Wang, Z.; Zhang, X. Lw-CNN-Based Myoelectric Signal Recognition and Real-Time Control of Robotic Arm for Upper-Limb Rehabilitation. Comput. Intell. Neurosci. 2020, 2020, 8846021. [Google Scholar] [CrossRef]
- Chaturvedi, R.; Verma, S.; Das, R.; Dwivedi, Y.K. Social companionship with artificial intelligence: Recent trends and future avenues. Technol. Forecast. Soc. Change 2023, 193, 122634. [Google Scholar] [CrossRef]
- Ramsai, N.; Sridharan, K. Deep Networks and Sensor Fusion for Personal Care Robot Tasks—A Review; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2025. [Google Scholar] [CrossRef]
- Nimmagadda, R.; Arora, K.; Martin, M.V. Emotion recognition models for companion robots. J. Supercomput. 2022, 78, 13710–13727. [Google Scholar] [CrossRef]
- Montaño-Serrano, V.M.; Jacinto-Villegas, J.M.; Vilchis-González, A.H.; Portillo-Rodríguez, O. Artificial vision algorithms for socially assistive robot applications: A review of the literature. Sensors 2021, 21, 5728. [Google Scholar] [CrossRef]
Technologies | Capacitive [62,63,64,65,66] | Piezoresistive [67,68,69] | Piezoelectric [70,71,72,73,74,75] |
---|---|---|---|
Sensing Method | Change in capacitance Silicon-based | Change in resistance | Strain (stress) polarization |
Measurement Ranges and Sensitivity | 61.77%/N Pressure range 2–45 kPa S = 0.63 f F/kPa | From 0 to 800 kPa From 0.8 to 2 MPa | Linear force detection range of 1–11 N, 35.6 mV/N Detection range of 50 kPa, 0.5 V/N |
Response Time | 5 s | Less than 60 ms; 2.5 mm/s | 119 ms |
Advantages | High spatial resolution Good frequency response Long-term drift stability High sensitivity Low-temperature sensitivity Low power consumption | High spatial resolution Good sensitivity Low noise Low cost | Excellent resistance High mechanical strength Good plasticity Relatively high accuracy High power density High bandwidth High efficiency High-frequency response |
Disadvantages | Stray capacitance Noise susceptible | Rigid and Fragile Severe hysteresis Higher power consumption Large hysteresis Low repeatability | Poor spatial resolution Dynamic sensing only |
Technologies | Sensing Principle | Sensitivity | Hysteresis | Advantages | Disadvantages |
---|---|---|---|---|---|
Capacitive [88,94,95,96,97] | Detect proximity through changes in capacitance | High | Low | Low cost, fast dynamic response, excellent sensitivity, good spatial resolution, large dynamic range | Interference from the surrounding environment (noise susceptible) |
Triboelectric [98,99,100,101] | Generate electrical signals from mechanical contact | High | Moderate | Self-powered | Charge attenuation, susceptible to environmental interference |
Magnetic sensor [102,103,104] | Detect proximity of metallic objects via changes in magnetic fields | High for detecting magnetic fields | Low | Not affected by non-magnetic objects | Restricted object detection |
Material Type | Elastomers | Hydrogels | |
---|---|---|---|
Stretchable polymers (e.g., PDMS, and Ecoflex) | Soft polymer (e.g., polyacrylamide-based) | Advantages of Implementation | |
Enhanced Sensory Feedback [10,56,112] | Commonly used for embedding capacitive, piezoresistive, or triboelectric sensors | Natural ionic sensing; high sensitivity | Maintains contact between the robotic skin and the body or exoskeleton surface for accurate detection of physical stimuli such as pressure, shear, and temperature. |
Improved Comfort and Usability [113,114] | Durable, easy to handle, easy to manufacture, mold, and attach to robotic frameworks | Skin-like softness; hydration dependent | Stretchable and conformable skin moves with the user’s body, reducing discomfort and irritation that could arise from rigid or poorly fitting materials. |
Maintained Functionality During Movement [115] | High elasticity, reliable under stress, environmental resilience | Requires mechanical reinforcement, environmental sensitivity | The flexibility of these materials allows the robotic skin to maintain its functionality even as the user moves. |
Key Challenges | Strategies | Implication | |
---|---|---|---|
Durability and Longevity [168,169] |
|
| |
Power Consumption [170,171] |
|
|
|
Comfort and Biocompatibility [172,173,174] |
|
| |
Signal Processing and Noise [175,176,177,178] |
| ||
Affordability and Scalability [179,180] |
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Y.; Moyle, W.; Hong, M.; Aw, K. From Sensors to Care: How Robotic Skin Is Transforming Modern Healthcare—A Mini Review. Sensors 2025, 25, 2895. https://doi.org/10.3390/s25092895
Zhu Y, Moyle W, Hong M, Aw K. From Sensors to Care: How Robotic Skin Is Transforming Modern Healthcare—A Mini Review. Sensors. 2025; 25(9):2895. https://doi.org/10.3390/s25092895
Chicago/Turabian StyleZhu, Yuting, Wendy Moyle, Min Hong, and Kean Aw. 2025. "From Sensors to Care: How Robotic Skin Is Transforming Modern Healthcare—A Mini Review" Sensors 25, no. 9: 2895. https://doi.org/10.3390/s25092895
APA StyleZhu, Y., Moyle, W., Hong, M., & Aw, K. (2025). From Sensors to Care: How Robotic Skin Is Transforming Modern Healthcare—A Mini Review. Sensors, 25(9), 2895. https://doi.org/10.3390/s25092895