Shear Wave Elastography of the Sciatic Nerve and Its Relationship with Posterior Chain Flexibility in Healthy Participants: An Observational Study
Abstract
:1. Introduction
2. Methods
2.1. Study Design
2.2. Sample Size Calculation
2.3. Participants
2.4. Descriptive Variables
2.5. Outcome Measures
2.5.1. SWE Assessment for Sciatic Nerve
2.5.2. Active Knee Extension Test
2.5.3. Active Straight Leg Raise
2.6. Statistical Analysis
3. Results
3.1. Comparison Between Dominant and Non-Dominant Leg
3.2. Comparison Between Limited and Adequate Hamstring Stiffness Groups
3.3. Correlation Analysis
4. Discussion
4.1. General Results
4.2. SWE of Sciatic Nerve Stiffness and SWS
4.3. Hamstrings Flexibility
4.4. Limitations and Future Research
5. Practical Applications
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yıldırım, M.Ş.; Tuna, F.; Kabayel, D.D.; Süt, N. The Cut-off Values for the Diagnosis of Hamstring Shortness and Related Factors. Balkan Med. J. 2018, 35, 388–393. [Google Scholar] [CrossRef] [PubMed]
- González-Álvarez, F.J.; Valenza, M.C.; Torres-Sánchez, I.; Cabrera-Martos, I.; Rodríguez-Torres, J.; Castellote-Caballero, Y. Effects of Diaphragm Stretching on Posterior Chain Muscle Kinematics and Rib Cage and Abdominal Excursion: A Randomized Controlled Trial. Braz. J. Phys. Ther. 2016, 20, 405–411. [Google Scholar] [CrossRef] [PubMed]
- Linklater, J.M.; Hamilton, B.; Carmichael, J.; Orchard, J.; Wood, D.G. Hamstring Injuries: Anatomy, Imaging, and Intervention. Semin. Musculoskelet. Radiol. 2010, 14, 131–161. [Google Scholar] [CrossRef] [PubMed]
- Liyanage, E.; Malwanage, K.; Senarath, D.; Wijayasinghe, H.; Liyanage, I.; Chellapillai, D.; Nishshanka, S. Effects of Different Physical Therapy Interventions in Improving Flexibility in University Students with Hamstring Tightness—A Systematic Review and Network Meta-Analysis. Int. J. Exerc. Sci. 2024, 17, 359–381. [Google Scholar] [CrossRef]
- Youdas, J.W.; Krause, D.A.; Hollman, J.H.; Harmsen, W.S.; Laskowski, E. The Influence of Gender and Age on Hamstring Muscle Length in Healthy Adults. J. Orthop. Sports Phys. Ther. 2005, 35, 246–252. [Google Scholar] [CrossRef]
- Hansberger, B.L.; Loutsch, R.; Hancock, C.; Bonser, R.; Zeigel, A.; Baker, R.T. Evaluating the relationship between clinical assessments of apparent hamstring tightness: A correlational analysis. Int. J. Sports Phys. Ther. 2019, 14, 253–263. [Google Scholar] [CrossRef]
- Greening, J.; Dilley, A. Posture-Induced Changes in Peripheral Nerve Stiffness Measured by Ultrasound Shear-Wave Elastography. Muscle Nerve 2017, 55, 213–222. [Google Scholar] [CrossRef]
- Neto, T.; Freitas, S.R.; Andrade, R.J.; Vaz, J.R.; Mendes, B.; Firmino, T.; Bruno, P.M.; Nordez, A.; Oliveira, R. Noninvasive Measurement of Sciatic Nerve Stiffness in Patients With Chronic Low Back Related Leg Pain Using Shear Wave Elastography. J. Ultrasound Med. 2019, 38, 157–164. [Google Scholar] [CrossRef]
- Rossetto, G.; Lopomo, N.F.; Shaikh, S.Z. Longitudinal Movements and Stiffness of Lower Extremity Nerves Measured by Ultrasonography and Ultrasound Elastography in Symptomatic and Asymptomatic Populations: A Systematic Review with Meta-Analysis. Ultrasound Med. Biol. 2023, 49, 1913–1929. [Google Scholar] [CrossRef]
- Bamber, J.; Cosgrove, D.; Dietrich, C.F.; Fromageau, J.; Bojunga, J.; Calliada, F.; Cantisani, V.; Correas, J.M.; D’Onofrio, M.; Drakonaki, E.E.; et al. EFSUMB Guidelines and Recommendations on the Clinical Use of Ultrasound Elastography. Part 1: Basic Principles and Technology. Ultraschall Med. 2013, 34, 169–184. [Google Scholar] [CrossRef]
- Brandenburg, J.E.; Eby, S.F.; Song, P.; Zhao, H.; Brault, J.S.; Chen, S.; An, K.N. Ultrasound Elastography: The New Frontier in Direct Measurement of Muscle Stiffness. Arch. Phys. Med. Rehabil. 2014, 95, 2207–2219. [Google Scholar] [CrossRef] [PubMed]
- Sigrist, R.M.S.; Liau, J.; El Kaffas, A.; Chammas, M.C.; Willmann, J.K. Ultrasound Elastography: Review of Techniques and Clinical Applications. Theranostics 2017, 7, 1303–1329. [Google Scholar] [CrossRef] [PubMed]
- Ciuffreda, G.; Bueno-Gracia, E.; Albarova-Corral, I.; Montaner-Cuello, A.; Pérez-Rey, J.; Pardos-Aguilella, P.; Malo-Urriés, M.; Estébanez-de-Miguel, E. In Vivo Effects of Joint Movement on Nerve Mechanical Properties Assessed with Shear-Wave Elastography: A Systematic Review and Meta-Analysis. Diagnostics 2024, 14, 343. [Google Scholar] [CrossRef] [PubMed]
- Wee, T.C.; Simon, N.G. Ultrasound Elastography for the Evaluation of Peripheral Nerves: A Systematic Review. Muscle Nerve 2019, 60, 501–512. [Google Scholar] [CrossRef]
- Neto, T.; Freitas, S.R.; Andrade, R.J.; Gomes, J.; Vaz, J.; Mendes, B.; Firmino, T.; Nordez, A.; Oliveira, R. Sciatic Nerve Stiffness Is Not Changed Immediately after a Slump Neurodynamics Technique. Muscles Ligaments Tendons J. 2017, 7, 583–589. [Google Scholar] [CrossRef]
- Sánchez-Ramírez, O.; Almazán-Polo, J.; González-de-la-Flor, Á. Reliability of Ultrasound and Shear Wave Elastography in Assessing Lower Extremity Nerve Stiffness and Excursion: A Systematic Review and Meta-Analysis. Ultrasound Med. Biol. 2025. [Google Scholar] [CrossRef]
- Andrade, R.J.; Nordez, A.; Hug, F.; Ates, F.; Coppieters, M.W.; Pezarat-Correia, P.; Freitas, S.R. Non-Invasive Assessment of Sciatic Nerve Stiffness during Human Ankle Motion Using Ultrasound Shear Wave Elastography. J. Biomech. 2016, 49, 326–331. [Google Scholar] [CrossRef]
- Kantarci, F.; Ustabasioglu, F.E.; Delil, S.; Olgun, D.C.; Korkmazer, B.; Dikici, A.S.; Tutar, O.; Nalbantoglu, M.; Uzun, N.; Mihmanli, I. Median Nerve Stiffness Measurement by Shear Wave Elastography: A Potential Sonographic Method in the Diagnosis of Carpal Tunnel Syndrome. Eur. Radiol. 2014, 24, 434–440. [Google Scholar] [CrossRef]
- Zardi, E.M.; Franceschetti, E.; Giorgi, C.; Lichinchi, D.; Palumbo, A.; Franceschi, F. Reliability and Agreement of Point and 2-D Shear-Wave Elastography in Assessing the Sciatic Nerve Stiffness. Ultrasound Med. Biol. 2020, 46, 3162–3167. [Google Scholar] [CrossRef]
- Zhu, B.; Yan, F.; He, Y.; Wang, L.; Xiang, X.; Tang, Y.; Yang, Y.; Qiu, L. Evaluation of the Healthy Median Nerve Elasticity: Feasibility and Reliability of Shear Wave Elastography. Medicine 2018, 97, e12956. [Google Scholar] [CrossRef]
- Ellis, R.; Rohan, M.; Fox, J.; Hitt, J.; Langevin, H.; Henry, S. Ultrasound Elastographic Measurement of Sciatic Nerve Displacement and Shear Strain During Active and Passive Knee Extension. J. Ultrasound Med. 2018, 37, 2091–2103. [Google Scholar] [CrossRef] [PubMed]
- Von Elm, E.; Altman, D.; Egger, M.; Pocock, S.; Gotzsche, P.; Vandenbroucke, J. Declaración de La Iniciativa STROBE ( Strengthening the Para La Comunicación de Estudios Observacionales. Rev. Esp. Salud Publica 2008, 22, 144–150. [Google Scholar]
- Andrade, R.J.; Freitas, S.R.; Hug, F.; Le Sant, G.; Lacourpaille, L.; Gross, R.; McNair, P.; Nordez, A. The Potential Role of Sciatic Nerve Stiffness in the Limitation of Maximal Ankle Range of Motion. Sci. Rep. 2018, 8, 14532. [Google Scholar] [CrossRef] [PubMed]
- van Melick, N.; Meddeler, B.M.; Hoogeboom, T.J.; Nijhuis-van der Sanden, M.W.G.; van Cingel, R.E.H. How to Determine Leg Dominance: The Agreement between Self-Reported and Observed Performance in Healthy Adults. PLoS ONE 2017, 12, e0189876. [Google Scholar] [CrossRef]
- Garrow, J.S. Quetelet index as indicator of obesity. Lancet 1986, 327, 1219. [Google Scholar] [CrossRef]
- Jiang, W.; Huang, S.; Teng, H.; Wang, P.; Wu, M.; Zhou, X.; Xu, W.; Zhang, Q.; Ran, H. Diagnostic Performance of Two-Dimensional Shear Wave Elastography for Evaluating Tibial Nerve Stiffness in Patients with Diabetic Peripheral Neuropathy. Eur. Radiol. 2019, 29, 2167–2174. [Google Scholar] [CrossRef]
- Koo, T.K.; Li, M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef]
- Jerban, S.; Barrère, V.; Andre, M.; Chang, E.Y.; Shah, S.B. Quantitative Ultrasound Techniques Used for Peripheral Nerve Assessment. Diagnostics 2023, 13, 956. [Google Scholar] [CrossRef]
- Ahmadabadi, S.; Rjabi, H.; Gharakhanlou, R.; Talebian, S.; Basereh, A. Effects of a 4-Week Plyometric Training on Activity Patterns During Different Phases of One-Leg Drop Jump with Focus on Jump Height. Sci. Rep. 2023, 13, 9192. [Google Scholar] [CrossRef]
- Neto, T.; Jacobsohn, L.; Carita, A.I.; Oliveira, R. Reliability of the Active-Knee-Extension and Straight-Leg-Raise Tests in Subjects with Flexibility Deficits. J. Sport. Rehabil. 2015, 24, 2014-0220. [Google Scholar] [CrossRef]
- Hopkins, W.G.; Marshall, S.W.; Batterham, A.M.; Hanin, J. Progressive Statistics for Studies in Sports Medicine and Exercise Science. Med. Sci. Sports Exerc. 2009, 41, 3–12. [Google Scholar] [CrossRef]
- Mukaka, M.M. Statistics Corner: A Guide to Appropriate Use of Correlation Coefficient in Medical Research. Malawi Med. J. 2012, 24, 69–71. [Google Scholar] [PubMed]
- Cornelson, S.M.; Ruff, A.N.; Wells, C.; Sclocco, R.; Kettner, N.W. Sonographic Measures and Sensory Threshold of the Normal Sciatic Nerve and Hamstring Muscles. J. Ultrasound 2022, 25, 47–57. [Google Scholar] [CrossRef] [PubMed]
- Andrade, R.J.; Freitas, S.R.; Hug, F.; Coppieters, M.W.; Sierra-Silvestre, E.; Nordez, A. Spatial Variation in Mechanical Properties along the Sciatic and Tibial Nerves: An Ultrasound Shear Wave Elastography Study. J. Biomech. 2022, 136, 111075. [Google Scholar] [CrossRef] [PubMed]
- Doman, E.A.; Ovenden, N.C.; Phillips, J.B.; Shipley, R.J. Biomechanical Modelling Infers That Collagen Content within Peripheral Nerves Is a Greater Indicator of Axial Young’s Modulus than Structure. Biomech. Model. Mechanobiol. 2025, 24, 297–309. [Google Scholar] [CrossRef]
- Tang, X.; Zhu, B.; Tian, M.; Guo, R.; Huang, S.; Tang, Y.; Qiu, L. Preliminary Study on the Influencing Factors of Shear Wave Elastography for Peripheral Nerves in Healthy Population. Sci. Rep. 2021, 11, 5582. [Google Scholar] [CrossRef]
- Ellis, R.F.; Hing, W.A.; McNair, P.J. Comparison of Longitudinal Sciatic Nerve Movement with Different Mobilization Exercises: An In Vivo Study Utilizing Ultrasound Imaging. J. Orthop. Sports Phys. Ther. 2012, 42, 667–675. [Google Scholar] [CrossRef]
- Juan, J.; Leff, G.; Kevorken, K.; Jeanfavre, M. Hip Flexor Muscle Activation During Common Rehabilitation and Strength Exercises. J. Clin. Med. 2024, 13, 6617. [Google Scholar] [CrossRef]
- Lim, J.H.; Park, C.B. The Immediate Effects of Foam Roller with Vibration on Hamstring Flexibility and Jump Performance in Healthy Adults. J. Exerc. Rehabil. 2019, 15, 50–54. [Google Scholar] [CrossRef]
- Vaquero-Cristóbal, R.; Molina-Castillo, P.; López-Miñarro, P.A.; Albaladejo-Saura, M.; Esparza-Ros, F. Hamstring Extensibility Differences among Elite Adolescent and Young Dancers of Different Dance Styles and Non-Dancers. PeerJ 2020, 2020, e9237. [Google Scholar] [CrossRef]
- Corkery, M.; Briscoe, H.; Ciccone, N.; Foglia, G.; Johnson, P.; Kinsman, S.; Legere, L.; Lum, B.; Canavan, P.K. Establishing Normal Values for Lower Extremity Muscle Length in College-Age Students. Phys. Ther. Sport 2007, 8, 66–74. [Google Scholar] [CrossRef]
- Bedewi, M.A.; Nissman, D.; Aldossary, N.M.; Maetani, T.H.; El Sharkawy, M.S.; Koura, H. Shear Wave Elastography of the Brachial Plexus Roots at the Interscalene Groove. Neurol. Res. 2018, 40, 805–810. [Google Scholar] [CrossRef] [PubMed]
Variable | Total Sample (N = 25) |
---|---|
Age (years) | 21.57 ± 2.34 |
Height (m) | 1.77 ± 0.11 |
Weight (kg) | 74.08 ± 15.48 |
BMI (kg/m2) | 23.39 ± 2.61 |
Sex (male), n (%) | 33 (67.3) |
Limb Dominance (right), n (%) | 21 (88) |
Variable | Dominant Leg (n = 25) | Non-Dominant Leg (n = 24) | Mean Difference (95% CI) | p-Value | Cohen’s d |
---|---|---|---|---|---|
AKE (°) | 27.20 ± 10.50 | 25.46 ± 10.35 | 1.74 (−4.25, 7.73) | 0.28 | 0.17 |
ASLR (°) | 21.48 ± 10.14 | 21.29 ± 10.05 | 0.18 (−5.61, 5.99) | 0.47 | 0.02 |
SWE (kPa) | 32.83 ± 15.53 | 34.09 ± 11.81 | −1.26 (−9.21, 6.69) | 0.38 | −0.09 |
SWS (m/s) | 3.21 ± 0.76 | 3.29 ± 0.62 | −0.08 (−0.48, 0.32) | 0.34 | −0.12 |
Variable | Limited (n = 19) | Adequate (n = 30) | Mean Difference (95% CI) | p-Value | Cohen’s d |
---|---|---|---|---|---|
AKE (°) | 35.68 ± 5.50 | 20.43 ± 8.08 | 15.25 (11.00, 19.50) | <0.001 | 2.12 |
ASLR (°) | 29.16 ± 4.49 | 16.47 ± 9.39 | 12.69 (8.04, 17.34) | <0.001 | 1.61 |
SWE (kPa) | 38.18 ± 14.45 | 30.45 ± 12.55 | 7.72 (−0.12, 15.58) | 0.05 | 0.61 |
SWS (m/s) | 3.49 ± 0.64 | 3.10 ± 0.68 | 0.39 (−0.01, 0.78) | 0.05 | 0.60 |
Variable | AKE (°) | ASLR (°) | SWE (kPa) |
---|---|---|---|
1. AKE (°) | |||
2. ASLR (°) | 0.813 (<0.001) | ||
3. SWE (kPa) | 0.245 (0.089) | 0.119 (0.416) | |
4. SWS (m/s) | 0.251 (0.082) | 0.110 (0.453) | 0.986 (<0.001) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cotteret, C.; Almazán-Polo, J.; González-de-la-Flor, Á. Shear Wave Elastography of the Sciatic Nerve and Its Relationship with Posterior Chain Flexibility in Healthy Participants: An Observational Study. Sensors 2025, 25, 2885. https://doi.org/10.3390/s25092885
Cotteret C, Almazán-Polo J, González-de-la-Flor Á. Shear Wave Elastography of the Sciatic Nerve and Its Relationship with Posterior Chain Flexibility in Healthy Participants: An Observational Study. Sensors. 2025; 25(9):2885. https://doi.org/10.3390/s25092885
Chicago/Turabian StyleCotteret, Charles, Jaime Almazán-Polo, and Ángel González-de-la-Flor. 2025. "Shear Wave Elastography of the Sciatic Nerve and Its Relationship with Posterior Chain Flexibility in Healthy Participants: An Observational Study" Sensors 25, no. 9: 2885. https://doi.org/10.3390/s25092885
APA StyleCotteret, C., Almazán-Polo, J., & González-de-la-Flor, Á. (2025). Shear Wave Elastography of the Sciatic Nerve and Its Relationship with Posterior Chain Flexibility in Healthy Participants: An Observational Study. Sensors, 25(9), 2885. https://doi.org/10.3390/s25092885