A Comprehensive Understanding of Postural Tone Biomechanics: Intrinsic Stiffness, Functional Stiffness, Antagonist Coactivation, and COP Dynamics in Post-Stroke Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
- (a)
- (b)
- Have a Fugl–Meyer Assessment of Sensorimotor Recovery After Stroke score below 34 in the lower limb subsection [43];
- (c)
- Not have a grade 3 score for the Achilles’ tendon reflex;
- (d)
- Present clinical signs of increased muscle tone (with a minimum score of 1 in the Modified Ashworth scale) in the calf muscles [44];
- (e)
- Have the capacity to perform stand-to-sit (StandTS), maintain a stand position, and initiate gait without the use of orthoses;
- (f)
- have provided written or verbal informed consent to participate in the study.
- (a)
- Had any cognitive deficits that could hinder communication and cooperation, assessed by the Mini-Mental State Examination [45];
- (b)
- Had history of orthopaedic or neurological disorders known to affect stiffness, or other conditions (e.g., sensory impairment, diabetes, thrombophlebitis, history of lower limb surgery, or any orthopaedic or rheumatoid conditions) that could interfere with StandTS, stand position or gait;
- (c)
- Were taking medication that could affect motor performance.
- (a)
- (b)
- History or sign of neurological dysfunction [46];
- (c)
- Presence of pain that could interfere with the performance of sitting, standing, or walking [43];
- (d)
- (e)
- (f)
- Practice of moderate (i.e., at least 30 min, 5 days a week) or vigorous (i.e., at least 20 min, 3 days a week) levels of physical activity [47].
2.3. Instruments
2.3.1. Sample Selection and Characterisation
2.3.2. Kinetic Data
2.3.3. EMG Data
2.4. Procedures
2.4.1. Skin Preparation and Electrodes Placement
2.4.2. Data Acquisition
- Ankle intrinsic stiffness
- Functional stiffness
- Antagonist coactivation in Standing, StandTS, and GI
2.4.3. Data Processing
- Ankle intrinsic stiffness
- Functional stiffness
- Antagonist coactivation and COP in standing, StandTS and GI
2.4.4. Statistical Analysis
3. Results
3.1. Intrinsic Stiffness, Functional Stiffness and Antagonist Coactivation Correlations
3.1.1. Intrinsic Stiffness and Functional Stiffness
3.1.2. Intrinsic Stiffness and Antagonist Coactivation
3.1.3. Functional Stiffness and Antagonist Coactivation in Standing, Stand-to-Sit and Gait Initiation
3.1.4. Antagonist Coactivation in Standing, Stand-to-Sit and Gait Initiation in Healthy (Dominant vs. Non-Dominant Side) and in Stroke (CONTRA vs. IPSI Lesional Side)
3.2. COP Related Variables
3.2.1. Linear Analysis
3.2.2. Non-Linear Analysis
3.3. Antagonist Coactivation Analysis
3.3.1. Linear Antagonist Coactivation in Standing, Stand-to-Sit and Gait Initiation in Healthy and Stroke
3.3.2. Non-Linear Antagonist Coactivation in Standing, Stand-to-Sit and Gait Initiation in Healthy and Stroke
4. Discussion
4.1. Intrinsic and Functional Stiffness Correlations
4.2. Intrinsic Stiffness and Antagonist Coactivation
4.3. Functional Stiffness and Antagonist Coactivation
4.4. Antagonist Coactivation
4.5. CoP Dynamics
4.6. Antagonist Coactivation Patterns
4.7. Integration of Stiffness, COP Dynamics, and Antagonist Coactivation Patterns
4.8. Analysis with Existing Models of Postural Control
4.9. Advantages and Trade-offs of the Multidimensional Approach
4.10. Considerations and Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
aCOP | COP amplitude |
AP | Anteroposterior |
CI | Complexity index |
CNS | Central nervous system |
CoA | Antagonist coactivation |
COM | Centre of mass |
CONTRA | Contralesional lower limb |
COP | Centre of pressure |
dCOP | COP displacement |
DF | Dorsiflexion |
Do | Dorsal muscles |
DOM | Dominant lower limb |
EMG | Electromyography |
FES | Functional electrical stimulation |
fStiff | Functional stiffness |
GI | Gait initiation |
GM | Gastrocnemius Medialis |
GRF | Ground reaction forces |
IPSI | Ipsilesional lower limb |
iStiff | Intrinsic Stiffness |
Kg | Kilograms |
LyE | Lyapunov exponent |
Med | Median |
m | Metres |
MSE | Multiscale Entropy |
NDOM | Non-dominant lower limb |
pCOP | COP position |
PF | Plantar flexion |
SD | Standard deviation |
STANCE | Stance lower limb |
StandTS | Stand-to-sit |
SOL | Soleus |
Swing | Swing lower limb |
TA | Tibialis anterior |
tdCOP | COP total displacement |
uSt | Upright standing |
Ve | Ventral muscles |
VR | Virtual reality |
References
- Latash, M.L.; Huang, X. Neural control of movement stability: Lessons from studies of neurological patients. Neuroscience 2015, 301, 39–48. [Google Scholar] [CrossRef]
- Profeta, V.L.S.; Turvey, M.T. Bernstein’s levels of movement construction: A contemporary perspective. Hum. Mov. Sci. 2018, 57, 111–133. [Google Scholar] [CrossRef]
- Ganguly, J.; Kulshreshtha, D.; Almotiri, M.; Jog, M. Muscle Tone Physiology and Abnormalities. Toxins 2021, 13, 282. [Google Scholar] [CrossRef]
- Nielsen, J.B.; Christensen, M.S.; Farmer, S.F.; Lorentzen, J. Spastic movement disorder: Should we forget hyperexcitable stretch reflexes and start talking about inappropriate prediction of sensory consequences of movement? Exp. Brain Res. 2020, 238, 1627–1636. [Google Scholar] [CrossRef]
- Latash, M.L.; Zatsiorsky, V.M. Joint stiffness: Myth or reality? Hum. Mov. Sci. 1993, 12, 653–692. [Google Scholar] [CrossRef]
- Pandyan, A.D.; Hermens, H.J.; Conway, B.A. Neurological Rehabilitation: Spasticity and Contractures in Clinical Practice and Research; Taylor & Francis: Abingdon, UK, 2016. [Google Scholar]
- Foerster, O. The motor cortex in man in the light light of Hughlings Jackson’s Doctrines. Brain 1936, 59, 135–159. [Google Scholar] [CrossRef]
- Joshi, V.; Rouse, E.J.; Claflin, E.S.; Krishnan, C. How Does Ankle Mechanical Stiffness Change as a Function of Muscle Activation in Standing and During the Late Stance of Walking? IEEE Trans. Biomed. Eng. 2022, 69, 1186–1193. [Google Scholar] [CrossRef]
- Sekiguchi, Y.; Muraki, T.; Owaki, D.; Honda, K.; Izumi, S.I. Regulation of quasi-joint stiffness by combination of activation of ankle muscles in midstances during gait in patients with hemiparesis. Gait Posture 2018, 62, 378–383. [Google Scholar] [CrossRef]
- Mazlan, M.; Hamzah, N.; Ramakrishnan, K. Unilateral ankle dorsiflexor spasticity: An uncommon, disabling complication of transverse myelitis. Arch. Med. Sci. 2012, 8, 939–941. [Google Scholar] [CrossRef]
- Levin, S.M. Human resting muscle tone (HRMT): Narrative, introduction and modern concepts [J. Bodywork Movement Ther. 12 (2008) 320–332]. J. Bodyw. Mov. Ther. 2009, 13, 117–118. [Google Scholar] [CrossRef]
- Ivanenko, Y.; Gurfinkel, V.S. Human Postural Control. Front. Neurosci. 2018, 12, 171. [Google Scholar]
- Graham, J.V.; Eustace, C.; Brock, K.; Swain, E.; Irwin-Carruthers, S. The Bobath concept in contemporary clinical practice. Top. Stroke Rehabil. 2009, 16, 57–68. [Google Scholar]
- Shumway-Cook, A.; Woollacott, M.H. Motor Control: Translating Research into Clinical Practice; Wolters Kluwer: Alphen aan den Rijn, The Netherlands, 2017. [Google Scholar]
- Feldman, A.G. The Relationship Between Postural and Movement Stability. Adv. Exp. Med. Biol. 2016, 957, 105–120. [Google Scholar]
- Sousa, A.S.; Macedo, R.; Santos, R.; Sousa, F.; Silva, A.; Tavares, J.M. Influence of prolonged wearing of unstable shoes on upright standing postural control. Hum. Mov. Sci. 2016, 45, 142–153. [Google Scholar] [CrossRef]
- Sousa, A.S.; Silva, A.; Santos, R. Ankle anticipatory postural adjustments during gait initiation in healthy and post-stroke subjects. Clin. Biomech. 2015, 30, 960–965. [Google Scholar]
- Silva, A.; Sousa, A.S.; Pinheiro, R.; Ferraz, J.; Tavares, J.M.; Santos, R.; Sousa, F. Activation timing of soleus and tibialis anterior muscles during sit-to-stand and stand-to-sit in post-stroke vs. healthy subjects. Somatosens. Mot. Res. 2013, 30, 48–55. [Google Scholar]
- Silva, A.; Sousa, A.S.; Pinheiro, R.; Tavares, J.M.; Santos, R.; Sousa, F. Soleus activity in post-stroke subjects: Movement sequence from standing to sitting. Somatosens. Mot. Res. 2012, 29, 71–76. [Google Scholar] [CrossRef]
- Boudarham, J.; Hameau, S.; Zory, R.; Hardy, A.; Bensmail, D.; Roche, N. Coactivation of Lower Limb Muscles during Gait in Patients with Multiple Sclerosis. PLoS ONE 2016, 11, e0158267. [Google Scholar]
- Pinho, L.; Sousa, A.S.P.; Silva, C.; Cunha, C.; Santos, R.; Tavares, J.M.R.S.; Pereira, S.; Pinheiro, A.R.; Félix, J.; Pinho, F.; et al. Antagonist Coactivation of Muscles of Ankle and Thigh in Post-Stroke vs. Healthy Subjects during Sit-to-Stand Task. Appl. Sci. 2023, 13, 12565. [Google Scholar] [CrossRef]
- Chambers, V.; Artemiadis, P. Using robot-assisted stiffness perturbations to evoke aftereffects useful to post-stroke gait rehabilitation. Front. Robot. AI 2023, 9, 1073746. [Google Scholar] [CrossRef]
- Paci, M. Physiotherapy based on the Bobath concept for adults with post-stroke hemiplegia: A review of effectiveness studies. J. Rehabil. Med. 2003, 35, 2–7. [Google Scholar] [CrossRef] [PubMed]
- Ruhe, A.; Fejer, R.; Walker, B. The test-retest reliability of centre of pressure measures in bipedal static task conditions—A systematic review of the literature. Gait Posture 2010, 32, 436–445. [Google Scholar]
- Latash, M.L. Stability of Kinesthetic Perception in Efferent-Afferent Spaces: The Concept of Iso-perceptual Manifold. Neuroscience 2018, 372, 97–113. [Google Scholar] [PubMed]
- Latash, M.L.; Zatsiorsky, V. Biomechanics and Motor Control: Defining Central Concepts; Academic Press: Cambridge, MA, USA, 2015; pp. 1–409. [Google Scholar]
- Farinelli, V.; Bolzoni, F.; Marchese, S.M.; Esposti, R.; Cavallari, P. A Novel Viewpoint on the Anticipatory Postural Adjustments During Gait Initiation. Front. Hum. Neurosci. 2021, 15, 709780. [Google Scholar] [CrossRef]
- Pilla, A.; Trigili, E.; McKinney, Z.; Fanciullacci, C.; Malasoma, C.; Posteraro, F.; Crea, S.; Vitiello, N. Robotic Rehabilitation and Multimodal Instrumented Assessment of Post-stroke Elbow Motor Functions—A Randomized Controlled Trial Protocol. Front. Neurol. 2020, 11, 587293. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Jakubowski, K.; Spear, S.; Rymer, W. Muscle material properties in passive and active stroke-impaired muscle. J. Biomech. 2019, 83, 197–204. [Google Scholar]
- Xie, T.; Leng, Y.; Zhi, Y.; Jiang, C.; Tian, N.; Luo, Z.; Yu, H.; Song, R. Increased Muscle Activity Accompanying With Decreased Complexity as Spasticity Appears: High-Density EMG-Based Case Studies on Stroke Patients. Front. Bioeng. Biotechnol. 2020, 8, 589321. [Google Scholar]
- Tigrini, A.; Verdini, F.; Fioretti, S.; Mengarelli, A. Long term correlation and inhomogeneity of the inverted pendulum sway time-series under the intermittent control paradigm. Commun. Nonlinear Sci. Numer. Simul. 2022, 108, 106198. [Google Scholar]
- Stergiou, N.; Decker, L.M. Human movement variability, nonlinear dynamics, and pathology: Is there a connection? Hum. Mov. Sci. 2011, 30, 869–888. [Google Scholar]
- Suzuki, Y.; Nakamura, A.; Milosevic, M.; Nomura, K.; Tanahashi, T.; Endo, T.; Sakoda, S.; Morasso, P.; Nomura, T. Postural instability via a loss of intermittent control in elderly and patients with Parkinson’s disease: A model-based and data-driven approach. Chaos 2020, 30, 113140. [Google Scholar]
- Freitas, M.; Pinho, F.; Pinho, L.; Silva, S.; Figueira, V.; Vilas-Boas, J.P.; Silva, A. Biomechanical Assessment Methods Used in Chronic Stroke: A Scoping Review of Non-Linear Approaches. Sensors 2024, 24, 2338. [Google Scholar] [CrossRef] [PubMed]
- Amirpourabasi, A.; Lamb, S.E.; Chow, J.Y.; Williams, G.K.R. Nonlinear Dynamic Measures of Walking in Healthy Older Adults: A Systematic Scoping Review. Sensors 2022, 22, 4408. [Google Scholar] [CrossRef]
- Kędziorek, J.; Błażkiewicz, M. Nonlinear Measures to Evaluate Upright Postural Stability: A Systematic Review. Entropy 2020, 22, 1357. [Google Scholar] [CrossRef] [PubMed]
- Stergiou, N. Nonlinear Analysis for Human Movement Variability, 1st ed.; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Mengarelli, A.; Tigrini, A.; Verdini, F.; Rabini, R.; Fioretti, S. Multiscale Fuzzy Entropy Analysis of Balance: Evidences of Scale-Dependent Dynamics on Diabetic Patients With and Without Neuropathy. IEEE Trans. Neural Syst. Rehabil. Eng. 2023, 31, 1462–1471. [Google Scholar] [CrossRef]
- Caballero, C.; Barbado, D.; Moreno, F. Non-linear tools and methodological concerns measuring human movement variability: Anoverview. Eur. J. Hum. Mov. 2014, 32, 61–81. [Google Scholar]
- Harbourne, R.T.; Stergiou, N. Movement variability and the use of nonlinear tools: Principles to guide physical therapist practice. Phys. Ther. 2009, 89, 267–282. [Google Scholar] [CrossRef]
- Lamontagne, A.; Richards, C.L.; Malouin, F. Coactivation during gait as an adaptive behavior after stroke. J. Electromyogr. Kinesiol. 2000, 10, 407–415. [Google Scholar]
- Lamontagne, A.; Malouin, F.; Richards, C.L.; Dumas, F. Mechanisms of disturbed motor control in ankle weakness during gait after stroke. Gait Posture 2002, 15, 244–255. [Google Scholar] [CrossRef]
- Sousa, A.S.P.; Silva, A.; Santos, R.; Sousa, F.; Tavares, J.M.R.S. Interlimb Coordination During the Stance Phase of Gait in Subjects With Stroke. Arch. Phys. Med. Rehabil. 2013, 94, 2515–2522. [Google Scholar] [CrossRef]
- Bohannon, R.W.; Smith, M.B. Interrater reliability of a modified Ashworth scale of muscle spasticity. Phys. Ther. 1987, 67, 206–207. [Google Scholar] [CrossRef]
- Dick, J.P.; Guiloff, R.J.; Stewart, A.; Blackstock, J.; Bielawska, C.; Paul, E.A.; Marsden, C.D. Mini-mental state examination in neurological patients. J. Neurol. Neurosurg. Psychiatry 1984, 47, 496–499. [Google Scholar] [CrossRef] [PubMed]
- Sousa, A.S.P.; Santos, R.; Oliveira, F.P.M.; Carvalho, P.; Tavares, J.M.R.S. Analysis of ground reaction force and electromyographic activity of the gastrocnemius muscle during double support. Proc. Inst. Mech.Eng. Part. H J. Eng. Med. 2012, 226, 397–405. [Google Scholar] [CrossRef]
- Thompson, P.D.; Arena, R.; Riebe, D.; Pescatello, L.S. ACSM’s new preparticipation health screening recommendations from ACSM’s guidelines for exercise testing and prescription, ninth edition. Curr. Sports Med. Rep. 2013, 12, 215–217. [Google Scholar] [CrossRef] [PubMed]
- Cruz, J.; Jácome, C.; Oliveira, A.; Paixão, C.; Rebelo, P.; Flora, S.; Januário, F.; Valente, C.; Andrade, L.; Marques, A. Construct validity of the brief physical activity assessment tool for clinical use in COPD. Clin. Respir. J. 2021, 15, 530–539. [Google Scholar] [CrossRef] [PubMed]
- Marshall, A.L.; Smith, B.J.; Bauman, A.E.; Kaur, S. Reliability and validity of a brief physical activity assessment for use by family doctors. Br. J. Sports Med. 2005, 39, 294–297; discussion 294–297. [Google Scholar] [CrossRef]
- Folstein, M.F.; Folstein, S.E.; McHugh, P.R. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 1975, 12, 189–198. [Google Scholar] [CrossRef]
- Guerreiro, M.; Silva, A.; Botelho, M.; Leitão, O.; Castro-Caldas, A.; Garcia, C.; Botelho, M.; Guerreiro, M.; Silva, A.; Botelho, A.; et al. Adaptação à população portuguesa da tradução do Mini Mental State Examination. Rev. Port. Neurol. 1994, 1, 9–10. [Google Scholar]
- Guerreiro, M. Contributo da Neuropsicologia para o Estudo das Demências. Ph.D. Thesis, Faculdade de Medicina de Lisboa, University of Lisbon, Lisbon, Portugal, 1998. [Google Scholar]
- Ansari, N.N.; Naghdi, S.; Arab, T.K.; Jalaie, S. The interrater and intrarater reliability of the Modified Ashworth Scale in the assessment of muscle spasticity: Limb and muscle group effect. NeuroRehabilitation 2008, 23, 231–237. [Google Scholar] [CrossRef]
- Costa, S.V. Adaptação e Validação Cultural e Linguıstica do Fugl-Meyer Assessment of Sensorimotor Recovery After Stroke; Escola Superior de Tecnologia da Saúde de Coimbra: Coimbra, Portugal, 2003. [Google Scholar]
- Santos, A.P.; Ramos, N.C.; Estêvão, P.C.; Lopes, A.; Pascoalinho, J. Instrumentos de medida uteis no contexto da avaliação em fisioterapia. Re (Habilitar)-Rev. ESSA 2005, 1, 131–156. [Google Scholar]
- Fugl-Meyer, A.R.; Jääskö, L.; Leyman, I.; Olsson, S.; Steglind, S. The post-stroke hemiplegic patient. 1. a method for evaluation of physical performance. Scand. J. Rehabil. Med. 1975, 7, 13–31. [Google Scholar] [CrossRef]
- Sanford, J.; Moreland, J.; Swanson, L.R.; Stratford, P.W.; Gowland, C. Reliability of the Fugl-Meyer assessment for testing motor performance in patients following stroke. Phys. Ther. 1993, 73, 447–454. [Google Scholar] [PubMed]
- Drouin, J.M.; Valovich-mcLeod, T.C.; Shultz, S.J.; Gansneder, B.M.; Perrin, D.H. Reliability and validity of the Biodex system 3 pro isokinetic dynamometer velocity, torque and position measurements. Eur. J. Appl. Physiol. 2004, 91, 22–29. [Google Scholar]
- Hermens, H.J.; Freriks, B.; Disselhorst-Klug, C.; Rau, G. Development of recommendations for SEMG sensors and sensor placement procedures. J. Electromyogr. Kinesiol. 2000, 10, 361–374. [Google Scholar] [PubMed]
- Couto, A.G.B.; Vaz, M.A.P.; Pinho, L.; Felix, J.; Moreira, J.; Pinho, F.; Mesquita, I.A.; Montes, A.M.; Crasto, C.; Sousa, A.S.P. Repeatability and Temporal Consistency of Lower Limb Biomechanical Variables Expressing Interlimb Coordination during the Double-Support Phase in People with and without Stroke Sequelae. Sensors 2023, 23, 2526. [Google Scholar] [CrossRef] [PubMed]
- Hoang, P.D.; Gorman, R.B.; Todd, G.; Gandevia, S.C.; Herbert, R.D. A new method for measuring passive length-tension properties of human gastrocnemius muscle in vivo. J. Biomech. 2005, 38, 1333–1341. [Google Scholar]
- Hufschmidt, A.; Mauritz, K.H. Chronic transformation of muscle in spasticity: A peripheral contribution to increased tone. J. Neurol. Neurosurg. Psychiatry 1985, 48, 676–685. [Google Scholar]
- Lakie, M.; Robson, L.G. Thixotropic changes in human muscle stiffness and the effects of fatigue. Q. J. Exp. Physiol. 1988, 73, 487–500. [Google Scholar]
- Taylor, D.C.; Dalton, J.D., Jr.; Seaber, A.V.; Garrett, W.E., Jr. Viscoelastic properties of muscle-tendon units. The biomechanical effects of stretching. Am. J. Sports Med. 1990, 18, 300–309. [Google Scholar] [CrossRef]
- Sousa, A.S.; Tavares, J.M. Interlimb Coordination During Step-to-Step Transition and Gait Performance. J. Mot. Behav. 2015, 47, 563–574. [Google Scholar]
- Le Clair, K.; Riach, C. Postural stability measures: What to measure and for how long. Clin. Biomech. 1996, 11, 176–178. [Google Scholar]
- Camargos, A.C.; Rodrigues-de-Paula-Goulart, F.; Teixeira-Salmela, L.F. The effects of foot position on the performance of the sit-to-stand movement with chronic stroke subjects. Arch. Phys. Med. Rehabil. 2009, 90, 314–319. [Google Scholar] [CrossRef] [PubMed]
- Pinsault, N.; Vuillerme, N. Test-retest reliability of centre of foot pressure measures to assess postural control during unperturbed stance. Med. Eng. Phys. 2009, 31, 276–286. [Google Scholar] [CrossRef]
- Zok, M.; Mazzà, C.; Cappozzo, A. Should the instructions issued to the subject in traditional static posturography be standardised? Med. Eng. Phys. 2008, 30, 913–916. [Google Scholar] [PubMed]
- Aryan, R.; Inness, E.; Patterson, K.K.; Mochizuki, G.; Mansfield, A. Reliability of force plate-based measures of standing balance in the sub-acute stage of post-stroke recovery. Heliyon 2023, 9, e21046. [Google Scholar] [CrossRef]
- Kitabayashi, T.; Demura, S.; Noda, M. Examination of the factor structure of center of foot pressure movement and cross-validity. J. Physiol. Anthropol. Appl. Hum. Sci. 2003, 22, 265–272. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.; Sousa, A.S.; Silva, C.; Tavares, J.M.; Santos, R.; Sousa, F. Ankle antagonist coactivation in the double-support phase of walking: Stroke vs. healthy subjects. Somatosens. Mot. Res. 2015, 32, 153–157. [Google Scholar] [CrossRef]
- Cheng, P.T.; Chen, C.L.; Wang, C.M.; Hong, W.H. Leg muscle activation patterns of sit-to-stand movement in stroke patients. Am. J. Phys. Med. Rehabil. 2004, 83, 10–16. [Google Scholar] [CrossRef]
- Dubost, V.; Beauchet, O.; Manckoundia, P.; Herrmann, F.; Mourey, F. Decreased trunk angular displacement during sitting down: An early feature of aging. Phys. Ther. 2005, 85, 404–412. [Google Scholar] [CrossRef]
- Inkster, L.M.; Eng, J.J. Postural control during a sit-to-stand task in individuals with mild Parkinson’s disease. Exp. Brain Res. 2004, 154, 33–38. [Google Scholar] [CrossRef]
- Arsenault, A.B.; Winter, D.A.; Marteniuk, R.G.; Hayes, K.C. How many strides are required for the analysis of electromyographic data in gait? Scand. J. Rehabil. Med. 1986, 18, 133–135. [Google Scholar]
- Fernandes, Â.; Sousa, A.S.P.; Rocha, N.; Tavares, J.M.R.S. The Influence of a Cognitive Task on the Postural Phase of Gait Initiation in Parkinson’s Disease: An Electromyographic-Based Analysis. Mot. Control 2017, 21, 249–264. [Google Scholar] [CrossRef]
- Mann, R.A.; Hagy, J.L.; White, V.; Liddell, D. The initiation of gait. J. Bone Jt. Surg. Am. 1979, 61, 232–239. [Google Scholar] [CrossRef]
- Miller, C.A.; Verstraete, M.C. Determination of the step duration of gait initiation using a mechanical energy analysis. J. Biomech. 1996, 29, 1195–1199. [Google Scholar] [CrossRef] [PubMed]
- Burnett, D.R.; Campbell-Kyureghyan, N.H.; Cerrito, P.B.; Quesada, P.M. Symmetry of ground reaction forces and muscle activity in asymptomatic subjects during walking, sit-to-stand, and stand-to-sit tasks. J. Electromyogr. Kinesiol. 2011, 21, 610–615. [Google Scholar] [CrossRef]
- Caderby, T.; Yiou, E.; Peyrot, N.; de Viviés, X.; Bonazzi, B.; Dalleau, G. Effects of Changing Body Weight Distribution on Mediolateral Stability Control during Gait Initiation. Front. Hum. Neurosci. 2017, 11, 127. [Google Scholar] [CrossRef]
- Rajachandrakumar, R.; Fraser, J.E.; Schinkel-Ivy, A.; Inness, E.L.; Biasin, L.; Brunton, K.; McIlroy, W.E.; Mansfield, A. Atypical anticipatory postural adjustments during gait initiation among individuals with sub-acute stroke. Gait Posture 2017, 52, 325–331. [Google Scholar] [CrossRef] [PubMed]
- Osada, Y.; Motojima, N.; Kobayashi, Y.; Yamamoto, S. Differences in mediolateral dynamic stability during gait initiation according to whether the non-paretic or paretic leg is used as the leading limb. PLoS ONE 2022, 17, e0267577. [Google Scholar] [CrossRef]
- Basmajian, J.V.; De Luca, C.J. Muscles Alive: Their Functions Revealed by Electromyography; Williams & Wilkins: Philadelphia, PA, USA, 1985. [Google Scholar]
- Correia, P.P.; Mil-Homens, P. A Electromiografia no Estudo do Movimento Humano; FMH EDIÇÕES, Ed.; FMH EDIÇÕES: Lisboa, Portugal, 2004; p. 161. [Google Scholar]
- Gajdosik, R.L.; Vander Linden, D.W.; Williams, A.K. Influence of age on concentric isokinetic torque and passive extensibility variables of the calf muscles of women. Eur. J. Appl. Physiol. Occup. Physiol. 1996, 74, 279–286. [Google Scholar] [CrossRef]
- Lamontagne, A.; Malouin, F.; Richards, C.L. Contribution of passive stiffness to ankle plantarflexor moment during gait after stroke. Arch. Phys. Med. Rehabil. 2000, 81, 351–358. [Google Scholar] [CrossRef]
- Riemann, B.L.; DeMont, R.G.; Ryu, K.; Lephart, S.M. The Effects of Sex, Joint Angle, and the Gastrocnemius Muscle on Passive Ankle Joint Complex Stiffness. J. Athl. Train. 2001, 36, 369–375. [Google Scholar]
- Criswell, E. Cram’s Introduction to Surface Electromyography; Jones & Bartlett Learning: Burlington, MA, USA, 2010. [Google Scholar]
- Nordez, A.; Cornu, C.; McNair, P. Acute effects of static stretching on passive stiffness of the hamstring muscles calculated using different mathematical models. Clin. Biomech. 2006, 21, 755–760. [Google Scholar]
- Sousa, A.S.P.; Santos, R.; Silva, A. Ankle Intrinsic Stiffness in Subcortical Poststroke Subjects. J. Mot. Behav. 2017, 49, 265–272. [Google Scholar]
- Salsich, G.B.; Mueller, M.J.; Sahrmann, S.A. Passive ankle stiffness in subjects with diabetes and peripheral neuropathy versus an age-matched comparison group. Phys. Ther. 2000, 80, 352–362. [Google Scholar] [PubMed]
- Winter, D.A. Human balance and posture control during standing and walking. Gait Posture 1995, 3, 193–214. [Google Scholar] [CrossRef]
- Winter, D.A.; Patla, A.E.; Prince, F.; Ishac, M.; Gielo-Perczak, K. Stiffness control of balance in quiet standing. J. Neurophysiol. 1998, 80, 1211–1221. [Google Scholar]
- Winter, D.A.; Patla, A.E.; Rietdyk, S.; Ishac, M.G. Ankle muscle stiffness in the control of balance during quiet standing. J. Neurophysiol. 2001, 85, 2630–2633. [Google Scholar] [CrossRef]
- Carver, T.; Nadeau, S.; Leroux, A. Relation between physical exertion and postural stability in hemiparetic participants secondary to stroke. Gait Posture 2011, 33, 615–619. [Google Scholar] [PubMed]
- Fernandes, Â.; Sousa, A.S.; Couras, J.; Rocha, N.; Tavares, J.M. Influence of dual-task on sit-to-stand-to-sit postural control in Parkinson’s disease. Med. Eng. Phys. 2015, 37, 1070–1075. [Google Scholar] [CrossRef]
- Mizusawa, H.; Jono, Y.; Iwata, Y.; Kinoshita, A.; Hiraoka, K. Processes of anticipatory postural adjustment and step movement of gait initiation. Hum. Mov. Sci. 2017, 52, 1–16. [Google Scholar]
- Kellis, E.; Arabatzi, F.; Papadopoulos, C. Muscle co-activation around the knee in drop jumping using the co-contraction index. J. Electromyogr. Kinesiol. 2003, 13, 229–238. [Google Scholar]
- Persaud, R. Correlation, regression, and repeated data. BMJ 1994, 308, 1510. [Google Scholar] [CrossRef] [PubMed]
- Crenna, P.; Cuong, D.M.; Brénière, Y. Motor programmes for the termination of gait in humans: Organisation and velocity-dependent adaptation. J. Physiol. 2001, 537, 1059–1072. [Google Scholar] [CrossRef]
- Falconer, K.; Winter, D.A. Quantitative assessment of co-contraction at the ankle joint in walking. Electromyogr. Clin. Neurophysiol. 1985, 25, 135–149. [Google Scholar]
- Kesar, T.M.; Tan, A.; Eicholtz, S.; Baker, K.; Xu, J.; Anderson, J.T.; Wolf, S.L.; Borich, M.R. Agonist-Antagonist Coactivation Enhances Corticomotor Excitability of Ankle Muscles. Neural Plast 2019, 2019, 5190671. [Google Scholar] [CrossRef] [PubMed]
- Costa, M.; Goldberger, A.L.; Peng, C.K. Multiscale entropy analysis of complex physiologic time series. Phys. Rev. Lett. 2002, 89, 068102. [Google Scholar] [CrossRef]
- Busa, M.A.; van Emmerik, R.E.A. Multiscale entropy: A tool for understanding the complexity of postural control. J. Sport Health Sci. 2016, 5, 44–51. [Google Scholar] [CrossRef] [PubMed]
- Busa, M.A.; Jones, S.L.; Hamill, J.; van Emmerik, R.E.A. Multiscale entropy identifies differences in complexity in postural control in women with multiple sclerosis. Gait Posture 2016, 45, 7–11. [Google Scholar] [CrossRef]
- Costa, M.; Goldberger, A.L.; Peng, C.K. Multiscale entropy analysis of biological signals. Phys. Rev. E-Stat. Nonlinear Soft Matter Phys. 2005, 71, 021906. [Google Scholar] [CrossRef]
- Goldberger, A.L.; Amaral, L.A.; Glass, L.; Hausdorff, J.M.; Ivanov, P.C.; Mark, R.G.; Mietus, J.E.; Moody, G.B.; Peng, C.K.; Stanley, H.E. PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals. Circulation 2000, 101, E215–E220. [Google Scholar] [CrossRef]
- Richman, J.S.; Moorman, J.R. Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol. Heart Circ. Physiol. 2000, 278, H2039–H2049. [Google Scholar] [CrossRef]
- Caesarendra, W.; Kosasih, B.; Tieu, K.; Moodie, C.A. An application of nonlinear feature extraction-A case study for low speed slewing bearing condition monitoring and prognosis. In Proceedings of the 2013 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Wollongong, NSW, Australia, 9–12 July 2013; pp. 1713–1718. [Google Scholar]
- Rosenstein, M.T.; Collins, J.J.; De Luca, C.J. A practical method for calculating largest Lyapunov exponents from small data sets. Phys. D Nonlinear Phenom. 1993, 65, 117–134. [Google Scholar] [CrossRef]
- Broomhead, D.S.; King, G.P. Extracting qualitative dynamics from experimental data. Phys. D Nonlinear Phenom. 1986, 20, 217–236. [Google Scholar] [CrossRef]
- Matilla-García, M.; Morales, I.; Rodríguez, J.M.; Ruiz Marín, M. Selection of Embedding Dimension and Delay Time in Phase Space Reconstruction via Symbolic Dynamics. Entropy 2021, 23, 221. [Google Scholar] [CrossRef] [PubMed]
- Vlachos, I.; Kugiumtzis, D. State Space Reconstruction for Multivariate Time Series Prediction. arXiv 2008, arXiv:0809.2220. [Google Scholar]
- Costa, M.D.; Goldberger, A.L. Generalized Multiscale Entropy Analysis: Application to Quantifying the Complex Volatility of Human Heartbeat Time Series. Entropy 2015, 17, 1197–1203. [Google Scholar] [CrossRef]
- Mademli, L.; Mavridi, D.; Bohm, S.; Patikas, D.A.; Santuz, A.; Arampatzis, A. Standing on unstable surface challenges postural control of tracking tasks and modulates neuromuscular adjustments specific to task complexity. Sci. Rep. 2021, 11, 6122. [Google Scholar] [CrossRef]
- Marouvo, J.; Sousa, F.; Fernandes, O.; Castro, M.A.; Paszkiel, S. Gait Kinematics Analysis of Flatfoot Adults. Appl. Sci. 2021, 11, 7077. [Google Scholar] [CrossRef]
- Marôco, J. Análise Estatística com o SPSS Statistics, 7th ed.; Report Number: Pêro Pinheiro, Portugal, 2018. [Google Scholar]
- Sainburg, R.; Good, D.; Przybyla, A. Bilateral Synergy: A Framework for Post-Stroke Rehabilitation. J. Neurol Transl. Neurosci. 2013, 1. [Google Scholar]
- Pavol, M.J.; Owings, T.M.; Foley, K.T.; Grabiner, M.D. Mechanisms leading to a fall from an induced trip in healthy older adults. J. Gerontol. A Biol. Sci. Med. Sci. 2001, 56, M428–M437. [Google Scholar] [CrossRef]
- Mehdizadeh, H.; Khalaf, K.; Ghomashchi, H.; Taghizadeh, G.; Ebrahimi, I.; Taghavi Azar Sharabiani, P.; Mousavi, S.J.; Parnianpour, M. Effects of cognitive load on the amount and temporal structure of postural sway variability in stroke survivors. Exp. Brain Res. 2018, 236, 285–296. [Google Scholar] [CrossRef]
- Mehrholz, J.; Thomas, S.; Kugler, J.; Pohl, M.; Elsner, B. Electromechanical-assisted training for walking after stroke. Cochrane Database Syst. Rev. 2020, 10, CD006185. [Google Scholar] [PubMed]
- Wen, S.; Huang, R.; Liu, L.; Zheng, Y.; Yu, H. Robotic exoskeleton-assisted walking rehabilitation for stroke patients: A bibliometric and visual analysis. Front. Bioeng. Biotechnol. 2024, 12, 1391322. [Google Scholar]
- Jixian, W.; Yongfang, L.; Lin, Q.; Muyassar, M.; Chang, L.; Ze, L.; Rubing, S.; Shengju, W.; Guo-Yuan, Y. Advanced rehabilitation in ischaemic stroke research. Stroke Vasc. Neurol. 2024, 9, 328–343. [Google Scholar]
- Cano-de-la-Cuerda, R.; Blázquez-Fernández, A.; Marcos-Antón, S.; Sánchez-Herrera-Baeza, P.; Fernández-González, P.; Collado-Vázquez, S.; Jiménez-Antona, C.; Laguarta-Val, S. Economic Cost of Rehabilitation with Robotic and Virtual Reality Systems in People with Neurological Disorders: A Systematic Review. J. Clin. Med. 2024, 13, 1531. [Google Scholar] [CrossRef]
- Laver, K.E.; Lange, B.; George, S.; Deutsch, J.E.; Saposnik, G.; Crotty, M. Virtual reality for stroke rehabilitation. Cochrane Database Syst. Rev. 2017, 11, CD008349. [Google Scholar]
- Khan, A.; Imam, Y.Z.; Muneer, M.; Al Jerdi, S.; Gill, S.K. Virtual reality in stroke recovery: A meta-review of systematic reviews. Bioelectron. Med. 2024, 10, 23. [Google Scholar]
- Kristensen, M.G.H.; Busk, H.; Wienecke, T. Neuromuscular Electrical Stimulation Improves Activities of Daily Living Post Stroke: A Systematic Review and Meta-analysis. Arch. Rehabil. Res. Clin. Transl. 2022, 4, 100167. [Google Scholar]
- Huber, J.; Kaczmarek, K.; Leszczyńska, K.; Daroszewski, P. Post-Stroke Treatment with Neuromuscular Functional Electrostimulation of Antagonistic Muscles and Kinesiotherapy Evaluated with Electromyography and Clinical Studies in a Two-Month Follow-Up. Int. J. Environ. Res. Public Health 2022, 19, 964. [Google Scholar] [CrossRef]
- Hinton, E.H.; Buffum, R.; Kingston, D.; Stergiou, N.; Kesar, T.; Bierner, S.; Knarr, B.A. Real-Time Visual Kinematic Feedback During Overground Walking Improves Gait Biomechanics in Individuals Post-Stroke. Ann. Biomed. Eng. 2024, 52, 355–363. [Google Scholar] [CrossRef]
- Levin, M.F.; and Demers, M. Motor learning in neurological rehabilitation. Disabil. Rehabil. 2021, 43, 3445–3453. [Google Scholar]
- Campagnini, S.; Arienti, C.; Patrini, M.; Liuzzi, P.; Mannini, A.; Carrozza, M.C. Machine learning methods for functional recovery prediction and prognosis in post-stroke rehabilitation: A systematic review. J. NeuroEng. Rehabil. 2022, 19, 54. [Google Scholar]
- Boukhennoufa, I.; Zhai, X.; Utti, V.; Jackson, J.; McDonald-Maier, K.D. Wearable sensors and machine learning in post-stroke rehabilitation assessment: A systematic review. Biomed. Signal Process. Control 2022, 71, 103197. [Google Scholar]
- Sengupta, N.; Rao, A.S.; Yan, B.; Palaniswami, M. A Survey of Wearable Sensors and Machine Learning Algorithms for Automated Stroke Rehabilitation. IEEE Access 2024, 12, 36026–36054. [Google Scholar]
- Loram, I.D.; Lakie, M. Direct measurement of human ankle stiffness during quiet standing: The intrinsic mechanical stiffness is insufficient for stability. J. Physiol. 2002, 545, 1041–1053. [Google Scholar] [CrossRef]
- Liu, J.; Wang, J.; Tan, G.; Sheng, Y.; Chang, H.; Xie, Q.; Liu, H. Correlation Evaluation of Functional Corticomuscular Coupling With Abnormal Muscle Synergy After Stroke. IEEE Trans. Biomed. Eng. 2021, 68, 3261–3272. [Google Scholar] [PubMed]
- Hussain, V.S.; Spano, M.L.; Lockhart, T.E. Effect of data length on time delay and embedding dimension for calculating the Lyapunov exponent in walking. J. R. Soc. Interface 2020, 17, 20200311. [Google Scholar] [CrossRef]
- Kwakkel, G.; Kollen, B.; Lindeman, E. Understanding the pattern of functional recovery after stroke: Facts and theories. Restor. Neurol. Neurosci. 2004, 22, 281–299. [Google Scholar] [CrossRef] [PubMed]
- Kosonogov, V.; Medvedeva, A.; Komilova, F.; Volodina, M. Postural control in emotional states: An effect of biofeedback. Gait Posture 2024, 108, 183–188. [Google Scholar] [CrossRef]
- Ren, J.; Wang, A.; Li, H.; Yue, X.; Meng, L. A Transformer-Based Neural Network for Gait Prediction in Lower Limb Exoskeleton Robots Using Plantar Force. Sensors 2023, 23, 6547. [Google Scholar] [CrossRef]
- Mahboob, T.; Chung, M.Y.; Choi, K.W. EMG-based 3D hand gesture prediction using transformer–encoder classification. ICT Express 2023, 9, 1047–1052. [Google Scholar] [CrossRef]
- Costa, L.; Gago, M.F.; Yelshyna, D.; Ferreira, J.; David Silva, H.; Rocha, L.; Sousa, N.; Bicho, E. Application of Machine Learning in Postural Control Kinematics for the Diagnosis of Alzheimer’s Disease. Comput. Intell. Neurosci. 2016, 2016, 3891253. [Google Scholar] [CrossRef] [PubMed]
- Choo, Y.J.; Chang, M.C. Use of Machine Learning in Stroke Rehabilitation: A Narrative Review. Brain Neurorehabil 2022, 15, e26. [Google Scholar] [CrossRef] [PubMed]
- Bennett, T.; Kumar, P.; Garate, V.R. A Machine Learning Model for Predicting Sit-to-Stand Trajectories of People with and without Stroke: Towards Adaptive Robotic Assistance. Sensors 2022, 22, 4789. [Google Scholar] [CrossRef] [PubMed]
Muscle | Anatomical Reference |
---|---|
Tibialis Anterior | Proximal third of the line between the tip of the fibula and the tip of the medial malleolus. |
Soleus | 2 cm distal to the lower border of the gastrocnemius medialis muscle belly and 2 cm medial to the posterior midline of the leg. |
Gastrocnemius Medialis | Most prominent portion of muscle belly. |
Functional Task | Muscle Pairs Identification | Antagonist Coactivation Formula (%) |
---|---|---|
Standing | TA/SOL | |
TA/GM | ||
Ve/Do | ||
Stand-to-Sit And Gait Initiation | SOL/TA | |
GM/TA | ||
Do/Ve |
Mean (SD) | p-Value # | ||
---|---|---|---|
Healthy | Stroke | ||
Age (years) | 46.42 (8.260) | 48.50 (12.330) | 0.699 |
Height (cm) | 167.00 (12.000) | 169.00 (8.000) | 0.735 |
Weight (kg) | 74.14 (12.550) | 75.75 (12.520) | 0.791 |
Sex | Female: n = 8 | Female: n = 5 | --- |
Male: n = 4 | Male: n = 7 | ||
Contralesional Side | --- | Left: n = 7 | --- |
Right: n = 5 | |||
Dominant Side | Left: n = 1 | ||
Right: n = 11 | |||
Time since stroke (months) | -- | 25.92 (21.470) | -- |
Med (P25; P75) | |||||
---|---|---|---|---|---|
Healthy | Stroke | ||||
DOM | NDOM | IPSI | CONTRA | ||
iStiff (Nm/°) | 0.30 (0.245; 0.407) | 0.31 (0.212; 0.395) | 0.81 (0.460; 1.740) | 0.45 (0.333; 0.930) | |
fStiff (N/m) | 10,157.00 (4212.453; 26,954.385) | 3884.07 (1776.130; 19,366.177) | |||
Standing CoA (%) | TA/SOL | 48.38 (43.973; 66.129) | 55.49 (54.692; 70.726) | 48.47 (25.690; 64.756) | 28.78 (14.964; 41.062) |
TA/GM | 42.64 (30.618; 64.032) | 49.17 (24.527; 57.000) | 45.46 (29.111; 61.551) | 36.81 (30.159; 50.966) | |
Ve/Do | 68.58 (55.435; 75.260) | 69.98 (61.364; 79.014) | 59.27 (42.240; 82.229) | 51.80 (31.741; 69.218) | |
StandTS CoA (%) | SOL/TA | 47.53 (36.739; 65.565) | 60.90 (48.341; 71.413) | 40.50 (30.818; 50.821) | 46.42 (32.534; 50.053) |
GM/TA | 42.39 (35.478; 52.407) | 40.05 (25.534; 66.400) | 42.18 (17.791; 56.175) | 48.44 (37.663; 50.935) | |
Do/Ve | 62.80 (52.914; 78.821) | 73.63 (52.677; 82.664) | 55.01 (46.826; 69.654) | 64.04 (52.403; 67.065) | |
SWING | STANCE | SWING | STANCE | ||
GI CoA (%) | SOL/TA | 54.08 (49.729; 69.836) | 59.49 (38.588; 76.271) | 50.85 (43.326; 54.262) | 36.63 (29.798; 52.836) |
GM/TA | 39.74 (25.409; 48.620) | 52.76 (23.359; 78.350) | 51.93 (40.917; 53.091) | 34.80 (24.537; 44.198) | |
Do/Ve | 64.41 (60.298; 74.222) | 76.00 (51.694; 89.011) | 67.90 (65.953; 69.467) | 53.43 (44.777; 60.817) |
Correlated Variables | r | p-Value # | ||
---|---|---|---|---|
A | iStiff DOM iStiff NDOM | fStiff HEALTHY | 0.021 −0.133 | 0.948 0.680 |
B | iStiff IPSI iStiff CONTRA | fStiff STROKE | 0.623 0.396 | 0.030 0.202 |
C | iStiff DOM iStiff NDOM | iStiff IPSI iStiff CONTRA | 0.382 0.400 | 0.220 0.198 |
D | fStiff HEALTHY | fStiff STROKE | 0.273 | 0.391 |
Task | CoA | r; p # | |
---|---|---|---|
Standing | HEALTHY iStiff DOM | TA/SOL DOM | 0.448 *; 0.048 |
TA/GM DOM | 0.039; 0.905 | ||
Ve/Do DOM | 0.340; 0.280 | ||
HEALTHY iStiff NDOM | TA/SOL NDOM | 0.446; 0.147 | |
TA/GM NDOM | 0.168; 0.601 | ||
Ve/Do NDOM | 0.351; 0.263 | ||
STROKE iStiff CONTRA | TA/SOL CONTRA | 0.004; 0.991 | |
TA/GM CONTRA | 0.618; 0.432 | ||
Ve/Do CONTRA | 0.246; 0.442 | ||
STROKE iStiff IPSI | TA/SOL IPSI | 0.294; 0.353 | |
TA/GM IPSI | 0.308; 0.330 | ||
Ve/Do IPSI | 0.126; 0.696 | ||
StandTS | HEALTHY iStiff/DOM | SOL/TA DOM | 0.004; 0.991 |
GM/TA DOM | 0.074; 0.820 | ||
Do/Ve DOM | 0.025; 0.940 | ||
HEALTHY iStiff NDOM | SOL/TA NDOM | 0.263; 0.409 | |
GM/TA NDOM | 0.302; 0.340 | ||
Do/Ve NDOM | 0.168; 0.601 | ||
STROKE iStiff CONTRA | SOL/TA CONTRA | 0.681; 0.0150 | |
GM/TA CONTRA | 0.446; 0.147 | ||
Do/Ve CONTRA | 0.403 *; 0.048 | ||
STROKE iStiff IPSI | SOL/TA IPSI | −0.165; 0.609 | |
GM/TA IPSI | −0.084; 0.795 | ||
Do/Ve IPSI | −0.147; 0.648 | ||
Gait Initiation | HEALTHY iStiff SWING | SOL/TA SWING | −0.431; 0.162 |
GM/TA SWING | 0.410; 0.186 | ||
Do/Ve SWING | −0.207; 0.519 | ||
HEALTHY iStiff STANCE | SOL/TA STANCE | 0.246; 0.442 | |
GM/TA STANCE | 0.004; 0.991 | ||
Do/Ve SYANCE | 0.098; 0.761 | ||
STROKE iStiff SWING | SOL/TA SWING | 0.323; 0.306 | |
GM/TA SWING | 0.060; 0.854 | ||
Do/Ve SWING | −0.049; 0.879 | ||
STROKE iStiff STANCE | SOL/TA STANCE | −0.221; 0.491 | |
GM/TA STANCE | 0.035; 0.914 | ||
Do/Ve STANCE | −0.196; 0.541 |
Task | CoA | r; p # | |
---|---|---|---|
Standing | HEALTHY fStiff | TA/SOL DOM | −0.434; 0.159 |
TA/GM DOM | −0.21; 0.948 | ||
Ve/Do DOM | −0.322; 0.308 | ||
TA/SOL NDOM | −0.217; 0.499 | ||
TA/GM NDOM | −0.245; 0.443 | ||
Ve/Do NDOM | −0.231; 0.471 | ||
STROKE fStiff | TA/SOL CONTRA | 0.077; 0.812 | |
TA/GM CONTRA | 0.350; 0.265 | ||
Ve/Do CONTRA | 0.217; 0.499 | ||
TA/SOL IPSI | −0.140; 0.665 | ||
TA/GM IPSI | −0.189; 0.557 | ||
Ve/Do IPSI | −0.147; 0.649 | ||
StandTS | HEALTHY fStiff | SOL/TA DOM | 0.175; 0.587 |
GM/TA DOM | −0.049; 0.880 | ||
Do/Ve DOM | −0.007; 0.983 | ||
SOL/TA NDOM | −0.448; 0.145 | ||
GM/TA NDOM | −0.434; 0.159 | ||
Do/Ve NDOM | −0.427; 0.167 | ||
STROKE fStiff | SOL/TA CONTRA | 0.168; 0.602 | |
GM/TA CONTRA | 0.266; 0.404 | ||
Do/Ve CONTRA | 0.098; 0.762 | ||
SOL/TA IPSI | −0.112; 0.729 | ||
GM/TA IPSI | −0.147; 0.649 | ||
Do/Ve IPSI | −0.217; 0.499 | ||
Gait Initiation | HEALTHY fStiff | SOL/TA SWING | −0.147; 0.649 |
GM/TA SWING | −0.770; 0.812 | ||
Do/Ve SWING | −0.049; 0.880 | ||
SOL/TA STANCE | −0.770; 0.812 | ||
GM/TA STANCE | 0.238; 0.457 | ||
Do/Ve SYANCE | 0.098; 0.762 | ||
STROKE fStiff | SOL/TA SWING | 0.098; 0.762 | |
GM/TA SWING | 0.203; 0.527 | ||
Do/Ve SWING | 0.133; 0.681 | ||
SOL/TA STANCE | 0.420; 0.175 | ||
GM/TA STANCE | 0.587 *; 0.045 | ||
Do/Ve STANCE | 0.434; 0.159 |
Task | CoA | r; p # | |
---|---|---|---|
Standing | HEALTHY DOM vs. NDOM | TA/SOL | 0.832 *; 0.001 |
TA/GM | 0.804 *; 0.002 | ||
Ve/Do | 0.259; 0.417 | ||
STROKE IPSI vs. CONTRA | TA/SOL | 0.776 *; 0.003 | |
TA/GM | 0.699 *; 0.011 | ||
Ve/Do | 0.315; 0.319 | ||
StandTS | HEALTHY DOM vs. NDOM | SOL/TA | 0.573; 0.051 |
GM/TA | 0.762; 0.004 | ||
Do/Ve | 0.573; 0.051 | ||
STROKE IPSI vs. CONTRA | SOL/TA | 0.231; 0.471 | |
GM/TA | 0.007; 0.983 | ||
Do/Ve | 0.000; 1.000 | ||
Gait Initiation | HEALTHY SWING vs. STANCE | SOL/TA | 0.364; 0.245 |
GM/TA | −0.056; 0.863 | ||
Do/Ve | 0.231; 0.471 | ||
STROKE SWING vs. STANCE | SOL/TA | 0.112; 0.729 | |
GM/TA | 0.483; 0.112 | ||
Do/Ve | 0.294; 0.354 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pinho, L.; Freitas, M.; Pinho, F.; Silva, S.; Figueira, V.; Ribeiro, E.; Sousa, A.S.P.; Sousa, F.; Silva, A. A Comprehensive Understanding of Postural Tone Biomechanics: Intrinsic Stiffness, Functional Stiffness, Antagonist Coactivation, and COP Dynamics in Post-Stroke Adults. Sensors 2025, 25, 2196. https://doi.org/10.3390/s25072196
Pinho L, Freitas M, Pinho F, Silva S, Figueira V, Ribeiro E, Sousa ASP, Sousa F, Silva A. A Comprehensive Understanding of Postural Tone Biomechanics: Intrinsic Stiffness, Functional Stiffness, Antagonist Coactivation, and COP Dynamics in Post-Stroke Adults. Sensors. 2025; 25(7):2196. https://doi.org/10.3390/s25072196
Chicago/Turabian StylePinho, Liliana, Marta Freitas, Francisco Pinho, Sandra Silva, Vânia Figueira, Edgar Ribeiro, Andreia S. P. Sousa, Filipa Sousa, and Augusta Silva. 2025. "A Comprehensive Understanding of Postural Tone Biomechanics: Intrinsic Stiffness, Functional Stiffness, Antagonist Coactivation, and COP Dynamics in Post-Stroke Adults" Sensors 25, no. 7: 2196. https://doi.org/10.3390/s25072196
APA StylePinho, L., Freitas, M., Pinho, F., Silva, S., Figueira, V., Ribeiro, E., Sousa, A. S. P., Sousa, F., & Silva, A. (2025). A Comprehensive Understanding of Postural Tone Biomechanics: Intrinsic Stiffness, Functional Stiffness, Antagonist Coactivation, and COP Dynamics in Post-Stroke Adults. Sensors, 25(7), 2196. https://doi.org/10.3390/s25072196