Predicting Real-World Physical Activity in Multiple Sclerosis: An Integrated Approach Using Clinical, Sensor-Based, and Self-Reported Measures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Participant-Reported Outcomes
2.3. Sensor-Derived Clinical Measures
2.4. Prospective Physical Activity
2.5. Statistical Analyses
3. Results
3.1. 3-Month Total Step Count
3.2. 3-Month Total Activity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Trapp, B.D.; Nave, K.A. Multiple Sclerosis: An Immune or Neurodegenerative Disorder? Annu. Rev. Neurosci. 2008, 31, 247–269. [Google Scholar] [CrossRef] [PubMed]
- LaRocca, N.G. Impact of Walking Impairment in Multiple Sclerosis: Perspectives of Patients and Care Partners. Patient 2011, 4, 189–201. [Google Scholar] [CrossRef]
- Comber, L.; Galvin, R.; Coote, S. Gait Deficits in People with Multiple Sclerosis: A Systematic Review and Meta-Analysis. Gait Posture 2017, 51, 25–35. [Google Scholar] [CrossRef]
- Comber, L.; Sosnoff, J.J.; Galvin, R.; Coote, S. Postural Control Deficits in People with Multiple Sclerosis: A Systematic Review and Meta-Analysis. Gait Posture 2018, 61, 445–452. [Google Scholar] [CrossRef] [PubMed]
- Motl, R.W. Benefits, Safety, and Prescription of Exercise in Persons with Multiple Sclerosis. Expert. Rev. Neurother. 2014, 14, 1429–1436. [Google Scholar] [CrossRef] [PubMed]
- Motl, R.W.; Gosney, J.L. Effect of Exercise Training on Quality of Life in Multiple Sclerosis: A Meta-Analysis. Mult. Scler. J. 2008, 14, 129–135. [Google Scholar] [CrossRef]
- Pilutti, L.A.; Greenlee, T.A.; Motl, R.W.; Nickrent, M.S.; Petruzzello, S.J. Effects of Exercise Training on Fatigue in Multiple Sclerosis: A Meta-Analysis. Psychosom. Med. 2013, 75, 575–580. [Google Scholar] [CrossRef]
- Pearson, M.; Dieberg, G.; Smart, N. Exercise as a Therapy for Improvement of Walking Ability in Adults With Multiple Sclerosis: A Meta-Analysis. Arch. Phys. Med. Rehabil. 2015, 96, 1339–1348.e7. [Google Scholar] [CrossRef]
- Dalgas, U.; Stenager, E. Exercise and Disease Progression in Multiple Sclerosis: Can Exercise Slow down the Progression of Multiple Sclerosis? Ther. Adv. Neurol. Disord. 2012, 5, 81–95. [Google Scholar] [CrossRef]
- Beckerman, H.; De Groot, V.; Scholten, M.A.; Kempen, J.C.E.; Lankhorst, G.J. Physical Activity Behavior of People with Multiple Sclerosis: Understanding How They Can Become More Physically Active. Phys. Ther. 2010, 90, 1001–1013. [Google Scholar] [CrossRef]
- Ketelhut, N.B.; Kindred, J.H.; Pimentel, R.E.; Hess, A.M.; Tracy, B.L.; Reiser, R.F.; Rudroff, T. Functional Factors That Are Important Correlates to Physical Activity in People with Multiple Sclerosis: A Pilot Study. Disabil. Rehabil. 2018, 40, 2416–2423. [Google Scholar] [CrossRef]
- Kehoe, M.; Saunders, J.; Jakeman, P.; Coote, S. Predictors of the Physical Impact of Multiple Sclerosis Following Community-Based, Exercise Trial. Mult. Scler. J. 2015, 21, 590–598. [Google Scholar] [CrossRef] [PubMed]
- Kahraman, T.; Savci, S.; Coskuner-Poyraz, E.; Ozakbas, S.; Idiman, E. Determinants of Physical Activity in Minimally Impaired People with Multiple Sclerosis. Clin. Neurol. Neurosurg. 2015, 138, 20–24. [Google Scholar] [CrossRef] [PubMed]
- Rzepka, M.; Toś, M.; Boroń, M.; Gibas, K.; Krzystanek, E. Relationship between Fatigue and Physical Activity in a Polish Cohort of Multiple Sclerosis Patients. Medicina 2020, 56, 726. [Google Scholar] [CrossRef] [PubMed]
- Kohn, C.G.; Coleman, C.I.; Michael White, C.; Sidovar, M.F.; Sobieraj, D.M. Mobility, Walking and Physical Activity in Persons with Multiple Sclerosis. Curr. Med. Res. Opin. 2014, 30, 1857–1862. [Google Scholar] [CrossRef]
- Sikes, E.M.; Richardson, E.V.; Cederberg, K.J.; Sasaki, J.E.; Sandroff, B.M.; Motl, R.W. Use of the Godin Leisure-Time Exercise Questionnaire in Multiple Sclerosis Research: A Comprehensive Narrative Review. Disabil. Rehabil. 2019, 41, 1243–1267. [Google Scholar] [CrossRef]
- Gosney, J.L.; Scott, J.A.; Snook, E.M.; Motl, R.W. Physical Activity and Multiple Sclerosis: Validity of Self-Report and Objective Measures. Fam. Community Health 2007, 30, 144–150. [Google Scholar] [CrossRef]
- Woelfle, T.; Bourguignon, L.; Lorscheider, J.; Kappos, L.; Naegelin, Y.; Jutzeler, C.R. Wearable Sensor Technologies to Assess Motor Functions in People with Multiple Sclerosis: Systematic Scoping Review and Perspective. J. Med. Internet Res. 2023, 25, e44428. [Google Scholar] [CrossRef]
- Monaghan, P.G.; Monaghan, A.S.; Hooyman, A.; Fling, B.W.; Huisinga, J.M.; Peterson, D.S. Utilizing the ISway to Identify and Compare Balance Domain Deficits in People with Multiple Sclerosis. Mult. Scler. Relat. Disord. 2023, 73, 104645. [Google Scholar] [CrossRef]
- Mancini, M.; King, L.; Salarian, A.; Holmstrom, L.; McNames, J.; Horak, F.B. Mobility Lab to Assess Balance and Gait with Synchronized Body-Worn Sensors. J. Bioeng. Biomed. Sci. 2011, 7. [Google Scholar] [CrossRef]
- Salarian, A.; Horak, F.B.; Zampieri, C.; Carlson-Kuhta, P.; Nutt, J.G.; Aminian, K. ITUG, a Sensitive and Reliable Measure of Mobility. IEEE Trans. Neural Syst. Rehabil. Eng. 2010, 18, 303–310. [Google Scholar] [CrossRef]
- Monaghan, P.G.; Takla, T.N.; Chargo, A.N.; Edwards, E.M.; Yu, B.; Myers, E.; Daugherty, A.M.; Fritz, N.E. Measurement Properties of Backward Walking and Its Sensitivity and Feasibility in Predicting Falls in People With Multiple Sclerosis. Int. J. MS Care 2024, 26, 155–166. [Google Scholar] [CrossRef] [PubMed]
- Spain, R.I.; St. George, R.J.; Salarian, A.; Mancini, M.; Wagner, J.M.; Horak, F.B.; Bourdette, D. Body-Worn Motion Sensors Detect Balance and Gait Deficits in People with Multiple Sclerosis Who Have Normal Walking Speed. Gait Posture 2012, 35, 573–578. [Google Scholar] [CrossRef]
- Angelini, L.; Hodgkinson, W.; Smith, C.; Dodd, J.M.; Sharrack, B.; Mazzà, C.; Paling, D. Wearable Sensors Can Reliably Quantify Gait Alterations Associated with Disability in People with Progressive Multiple Sclerosis in a Clinical Setting. J. Neurol. 2020, 267, 2897–2909. [Google Scholar] [CrossRef] [PubMed]
- Polman, C.H.; Reingold, S.C.; Banwell, B.; Clanet, M.; Cohen, J.A.; Filippi, M.; Fujihara, K.; Havrdova, E.; Hutchinson, M.; Kappos, L.; et al. Diagnostic Criteria for Multiple Sclerosis: 2010 Revisions to the McDonald Criteria. Ann. Neurol. 2011, 69, 292–302. [Google Scholar] [CrossRef] [PubMed]
- Hohol, M.J.; Orav, E.J.; Weiner, H.L. Disease Steps in Multiple Sclerosis: A Longitudinal Study Comparing Disease Steps and EDSS to Evaluate Disease Progression. Mult. Scler. J. 1999, 5, 349–354. [Google Scholar] [CrossRef]
- Scholz, M.; Haase, R.; Trentzsch, K.; Weidemann, M.L.; Ziemssen, T. Fear of Falling and Falls in People with Multiple Sclerosis: A Literature Review. Mult. Scler. Relat. Disord. 2021, 47, 102609. [Google Scholar] [CrossRef]
- Van Vliet, R.; Hoang, P.; Lord, S.; Gandevia, S.; Delbaere, K. Falls Efficacy Scale-International: A Cross-Sectional Validation in People with Multiple Sclerosis. Arch. Phys. Med. Rehabil. 2013, 94, 883–889. [Google Scholar] [CrossRef]
- Kos, D.; Kerckhofs, E.; Carrea, I.; Verza, R.; Ramos, M.; Jansa, J. Evaluation of the Modified Fatigue Impact Scale in Four Different European Countries. Mult. Scler. J. 2005, 11, 76–80. [Google Scholar] [CrossRef]
- Hobart, J.C.; Riazi, A.; Lamping, D.L.; Fitzpatrick, R.; Thompson, A.J. Measuring the Impact of MS on Walking Ability: The 12-Item MS Walking Scale (MSWS-12). Neurology 2003, 60, 31–36. [Google Scholar] [CrossRef]
- Motl, R.W.; Cohen, J.A.; Benedict, R.; Phillips, G.; LaRocca, N.; Hudson, L.D.; Rudick, R. Validity of the Timed 25-Foot Walk as an Ambulatory Performance Outcome Measure for Multiple Sclerosis. Mult. Scler. 2017, 23, 704–710. [Google Scholar] [CrossRef] [PubMed]
- Mancini, M.; Salarian, A.; Carlson-Kuhta, P.; Zampieri, C.; King, L.; Chiari, L.; Horak, F.B. ISway: A Sensitive, Valid and Reliable Measure of Postural Control. J. Neuroeng. Rehabil. 2012, 9, 59. [Google Scholar] [CrossRef] [PubMed]
- Horak, F.B.; Wrisley, D.M.; Frank, J. The Balance Evaluation Systems Test (BESTest) to Differentiate Balance Deficits. Phys. Ther. 2009, 89, 484–498. [Google Scholar] [CrossRef] [PubMed]
- Franchignoni, F.; Horak, F.; Godi, M.; Nardone, A.; Giordano, A. Using Psychometric Techniques to Improve the Balance Evaluation Systems Test: The Mini-Bestest. J. Rehabil. Med. 2010, 42, 323–331. [Google Scholar] [CrossRef]
- El-Gohary, M.; Peterson, D.; Gera, G.; Horak, F.B.; Huisinga, J.M. Validity of the Instrumented Push and Release Test to Quantify Postural Responses in Persons with Multiple Sclerosis. Arch. Phys. Med. Rehabil. 2017, 98, 1325–1331. [Google Scholar] [CrossRef]
- Morris, A.; Fino, N.F.; Pelo, R.; Kreter, N.; Cassidy, B.; Dibble, L.E.; Fino, P.C. Interadministrator Reliability of a Modified Instrumented Push and Release Test of Reactive Balance. J. Sport Rehabil. 2022, 31, 517–523. [Google Scholar] [CrossRef]
- Morris, A.; Petersell, T.L.; Pelo, R.; Hill, S.; Cassidy, B.; Jameson, T.; Iriye, T.; Burke, J.; Dibble, L.E.; Fino, P.C. Use of Reactive Balance Assessments With Clinical Baseline Concussion Assessments in Collegiate Athletes. J. Athl. Train. 2024, 59, 39–48. [Google Scholar] [CrossRef]
- Morris, A.; Cassidy, B.; Pelo, R.; Fino, N.F.; Presson, A.P.; Cushman, D.M.; Monson, N.E.; Dibble, L.E.; Fino, P.C. Reactive Postural Responses After Mild Traumatic Brain Injury and Their Association With Musculoskeletal Injury Risk in Collegiate Athletes: A Study Protocol. Front. Sports Act. Living 2020, 2, 574848. [Google Scholar] [CrossRef]
- Takla, T.N.; Monaghan, P.G.; Peterson, D.S.; Fritz, N.E. The Relation Among Reactive Stepping and Fall-Related Psychological Factors in Multiple Sclerosis. Brain Sci. 2024, 14, 1197. [Google Scholar] [CrossRef]
- Fitbit How Does My Fitbit Device Calculate Active Minutes? Available online: https://help.fitbit.com/articles/en_US/Help_article/1379.htm (accessed on 6 February 2024).
- Fitbit How Does My Fitbit Device Calculate Calories Burned? Available online: https://support.google.com/fitbit/answer/14237111?hl=en#zippy=%2Chow-does-my-fitbit-device-calculate-calories-burned (accessed on 6 February 2024).
- Block, V.J.; Zhao, C.; Hollenbach, J.A.; Olgin, J.E.; Marcus, G.M.; Pletcher, M.J.; Henry, R.; Gelfand, J.M.; Cree, B.A.C. Validation of a Consumer-Grade Activity Monitor for Continuous Daily Activity Monitoring in Individuals with Multiple Sclerosis. Mult. Scler. J. Exp. Transl. Clin. 2019, 5, 2055217319888660. [Google Scholar] [CrossRef]
- Reid, R.E.R.; Insogna, J.A.; Carver, T.E.; Comptour, A.M.; Bewski, N.A.; Sciortino, C.; Andersen, R.E. Validity and Reliability of Fitbit Activity Monitors Compared to ActiGraph GT3X+ with Female Adults in a Free-Living Environment. J. Sci. Med. Sport 2017, 20, 578–582. [Google Scholar] [CrossRef] [PubMed]
- Motl, R.W.; Zhu, W.; Park, Y.; McAuley, E.; Scott, J.A.; Snook, E.M. Reliability of Scores from Physical Activity Monitors in Adults with Multiple Sclerosis. Adapt. Phys. Act. Q. 2007, 24, 245–253. [Google Scholar] [CrossRef]
- Dasmahapatra, P.; Chiauzzi, E.; Bhalerao, R.; Rhodes, J. Free-Living Physical Activity Monitoring in Adult US Patients with Multiple Sclerosis Using a Consumer Wearable Device. Digit. Biomark. 2018, 2, 47–63. [Google Scholar] [CrossRef]
- Polhemus, A.; Sieber, C.; Haag, C.; Sylvester, R.; Kool, J.; Gonzenbach, R.; von Wyl, V. Non-Equivalent, but Still Valid: Establishing the Construct Validity of a Consumer Fitness Tracker in Persons with Multiple Sclerosis. PLoS Digit. Health 2023, 2, e0000171. [Google Scholar] [CrossRef] [PubMed]
- Chu, A.H.Y.; Ng, S.H.X.; Paknezhad, M.; Gauterin, A.; Koh, D.; Brown, M.S.; Müller-Riemenschneider, F. Comparison of Wrist-Worn Fitbit Flex and Waist-Worn ActiGraph for Measuring Steps in Free-Living Adults. PLoS ONE 2017, 12, e0172535. [Google Scholar] [CrossRef] [PubMed]
- Akaike, H. A New Look at the Statistical Model Identification. IEEE Trans. Autom. Control 1974, 19, 716–723. [Google Scholar] [CrossRef]
- Kalb, R.; Brown, T.R.; Coote, S.; Costello, K.; Dalgas, U.; Garmon, E.; Giesser, B.; Halper, J.; Karpatkin, H.; Keller, J.; et al. Exercise and Lifestyle Physical Activity Recommendations for People with Multiple Sclerosis throughout the Disease Course. Mult. Scler. J. 2020, 26, 1459–1469. [Google Scholar] [CrossRef]
- Dlugonski, D.; Pilutti, L.A.; Sandroff, B.M.; Suh, Y.; Balantrapu, S.; Motl, R.W. Steps per Day among Persons with Multiple Sclerosis: Variation by Demographic, Clinical, and Device Characteristics. Arch. Phys. Med. Rehabil. 2013, 94, 1534–1539. [Google Scholar] [CrossRef]
- Motl, R.W.; McAuley, E. Pathways Between Physical Activity and Quality of Life in Adults with Multiple Sclerosis. Health Psychol. 2009, 28, 682–689. [Google Scholar] [CrossRef]
- Learmonth, Y.C.; Motl, R.W. Physical Activity and Exercise Training in Multiple Sclerosis: A Review and Content Analysis of Qualitative Research Identifying Perceived Determinants and Consequences. Disabil. Rehabil. 2016, 38, 1227–1242. [Google Scholar] [CrossRef]
- Snook, E.M.; Motl, R.W. Physical Activity Behaviors in Individuals with Multiple Sclerosis: Roles of Overall and Specific Symptoms, and Self-Efficacy. J. Pain. Symptom Manag. 2008, 36, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Kasser, S.L.; Jacobs, J.V.; Littenberg, B.; Foley, J.T.; Cardinal, B.J.; Maddalozzo, G.F. Exploring Physical Activity in Women with Multiple Sclerosis: Associations with Fear of Falling and Underlying Impairments. Am. J. Phys. Med. Rehabil. 2014, 93, 461–469. [Google Scholar] [CrossRef]
- Gunn, H.; Cameron, M.; Hoang, P.; Lord, S.; Shaw, S.; Freeman, J. Relationship Between Physiological and Perceived Fall Risk in People With Multiple Sclerosis: Implications for Assessment and Management. Arch. Phys. Med. Rehabil. 2018, 99, 2022–2029. [Google Scholar] [CrossRef] [PubMed]
- Longhurst, J.K.; Hooyman, A.; Landers, M.R.; Mancini, M.; Franzén, E.; Leavy, B.; Johansson, H.; Peterson, D. Discordance Between Balance Ability and Perception Is Associated With Falls in Parkinson’s Disease: A Coordinated Analysis. Neurorehabil. Neural Repair 2024, 39, 114–125. [Google Scholar] [CrossRef]
- Huynh, T.L.T.; Silveira, S.L.; Jeng, B.; Motl, R.W. Association of Disease Outcomes With Physical Activity in Multiple Sclerosis: A Cross-Sectional Study. Rehabil. Psychol. 2022, 67, 421–429. [Google Scholar] [CrossRef]
- Sieber, C.; Haag, C.; Polhemus, A.; Haile, S.R.; Sylvester, R.; Kool, J.; Gonzenbach, R.; von Wyl, V. Exploring the Major Barriers to Physical Activity in Persons With Multiple Sclerosis: Observational Longitudinal Study. JMIR Rehabil. Assist. Technol. 2024, 11, e52733. [Google Scholar] [CrossRef] [PubMed]
- Neal, W.N.; Cederberg, K.L.; Jeng, B.; Sasaki, J.E.; Motl, R.W. Is Symptomatic Fatigue Associated With Physical Activity and Sedentary Behaviors Among Persons With Multiple Sclerosis? Neurorehabil. Neural Repair 2020, 34, 505–511. [Google Scholar] [CrossRef]
- Motl, R.W.; McAuley, E.; Wynn, D.; Suh, Y.; Weikert, M.; Dlugonski, D. Symptoms and Physical Activity among Adults with Relapsing-Remitting Multiple Sclerosis. J. Nerv. Ment. Dis. 2010, 198, 213–219. [Google Scholar] [CrossRef]
- Motl, R.W.; Suh, Y.; Weikert, M.; Dlugonski, D.; Balantrapu, S.; Sandroff, B. Fatigue, Depression, and Physical Activity in Relapsing-Remitting Multiple Sclerosis: Results from a Prospective, 18-Month Study. Mult. Scler. Relat. Disord. 2012, 1, 43–48. [Google Scholar] [CrossRef]
- Merkelbach, S.; Schulz, H.; Kölmel, H.W.; Gora, G.; Klingelhöfer, J.; Dachsel, R.; Hoffmann, F.; Polzer, U. Fatigue, Sleepiness, and Physical Activity in Patients with Multiple Sclerosis. J. Neurol. 2011, 258, 74–79. [Google Scholar] [CrossRef]
- Feys, P.; Gijbels, D.; Romberg, A.; Santoyo, C.; Gebara, B.; De Noordhout, B.M.; Knuts, K.; Béthoux, F.; De Groot, V.; Vaney, C.; et al. Effect of Time of Day on Walking Capacity and Self-Reported Fatigue in Persons with Multiple Sclerosis: A Multi-Center Trial. Mult. Scler. J. 2012, 18, 351–357. [Google Scholar] [CrossRef] [PubMed]
- Rietberg, M.B.; Van Wegen, E.E.H.; Uitdehaag, B.M.J.; Kwakkel, G. The Association between Perceived Fatigue and Actual Level of Physical Activity in Multiple Sclerosis. Mult. Scler. J. 2011, 17, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Enoka, R.M.; Almuklass, A.M.; Alenazy, M.; Alvarez, E.; Duchateau, J. Distinguishing between Fatigue and Fatigability in Multiple Sclerosis. Neurorehabil. Neural Repair 2021, 35, 960–973. [Google Scholar] [CrossRef]
- Loy, B.D.; Taylor, R.L.; Fling, B.W.; Horak, F.B. Relationship between Perceived Fatigue and Performance Fatigability in People with Multiple Sclerosis: A Systematic Review and Meta-Analysis. J. Psychosom. Res. 2017, 100, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Téllez, N.; Río, J.; Tintoré, M.; Nos, C.; Galán, I.; Montalban, X. Does the Modified Fatigue Impact Scale Offer a More Comprehensive Assessment of Fatigue in MS? Mult. Scler. J. 2005, 11, 198–202. [Google Scholar] [CrossRef]
- Motl, R.W.; Sandroff, B.M. Objective Monitoring of Physical Activity Behavior in Multiple Sclerosis. Phys. Ther. Rev. 2010, 15, 204–211. [Google Scholar] [CrossRef]
- Peterson, D.S.; Huisinga, J.M.; Spain, R.I.; Horak, F.B. Characterization of Compensatory Stepping in People with Multiple Sclerosis. Arch. Phys. Med. Rehabil. 2016, 97, 513–521. [Google Scholar] [CrossRef]
- Monaghan, P.G.; VanNostrand, M.; Fritz, N.E. Backwards Walking Speed Reserve in People with Multiple Sclerosis. Mult. Scler. Relat. Disord. 2024, 85, 105556. [Google Scholar] [CrossRef]
- Takla, T.N.; Chargo, A.N.; Daugherty, A.M.; Fritz, N.E. Cognitive Contributors of Backward Walking in Persons with Multiple Sclerosis. Mult. Scler. Int. 2023, 2023, 1–10. [Google Scholar] [CrossRef]
- Hackney, M.E.; Earhart, G.M. Backward Walking in Parkinson’s Disease. Mov. Disord. 2009, 24, 218–223. [Google Scholar] [CrossRef]
- VanNostrand, M.; Monaghan, P.G.; Fritz, N.E. Examination of Proprioceptive Reliance During Backward Walking in Individuals With Multiple Sclerosis. J. Neurol. Phys. Ther. 2024, 86, 105588. [Google Scholar] [CrossRef]
- Edwards, E.M.; Daugherty, A.M.; Nitta, M.; Atalla, M.; Fritz, N.E. Backward Walking Sensitively Detects Fallers in Persons with Multiple Sclerosis. Mult. Scler. Relat. Disord. 2020, 45, 102390. [Google Scholar] [CrossRef]
- Klineova, S.; Lublin, F.D. Clinical Course of Multiple Sclerosis. Cold Spring Harb. Perspect. Med. 2018, 8, a028928. [Google Scholar] [CrossRef] [PubMed]
- Boeschoten, R.E.; Braamse, A.M.J.; Beekman, A.T.F.; Cuijpers, P.; van Oppen, P.; Dekker, J.; Uitdehaag, B.M.J. Prevalence of Depression and Anxiety in Multiple Sclerosis: A Systematic Review and Meta-Analysis. J. Neurol. Sci. 2017, 372, 331–341. [Google Scholar] [CrossRef] [PubMed]
- Kwon, S.; Han, K.-D.; Jung, J.H.; Cho, E.B.; Chung, Y.H.; Park, J.; Choi, H.L.; Jeon, H.J.; Shin, D.W.; Min, J.-H. Risk of Depression and Anxiety in Multiple Sclerosis and Neuromyelitis Optica Spectrum Disorder: A Nationwide Cohort Study in South Korea. Mult. Scler. J. 2024, 30, 714–725. [Google Scholar] [CrossRef]
- Marrie, R.A.; Reingold, S.; Cohen, J.; Stuve, O.; Trojano, M.; Sorensen, P.S.; Cutter, G.; Reider, N. The Incidence and Prevalence of Psychiatric Disorders in Multiple Sclerosis: A Systematic Review. Mult. Scler. J. 2015, 21, 305–317. [Google Scholar] [CrossRef]
- Carotenuto, A.; Scandurra, C.; Costabile, T.; Lavorgna, L.; Borriello, G.; Moiola, L.; Inglese, M.; Trojsi, F.; Petruzzo, M.; Ianniello, A.; et al. Physical Exercise Moderates the Effects of Disability on Depression in People with Multiple Sclerosis during the COVID-19 Outbreak. J. Clin. Med. 2021, 10, 1234. [Google Scholar] [CrossRef]
Descriptive Statistics | N = 45 |
---|---|
Age (years) | 51.16 ± 11.12 |
Sex (n, % female) | 38, 84% |
Race (n) | White: 23 African American/Black: 21 Native American: 2 Pacific Islander: 1 Hispanic/Chicano: 1 |
PDDS [median (range)] | 1 (0–6) |
MS Subtype (n, %) | RRMS: 42, 93.33% SPMS: 2, 4.44% PPMS: 1, 2.22% |
Participant-Reported Outcomes | |
MSWS-12 | 35.69 ± 30.15 |
FES-I | 27.20 ± 9.30 |
MFIS | 32.71 ± 17.79 |
Sensor-Derived Clinical Outcomes | |
BW velocity (m/s) | 0.65 ± 0.33 |
FW velocity (m/s) | 0.99 ± 0.37 |
PAR time to stabilization (s) | 1.47 ± 0.64 |
ECFT sway area (m2/s4) | 0.38 ± 0.46 |
3-Month Prospective Physical Activity | |
Average daily physical activity in minutes | 252 ± 93 |
Average daily step count | 5947 ± 3073 |
Average daily wear time (minutes) (maximum = 1440 min) | 1299 ± 109 |
Average daily percentage wear time | 90.25 ± 7.62% |
3-Month Step Count | 3-Month Total Activity | Age | PDDS | MSWS-12 | MFIS | FES-I | FW Velocity | BW Velocity | PAR Time to Stabilization | ECFT Sway Area | |
---|---|---|---|---|---|---|---|---|---|---|---|
3-Month daily step count | - | 0.75 ** | −0.26 | −0.40 **a | −0.50 **a | −0.27 | −0.44 **a | 0.45 ** | 0.57 ** | −0.27 | −0.11 a |
3-Month daily total activity | - | −0.11 | −0.49 **a | −0.59 **a | −0.26 | −0.51 **a | 0.50 ** | 0.54 ** | −0.23 | −0.01 a | |
Age | - | 0.19 a | 0.18 a | −0.05 | 0.16 a | −0.04 | −0.20 | 0.15 | 0.14 a | ||
PDDS | - | 0.87 **a | 0.60 **a | 0.62 **a | −0.62 **a | −0.67 **a | 0.30 *a | 0.54 **a | |||
MSWS-12 | - | 0.68 **a | 0.63 **a | −0.65 **a | −0.61 **a | 0.17 a | 0.41 **a | ||||
MFIS | - | 0.55 **a | −0.32 * | −0.28 * | 0.21 | 0.40 **a | |||||
FES-I | - | −0.56 **a | −0.57 **a | 0.32 *a | 0.36 **a | ||||||
FW velocity | - | 0.87 ** | −0.29 * | −0.25 a | |||||||
BW velocity | - | −0.28 | −0.46 **a | ||||||||
PAR time to stabilization | - | 0.27 *a | |||||||||
ECFT sway area | - |
3-Month Daily Step Count | |||||
---|---|---|---|---|---|
Model 1 | B | β | T | p-value | |
Age | −55.56 | −0.20 | −1.45 | 0.15 | |
PDDS | 426.09 | 0.28 | 1.08 | 0.29 | |
MSWS-12 | −65.32 | −0.68 | −2.65 | 0.01 | |
R2 | 0.28 | ||||
AIC | 842.74 | ||||
p-value | <0.01 | ||||
F-statistic (3,41) | 5.29 | ||||
Model 2 | B | β | T | p-value | |
Age | −43.08 | −0.15 | −1.19 | 0.24 | |
PDDS | 87.73 | 0.06 | 0.35 | 0.73 | |
BW velocity | 5383.30 | 0.57 | 3.44 | <0.01 | |
R2 | 0.35 | ||||
AIC | 838.43 | ||||
p-value | <0.01 | ||||
F-statistic (3,41) | 7.20 | ||||
Model 3 | B | β | T | p-value | |
Age | −39.56 | −0.14 | −1.25 | 0.26 | |
PDDS | 745.32 | 0.49 | 2.02 | 0.05 | |
MSWS-12 | −52.98 | 0.51 | −2.34 | 0.03 | |
BW velocity | 4777.85 | −0.55 | 3.17 | <0.01 | |
R2 | 0.42 | ||||
AIC | 834.67 | ||||
p-value | <0.01 | ||||
F-statistic (4,40) | 7.35 |
3-Month Daily Activity Count | |||||
---|---|---|---|---|---|
Model 1 | B | β | T | p-value | |
Age | −0.22 | −0.03 | −0.20 | 0.84 | |
PDDS | 8.05 | 0.17 | 0.70 | 0.49 | |
MSWS-12 | −2.23 | −0.74 | −3.08 | <0.01 | |
R2 | 0.37 | ||||
AIC | 525.25 | ||||
p-value | <0.01 | ||||
F-statistic (3,41) | 7.98 | ||||
Model 2 | B | β | T | p-value | |
Age | −0.05 | −0.01 | −0.04 | 0.97 | |
PDDS | −10.02 | −0.21 | −1.24 | 0.22 | |
BW velocity | 120.34 | 0.41 | 2.40 | 0.02 | |
R2 | 0.32 | ||||
AIC | 528.70 | ||||
p-value | <0.01 | ||||
F-statistic (3,41) | 6.39 | ||||
Model 3 | B | β | T | p-value | |
Age | 0.08 | 0.01 | 0.08 | 0.94 | |
PDDS | 14.57 | 0.30 | 1.26 | 0.21 | |
MSWS-12 | −1.98 | −0.66 | −2.80 | 0.01 | |
BW velocity | 97.70 | 0.33 | 2.07 | 0.05 | |
R2 | 0.43 | ||||
AIC | 522.66 | ||||
p-value | <0.01 | ||||
F-statistic (4,40) | 7.54 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Monaghan, P.G.; VanNostrand, M.; Takla, T.N.; Fritz, N.E. Predicting Real-World Physical Activity in Multiple Sclerosis: An Integrated Approach Using Clinical, Sensor-Based, and Self-Reported Measures. Sensors 2025, 25, 1780. https://doi.org/10.3390/s25061780
Monaghan PG, VanNostrand M, Takla TN, Fritz NE. Predicting Real-World Physical Activity in Multiple Sclerosis: An Integrated Approach Using Clinical, Sensor-Based, and Self-Reported Measures. Sensors. 2025; 25(6):1780. https://doi.org/10.3390/s25061780
Chicago/Turabian StyleMonaghan, Patrick G., Michael VanNostrand, Taylor N. Takla, and Nora E. Fritz. 2025. "Predicting Real-World Physical Activity in Multiple Sclerosis: An Integrated Approach Using Clinical, Sensor-Based, and Self-Reported Measures" Sensors 25, no. 6: 1780. https://doi.org/10.3390/s25061780
APA StyleMonaghan, P. G., VanNostrand, M., Takla, T. N., & Fritz, N. E. (2025). Predicting Real-World Physical Activity in Multiple Sclerosis: An Integrated Approach Using Clinical, Sensor-Based, and Self-Reported Measures. Sensors, 25(6), 1780. https://doi.org/10.3390/s25061780