A Comparative Study of Divergent Surface Acoustic Wave Beams’ Generation on an Y128° Lithium Niobate Using Various Types of Interdigital Transducers
Abstract
:1. Introduction
2. Excitation of Divergent SAW Beams with Various Types of IDTs
3. Experimental Setup for Measuring Displacement Fields
4. Results for the Divergent IDT
5. Results for the Convergent IDT
6. Results for the Narrow IDT
7. Discussions
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Weaver, R.L. On Diffuse Waves in Solid Media. J. Acoust. Soc. Am. 1982, 71, 1608–1609. [Google Scholar] [CrossRef]
- Aki, K.; Chouet, B. Origin of Coda Waves: Source, Attenuation, and Scattering Effects. J. Geophys. Res. 1975, 80, 3322–3342. [Google Scholar] [CrossRef]
- Chehami, L.; Moulin, E.; de Rosny, J.; Prada, C.; Bou Matar, O.; Benmeddour, F.; Assaad, J. Detection and Localization of a Defect in a Reverberant Plate Using Acoustic Field Correlation. J. Appl. Phys. 2014, 115, 104901. [Google Scholar] [CrossRef]
- Lobkis, O.I.; Weaver, R.L. Coda-Wave Interferometry in Finite Solids: Recovery of P-to-S Conversion Rates in an Elastodynamic Billiard. Phys. Rev. Lett. 2003, 90, 254302. [Google Scholar] [CrossRef] [PubMed]
- Planès, T.; Larose, E. A Review of Ultrasonic Coda Wave Interferometry in Concrete. Cem. Concr. Res. 2013, 53, 248–255. [Google Scholar] [CrossRef]
- Terzi, M.; Chehami, L.; Farin, M.; Moulin, E.; Aleshin, V.; Smagin, N.; de Rosny, J.; Benmeddour, F. Pump-Probe Localization Technique of Varying Solid Contacts. J. Acoust. Soc. Am. 2021, 149, 2943–2949. [Google Scholar] [CrossRef] [PubMed]
- Farin, M.; Moulin, E.; Chehami, L.; Benmeddour, F.; Nicard, C.; Campistron, P.; Bréhault, O.; Dupont, L. Monitoring Saltwater Corrosion of Steel Using Ultrasonic Coda Wave Interferometry with Temperature Control. Ultrasonics 2022, 124, 106753. [Google Scholar] [CrossRef] [PubMed]
- Smagin, N.; Trifonov, A.; Bou Matar, O.; Aleshin, V.V. Local Damage Detection by Nonlinear Coda Wave Interferometry Combined with Time Reversal. Ultrasonics 2020, 108, 106226. [Google Scholar] [CrossRef] [PubMed]
- Chehami, L.; Moulin, E.; De Rosny, J.; Prada, C. Accuracy of Green’s Function Estimation from Correlation of Diffuse Elastic Waves on Thin Plates. J. Acoust. Soc. Am. 2019, 146, 3505–3511. [Google Scholar] [CrossRef] [PubMed]
- Bouchakour, O.; Moulin, E.; Chehami, L.; Smagin, N. Quantification and Mitigation of the Effect of Resynchronization Errors in Ultrasound Sensor Network for Passive Imaging in Elastic Plates. J. Acoust. Soc. Am. 2024, 155, 3283–3290. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Callens, D.; Campistron, P.; Moulin, E.; Debreyne, P.; Delaplace, G. Monitoring Cleaning Cycles of Fouled Ducts Using Ultrasonic Coda Wave Interferometry (CWI). Ultrasonics 2019, 96, 253–260. [Google Scholar] [CrossRef]
- Chen, B.; Abdallah, M.; Campistron, P.; Moulin, E.; Callens, D.; Khelissa, S.O.; Debreyne, P.; Chihib, N.-E.; Delaplace, G. Detection of Biofilm Formation by Ultrasonic Coda Wave Interferometry. J. Food Eng. 2021, 290, 110219. [Google Scholar] [CrossRef]
- Rayleigh, L. On Waves Propagated along the Plane Surface of an Elastic Solid. Proc. Lond. Math. Soc. 1885, s1-17, 4–11. [Google Scholar] [CrossRef]
- Fall, D.; Duquennoy, M.; Ouaftouh, M.; Smagin, N.; Piwakowski, B.; Jenot, F. Non-Destructive Characterization of Surfaces and Thin Coatings Using a Large-Bandwidth Interdigital Transducer. Rev. Sci. Instrum. 2018, 89, 124901. [Google Scholar] [CrossRef] [PubMed]
- Duquennoy, M.; Kadi, T.; Ouaftouh, M.; Smagin, N.; Jenot, F. Dispersion of Surface Acoustic Waves in Thin Films at Extreme Wavelength-to-Thickness Ratios. JASA Express Lett. 2022, 2, 104002. [Google Scholar] [CrossRef] [PubMed]
- Snieder, R. Extracting the Green’s Function of Attenuating Heterogeneous Acoustic Media from Uncorrelated Waves. J. Acoust. Soc. Am. 2007, 121, 2637–2643. [Google Scholar] [CrossRef] [PubMed]
- Gouédard, P.; Stehly, L.; Brenguier, F.; Campillo, M.; Colin de Verdière, Y.; Larose, E.; Margerin, L.; Roux, P.; Sánchez-Sesma, F.J.; Shapiro, N.M.; et al. Cross-Correlation of Random Fields: Mathematical Approach and Applications. Geophys. Prospect. 2008, 56, 375–393. [Google Scholar] [CrossRef]
- Snieder, R. Coda Wave Interferometry for Estimating Nonlinear Behavior in Seismic Velocity. Science 2002, 295, 2253–2255. [Google Scholar] [CrossRef]
- Goossens, J.; Leclaire, P.; Xu, X.; Glorieux, C.; Martinez, L.; Sola, A.; Siligardi, C.; Cannillo, V.; Van der Donck, T.; Celis, J.-P. Surface Acoustic Wave Depth Profiling of a Functionally Graded Material. J. Appl. Phys. 2007, 102, 053508. [Google Scholar] [CrossRef]
- Fall, D.; Duquennoy, M.; Ouaftouh, M.; Smagin, N.; Piwakowski, B.; Jenot, F. Generation of Broadband Surface Acoustic Waves Using a Dual Temporal-Spatial Chirp Method. J. Acoust. Soc. Am. 2017, 142, EL108–EL112. [Google Scholar] [CrossRef] [PubMed]
- Fall, D.; Duquennoy, M.; Ouaftouh, M.; Smagin, N.; Piwakowski, B.; Jenot, F. Optimization of Interdigital Transducers for the Generation of Surface Acoustic Waves over a Large Bandwidth (20–125 MHz). Sens. Actuators A Phys. 2018, 273, 303–310. [Google Scholar] [CrossRef]
- Campbell, C. Surface Acoustic Wave Devices for Mobile and Wireless Communications; Academic Press: San Diego, CA, USA, 1998; ISBN 978-0-12-157340-9. [Google Scholar]
- Morgan, D.P. Surface Acoustic Wave Filters: With Applications to Electronic Communications and Signal Processing; Academic Press: San Diego, CA, USA, 2007; ISBN 978-0-12-372537-0. [Google Scholar]
- Song, S.; Wang, Q.; Zhou, J.; Riaud, A. Design of Interdigitated Transducers for Acoustofluidic Applications. Nanotechnol. Precis. Eng. 2022, 5, 035001. [Google Scholar] [CrossRef]
- Kuznetsova, I.; Nedospasov, I.; Smirnov, A.; Anisimkin, V.; Roshchupkin, D.; Signore, M.-A.; Francioso, L.; Kondoh, J.; Serebrov, M.; Kashin, V.; et al. The Peculiarities of the Acoustic Waves of Zero-Order Focusing in Lithium Niobate Plate. Sensors 2021, 21, 4000. [Google Scholar] [CrossRef]
- Smagin, N.; Djoumi, L.; Herth, E.; Vanotti, M.; Fall, D.; Patissier, V.; Duquennoy, M.; Ouaftouh, M. Fast Time-Domain Laser Doppler Vibrometry Characterization of Surface Acoustic Waves Devices. Sens. Actuators A Phys. 2017, 264, 96–106. [Google Scholar] [CrossRef]
- Kokkonen, K. Laser Interferometers in Physical Acoustics. In Proceedings of the 2009 IEEE International Ultrasonics Symposium, Rome, Italy, 20–23 September 2009; pp. 1036–1043. [Google Scholar]
- Herth, E.; Lardet-Vieudrin, F.; Deux, F.; Valbin, L.; Algré, E.; Schell, J.; Steger, H. Detection of Out-of-Plane and in-Plane (XYZ) Motions of Piezoelectric Microcantilever by 3D-Laser Doppler Vibrometry. In Proceedings of the 2016 Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS (DTIP), Budapest, Hungary, 30 May–2 June 2016; pp. 1–4. [Google Scholar]
- Royer, D.; Dieulesaint, E. Elastic Waves in Solids I: Free and Guided Propagation; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1999; ISBN 978-3-540-65932-7. [Google Scholar]
- Weser, R.; Winkler, A.; Weihnacht, M.; Menzel, S.; Schmidt, H. The Complexity of Surface Acoustic Wave Fields Used for Microfluidic Applications. Ultrasonics 2020, 106, 106160. [Google Scholar] [CrossRef] [PubMed]
- Kovacs, G.; Anhorn, M.; Engan, H.E.; Visintini, G.; Ruppel, C.C.W. Improved Material Constants for LiNbO3 and LiTaO3. In Proceedings of the IEEE Symposium on Ultrasonics, Honolulu, HI, USA, 4–7 December 1990; pp. 435–438. [Google Scholar] [CrossRef]
- Hashimoto, K. Surface Acoustic Wave Devices in Telecommunications; Springer: Berlin/Heidelberg, Germany, 2000; ISBN 978-3-642-08659-5. [Google Scholar]
- Szabo, T. The Effect of Diffraction on the Design of Acoustic Surface Wave Devices. IEEE Trans. Sonics Ultrason. 1973, 20, 240–251. [Google Scholar] [CrossRef]
- Rahn, J.P. Diffraction Effects from Very Narrow Surface Wave Transducers. IEEE Trans. Sonics Ultrason. 1978, 25, 55–57. [Google Scholar] [CrossRef]
- Papadakis, E.P. Ultrasonic Diffraction Loss and Phase Change in Anisotropic Materials. J. Acoust. Soc. Am. 1966, 40, 863–876. [Google Scholar] [CrossRef]
- De Lima, M.M.; Alsina, F.; Seidel, W.; Santos, P.V. Focusing of Surface-Acoustic-Wave Fields on (100) GaAs Surfaces. J. Appl. Phys. 2003, 94, 7848–7855. [Google Scholar] [CrossRef]
IDT | Number of Electrode Pair | Angular Aperture (°) | Curvature Radius (mm) | Length (mm) | Frequency (MHz) | Contact Area (mm2) |
---|---|---|---|---|---|---|
Divergent IDT | 25 | ±30 | 2.8 | 7 | 15 | 10 × 1 |
Convergent IDT | 25 | ±30 | 2.8 | 7 | 15 | 3.4 × 1 |
Narrow IDT | 25 | 0 | ∞ | 6.6 | 15 | 1 × 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duquennoy, M.; Fall, D.; Ben Jafela, N.; Smagin, N.; Oumekloul, Z.; Chehami, L.; Moulin, E.; Ouaftouh, M. A Comparative Study of Divergent Surface Acoustic Wave Beams’ Generation on an Y128° Lithium Niobate Using Various Types of Interdigital Transducers. Sensors 2025, 25, 1067. https://doi.org/10.3390/s25041067
Duquennoy M, Fall D, Ben Jafela N, Smagin N, Oumekloul Z, Chehami L, Moulin E, Ouaftouh M. A Comparative Study of Divergent Surface Acoustic Wave Beams’ Generation on an Y128° Lithium Niobate Using Various Types of Interdigital Transducers. Sensors. 2025; 25(4):1067. https://doi.org/10.3390/s25041067
Chicago/Turabian StyleDuquennoy, Marc, Dame Fall, Nada Ben Jafela, Nikolay Smagin, Zakariae Oumekloul, Lynda Chehami, Emmanuel Moulin, and Mohammadi Ouaftouh. 2025. "A Comparative Study of Divergent Surface Acoustic Wave Beams’ Generation on an Y128° Lithium Niobate Using Various Types of Interdigital Transducers" Sensors 25, no. 4: 1067. https://doi.org/10.3390/s25041067
APA StyleDuquennoy, M., Fall, D., Ben Jafela, N., Smagin, N., Oumekloul, Z., Chehami, L., Moulin, E., & Ouaftouh, M. (2025). A Comparative Study of Divergent Surface Acoustic Wave Beams’ Generation on an Y128° Lithium Niobate Using Various Types of Interdigital Transducers. Sensors, 25(4), 1067. https://doi.org/10.3390/s25041067