pH Sensing Properties of Co3O4-RuO2-Based Electrodes and Their Application in Baltic Sea Water Quality Monitoring
Abstract
1. Introduction
2. Materials and Methods
2.1. Fabrication of Sensors
2.2. Morphological, Compositional, and Structural Analysis
2.3. pH Measurement
2.4. Application in Water Samples
2.5. Anti-Bacterial Properties of the Electrode
3. Results and Discussion
3.1. Phase Composition and Morphological Analysis
3.2. Potentiometric Characteristics
3.3. Application in Real-Life Water Samples
3.4. Anti-Bacterial Properties of the Electrodes
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Saalidong, B.M.; Aram, S.A.; Otu, S.; Lartey, P.O. Examining the dynamics of the relationship between water pH and other water quality parameters in ground and surface water systems. PLoS ONE 2022, 17, e0262117. [Google Scholar] [CrossRef] [PubMed]
- Manjakkal, L.; Szwagierczak, D.; Dahiya, R. Metal oxides based electrochemical pH sensors: Current progress and future perspectives. Prog. Mater. Sci. 2020, 109, 100635. [Google Scholar] [CrossRef]
- Sinha, S.; Pal, T. A comprehensive review of FET-based pH sensors: Materials, fabrication technologies, and modeling. Electrochem. Sci. Adv. 2022, 2, 202100147. [Google Scholar] [CrossRef]
- Fog, A.; Buck, R.P. Electronic semiconducting oxides as pH sensors. Sens. Actuators 1984, 5, 137–146. [Google Scholar] [CrossRef]
- Kurzweil, P. Metal oxides and ion-exchanging surfaces as pH sensors in liquids: State-of-the-art and outlook. Sensors 2009, 9, 4955–4985. [Google Scholar] [CrossRef]
- Uppuluri, K.; Lazouskaya, M.; Szwagierczak, D.; Zaraska, K.; Tamm, M. Fabrication, potentiometric characterization, and application of screen-printed RuO2 pH electrodes for water quality testing. Sensors 2021, 21, 5399. [Google Scholar] [CrossRef] [PubMed]
- Sardarinejad, A.; Maurya, D.K.; Khaled, M.; Alameh, K. Temperature effects on the performance of RuO2 thin-film pH sensor. Sens. Actuators A Phys. 2015, 233, 414–421. [Google Scholar] [CrossRef]
- Taheri, M.; Deen, M.J. Green Approach Using RuO2/GO Nanocomposite for Low Cost and Highly Sensitive pH Sensing. J. Electrochem. Soc. 2022, 169, 047501. [Google Scholar] [CrossRef]
- Shengen, Z.; Xuefeng, H.; Yunji, D.; Zhisheng, S.; Boyu, W. Supply and demand of platinum group metals and strategies for sustainable management. Renew. Sustain. Energy Rev. 2024, 204, 114821. [Google Scholar] [CrossRef]
- Manjakkal, L.; Cvejin, K.; Kulawik, J.; Zaraska, K.; Szwagierczak, D.; Stojanovic, G. Sensing mechanism of RuO2-SnO2 thick film pH sensors studied by potentiometric method and electrochemical impedance spectroscopy. J. Electroanal. Chem. 2015, 759, 82–90. [Google Scholar] [CrossRef]
- Pocrifka, L.A.; Gonçalves, C.; Grossi, P.; Colpa, P.C.; Pereira, E.C. Development of RuO2-TiO2 (70–30) mol% for pH measurements. Sens. Actuators B Chem. 2006, 113, 1012–1016. [Google Scholar] [CrossRef]
- Guo, Y.; Zhang, Z.; Yao, B.; Chai, J.; Zhang, S.; Liu, J.; Zhao, Z.; Xu, C. Fabrication and Performance of a Ta2O5 Thin Film pH Sensor Manufactured Using MEMS Processes. Sensors 2023, 23, 6061. [Google Scholar] [CrossRef]
- Zhuiykov, S.; Marney, D.; Kats, E. Investigation of electrochemical properties of La2O3-RuO2 thin-film sensing electrodes used in sensors for the analysis of complex solutions. Int. J. Appl. Ceram. Technol. 2011, 8, 1192–1200. [Google Scholar] [CrossRef]
- Lazouskaya, M.; Vetik, I.; Tamm, M.; Uppuluri, K.; Scheler, O. Binary RuO2-CuO Electrodes Outperform RuO2 Electrodes in Measuring the pH in Food Samples. ACS Omega 2023, 8, 13275–13284. [Google Scholar] [CrossRef] [PubMed]
- Zhuiykov, S.; Kats, E.; Marney, D. Potentiometric sensor using sub-micron Cu2O-doped RuO2 sensing electrode with improved antifouling resistance. Talanta 2010, 82, 502–507. [Google Scholar] [CrossRef] [PubMed]
- Uppuluri, K.; Szwagierczak, D.; Fernandes, L.; Zaraska, K.; Lange, I.; Synkiewicz-Musialska, B.; Manjakkal, L. A high-performance pH sensitive electrode integrated with multi- sensing probe for online water quality monitoring. J. Mater. Chem. C 2023, 11, 15512–15520. [Google Scholar] [CrossRef]
- Peng, C.; Wang, C.; Li, Z.; Wang, Z. A novel approach to detecting doping agents in food using electrochemical sensor based on zinc oxide/graphene oxide nanocomposites. J. Food Meas. Charact. 2024, 18, 6770–6781. [Google Scholar] [CrossRef]
- Tang, Y.; Gan, S.; Zhong, L.; Sun, Z.; Xu, L.; Liao, C.; Lin, K.; Cui, X.; He, D.; Ma, Y.; et al. Lattice Proton Intercalation to Regulate WO3-Based Solid-Contact Wearable pH Sensor for Sweat Analysis. Adv. Funct. Mater. 2022, 32, 2107653. [Google Scholar] [CrossRef]
- Wu, M.H.; Cheng, C.H.; Lai, C.S.; Pan, T.M. Structural properties and sensing performance of high-k Sm2O3 membrane-based electrolyte-insulator-semiconductor for pH and urea detection. Sens. Actuators B Chem. 2009, 138, 221–227. [Google Scholar] [CrossRef]
- Shahzad, U.; Saeed, M.; Marwani, H.M.; Al-Humaidi, J.Y.; Rehman, S.U.; Raed, H.A.; Awual, M.R.; Rahman, M.M. Recent Progress on Potentiometric Sensor Applications Based on Nanoscale Metal Oxides: A Comprehensive Review. Crit. Rev. Anal. Chem. 2024, April, 1–18. [Google Scholar] [CrossRef]
- Taheri, M.; Deen, I.A.; Packirisamy, M.; Deen, M.J. Metal oxide -based electrical/electrochemical sensors for health monitoring systems. TrAC Trends Anal. Chem. 2024, 171, 117509. [Google Scholar] [CrossRef]
- Shylendra, S.; Wajrak, M.; Jin Kang, J. Advancements in Solid-State Metal pH Sensors: A Comprehensive Review of Metal Oxides and Nitrides for Enhanced Chemical Sensing: A Review. IEEE Sens. J. 2025, 1. [Google Scholar] [CrossRef]
- Tang, Y.; Zhong, L.; Wang, W.; He, Y.; Han, T.; Xu, L.; Mo, X.; Liu, Z.; Ma, Y.; Bao, Y.; et al. Recent Advances in Wearable Potentiometric pH Sensors. Membranes 2022, 12, 504. [Google Scholar] [CrossRef]
- Qingwen, L.; Guoan, L.; Youqin, S. Response of nanosized cobalt oxide electrodes as pH sensors. Anal. Chim. Acta 2000, 409, 137–142. [Google Scholar] [CrossRef]
- Chang, S.P.; Yang, T.H. Sensing performance of EGFET pH sensors with CuO nanowires fabricated on glass substrate. Int. J. Electrochem. Sci. 2012, 7, 5020–5027. [Google Scholar] [CrossRef]
- Zaman, S.; Asif, M.H.; Zainelabdin, A.; Amin, G.; Nur, O.; Willander, M. CuO nanoflowers as an electrochemical pH sensor and the effect of pH on the growth. J. Electroanal. Chem. 2011, 662, 421–425. [Google Scholar] [CrossRef]
- Badreldin, A.; Abusrafa, A.E.; Abdel-Wahab, A. Oxygen-Deficient Cobalt-Based Oxides for Electrocatalytic Water Splitting. ChemSusChem 2021, 14, 10–32. [Google Scholar] [CrossRef]
- Singh, K.; Lou, B.S.; Her, J.L.; Pang, S.T.; Pan, T.M. Super Nernstian pH response and enzyme-free detection of glucose using sol-gel derived RuOx on PET flexible-based extended-gate field-effect transistor. Sens. Actuators B Chem. 2019, 298, 126837. [Google Scholar] [CrossRef]
- Staubwasser, M.; Schoenberg, R.; Von Blanckenburg, F.; Krüger, S.; Pohl, C. Isotope fractionation between dissolved and suspended particulate Fe in the oxic and anoxic water column of the Baltic Sea. Biogeosciences 2013, 10, 233–245. [Google Scholar] [CrossRef]
- Ulfsbo, A.; Hulth, S.; Anderson, L.G. PH and biogeochemical processes in the Gotland Basin of the Baltic Sea. Mar. Chem. 2011, 127, 20–30. [Google Scholar] [CrossRef]
- Dickson, A.G.; Sabine, C.L.; Christian, J.R. Guide to Best Practices for Ocean CO2 Measurments; PICES Special Publication: Sidney, Australia, 2007. [Google Scholar] [CrossRef]
- Kuliński, K.; Schneider, B.; Szymczycha, B.; Stokowski, M. Structure and functioning of the acid-base system in the Baltic Sea. Earth Syst. Dyn. 2017, 8, 1107–1120. [Google Scholar] [CrossRef]
- Schneider, B.; Kaitala, S.; Raateoja, M.; Sadkowiak, B. A nitrogen fixation estimate for the Baltic Sea based on continuous pCO2 measurements on a cargo ship and total nitrogen data. Cont. Shelf Res. 2009, 29, 1535–1540. [Google Scholar] [CrossRef]
- Stokowski, M.; Makuch, P.; Rutkowski, K.; Wichorowski, M.; Kuliński, K. A system for the determination of surface water pCO2 in a highly variable environment, exemplified in the southern Baltic Sea. Oceanologia 2021, 63, 276–282. [Google Scholar] [CrossRef]
- Hammer, K.; Schneider, B.; Kuliński, K.; Schulz-Bull, D.E. Precision and accuracy of spectrophotometric pH measurements at environmental conditions in the Baltic Sea. Estuar. Coast. Shelf Sci. 2014, 146, 24–32. [Google Scholar] [CrossRef]
- Dharanishanthi, V.; Orgad, A.; Rotem, N.; Hagai, E.; Kerstnus-Banchik, J.; Ben-Ari, J.; Harig, T.; Ravella, S.R.; Schulz, S.; Helman, Y. Bacterial-induced pH shifts link individual cell physiology to macroscale collective behavior. Proc. Natl. Acad. Sci. USA 2021, 118, e2014346118. [Google Scholar] [CrossRef] [PubMed]
- Nie, M.; Li, K.; Li, Z. β-Alanine Metabolism Leads to Increased Extracellular pH during the Heterotrophic Ammonia Oxidation of Pseudomonas putida Y-9. Microorganisms 2023, 11, 356. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, K.; Mahadevan, R. Characterization of proton production and consumption associated with microbial metabolism. BMC Biotechnol. 2010, 10, 2. [Google Scholar] [CrossRef] [PubMed]
- Branson, S.R.; Broadbent, J.R.; Carpenter, C.E. Internal pH and Acid Anion Accumulation in Listeria monocytogenes and Escherichia coli Exposed to Lactic or Acetic Acids at Mildly Acidic pH. Front. Microbiol. 2022, 12, 803271. [Google Scholar] [CrossRef] [PubMed]
Maximum peak height Rp (μm) | 3.217 |
Maximum valley depth Rv (μm) | 3.871 |
Maximum height Rz (μm) | 7.088 |
Average height Rc (μm) | 3.541 |
Arithmetic average of height deviations Ra (μm) | 1.101 |
Asymmetry Rsk | −0.2143 |
Kurtosis Rku | 2.784 |
mol% Co3O4 | mol% RuO2 | Sensitivity (mV/pH) | R2 | E0 (mV) |
---|---|---|---|---|
0 | 100 | 61.8 ± 1.0 | 0.996 | 681.9 ± 5.00 |
30 | 70 | 53.1 ± 9.5 | 0.998 | 672.1 ± 57.5 |
40 | 60 | 69.5 ± 1.3 | 0.999 | 841.1 ± 50.6 |
50 | 50 | 74.6 ± 1.1 | 0.998 | 891.5 ± 20.0 |
60 | 40 | 64.9 ± 6.1 | 0.999 | 814.3 ± 43.7 |
70 | 30 | 65.8 ± 0.4 | 0.999 | 780.7 ± 35.5 |
100 | 0 | 42.8 ± 16.8 | 0.982 | 575.3 ± 52.9 |
Water Sample | Average Salinity (PSU *) | pH (Glass Electrode) | pH Measured with Co3O4-RuO2 Electrodes | ||||
---|---|---|---|---|---|---|---|
mol% of Co3O4 in the Sensing Layer | |||||||
30 | 40 | 50 | 60 | 70 | |||
Tap | - | 7.94 | 7.90 ± 0.08 | 7.91 ± 0.04 | 7.93 ± 0.01 | 7.78 ± 0.04 | 7.63 ± 0.01 |
Mineral | - | 5.45 | 5.38 ± 0.01 | 5.46 ± 0.00 | 5.44 ± 0.01 | 5.44 ± 0.01 | 5.41 ± 0.04 |
River | - | 8.10 | 8.01 ± 0.07 | 8.10 ± 0.00 | 8.10 ± 0.02 | 7.89 ± 0.09 | 8.09 ± 0.01 |
Lake | - | 8.18 | 8.12 ± 0.03 | 8.22 ± 0.02 | 8.15 ± 0.00 | 8.03 ±0.05 | 7.85 ± 0.01 |
Sea (surface) | 7.26 | 8.28 | 8.23 ± 0.07 | 8.24 ± 0.04 | 8.27 ± 0.03 | 8.24 ± 0.04 | 8.20 ± 0.10 |
Sea (2 m deep) | 7.26 | 8.22 | 8.19 ± 0.03 | 8.20 ± 0.06 | 8.23 ± 0.01 | 8.18 ± 0.07 | 8.15 ± 0.01 |
Sea (42 m deep) | 7.48 | 7.95 | 7.91 ± 0.08 | 7.93 ± 0.02 | 7.94 ± 0.01 | 7.89 ± 0.06 | 7.87 ± 0.02 |
Sea (72 m deep) | 10.23 | 7.49 | 7.53 ± 0.05 | 7.51 ± 0.03 | 7.49 ± 0.02 | 7.55 ± 0.05 | 7.55 ± 0.10 |
Sea (100 m deep) | 12.11 | 7.45 | 7.48 ± 0.04 | 7.49 ± 0.25 | 7.46 ± 0.01 | 7.48 ± 0.04 | 7.50 ± 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uppuluri, K.; Szwagierczak, D.; Zaraska, K.; Zachariasz, P.; Stokowski, M.; Synkiewicz-Musialska, B.; Krzyściak, P. pH Sensing Properties of Co3O4-RuO2-Based Electrodes and Their Application in Baltic Sea Water Quality Monitoring. Sensors 2025, 25, 1065. https://doi.org/10.3390/s25041065
Uppuluri K, Szwagierczak D, Zaraska K, Zachariasz P, Stokowski M, Synkiewicz-Musialska B, Krzyściak P. pH Sensing Properties of Co3O4-RuO2-Based Electrodes and Their Application in Baltic Sea Water Quality Monitoring. Sensors. 2025; 25(4):1065. https://doi.org/10.3390/s25041065
Chicago/Turabian StyleUppuluri, Kiranmai, Dorota Szwagierczak, Krzysztof Zaraska, Piotr Zachariasz, Marcin Stokowski, Beata Synkiewicz-Musialska, and Paweł Krzyściak. 2025. "pH Sensing Properties of Co3O4-RuO2-Based Electrodes and Their Application in Baltic Sea Water Quality Monitoring" Sensors 25, no. 4: 1065. https://doi.org/10.3390/s25041065
APA StyleUppuluri, K., Szwagierczak, D., Zaraska, K., Zachariasz, P., Stokowski, M., Synkiewicz-Musialska, B., & Krzyściak, P. (2025). pH Sensing Properties of Co3O4-RuO2-Based Electrodes and Their Application in Baltic Sea Water Quality Monitoring. Sensors, 25(4), 1065. https://doi.org/10.3390/s25041065