Photoacoustic Gas Sensing Using a Novel Fluidic Microphone Based on Thermal MEMS
Abstract
1. Introduction
2. Theory
2.1. The Fluidic Microphone as PA Detector
Acoustic vs. Photoacoustic Pressure Detection
2.2. Model and Simulation
2.2.1. PA Pressure Generation
2.2.2. Acoustic-Flux Generation
2.2.3. Thermopile Detection
3. Materials and Methods
3.1. CO2 IR Absorption and Laser Selection
3.2. Detector Cell
3.3. Measurement Setup
4. Results and Discussion
4.1. Laser Emission Line Sweep
4.2. Optimal Modulation Frequency
4.3. Back Volume Dependence
4.4. Heater Power Sweep
4.5. Gas Concentration Measurements
4.6. Allan Variance and Long-Term Stability
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| PAS | Photoacoustic Sensing |
| MEMS | Micro electro-mechanical system |
| IR | Infrared |
| PA | Photoacoustic |
| SNR | Signal-to-noise ratio |
| NNEA | Normalised noise equivalent absorption |
| TPR | Right thermopile |
| CO2 | Carbon dioxide |
| N2 | Nitrogen |
References
- Fathy, A.; Sabry, Y.M.; Hunter, I.W.; Khalil, D.; Bourouina, T. Direct Absorption and Photoacoustic Spectroscopy for Gas Sensing and Analysis: A Critical Review. Laser Photonics Rev. 2022, 16, 2100556. [Google Scholar] [CrossRef]
- Hodgkinson, J.; Tatam, R.P. Optical gas sensing: A review. Meas. Sci. Technol. 2012, 24, 012004. [Google Scholar] [CrossRef]
- Kosterev, A.A.; Bakhirkin, Y.A.; Curl, R.F.; Tittel, F.K. Quartz-enhanced photoacoustic spectroscopy. Opt. Lett. 2002, 27, 1902–1904. [Google Scholar] [CrossRef] [PubMed]
- Kauppinen, J.; Wilcken, K.; Kauppinen, I.; Koskinen, V. High sensitivity in gas analysis with photoacoustic detection. Microchem. J. 2004, 76, 151–159. [Google Scholar] [CrossRef]
- Yin, Y.; Ren, D.; Li, C.; Chen, R.; Shi, J. Cantilever-enhanced photoacoustic spectroscopy for gas sensing: A comparison of different displacement detection methods. Photoacoustics 2022, 28, 100423. [Google Scholar] [CrossRef]
- Kuusela, T.; Kauppinen, J. Photoacoustic Gas Analysis Using Interferometric Cantilever Microphone. Appl. Spectrosc. Rev. 2007, 42, 443–474. [Google Scholar] [CrossRef]
- Sun, B.; Li, Y.; Gao, Z.; Zhang, M. Quartz-enhanced photoacoustic spectroscopy for SF6 gas matrix based on a T-shaped quartz tuning fork. Front. Phys. 2025, 13, 1569734. [Google Scholar] [CrossRef]
- Ma, Y. Review of Recent Advances in QEPAS-Based Trace Gas Sensing. Appl. Sci. 2018, 8, 1822. [Google Scholar] [CrossRef]
- Liang, M.; Du, X.; Lu, M.; Tian, S.; Qiao, Y.; Gao, Y.; Chen, P.; Jiao, M.; Li, L.; Shan, C. Ppb-level photoacoustic sensor system for SF6 decomposition component HF using fuzzy c-means algorithm based on baseline correction. Sens. Actuators B Chem. 2025, 430, 137319. [Google Scholar] [CrossRef]
- Infineon Technologies AG. XENSIV™ PAS CO2 Sensor Based on Photoacoustic Spectroscopy, Version 1.0; Infineon Technologies AG: Neubiberg, Germany, 2023.
- Sensirion AG. SCD4x, Breaking the Size Barrier in Optical CO2 Sensing, Version 1.7; Sensirion AG: Staefa, Switzerland, 2025.
- Shubham, S.; Seo, Y.; Naderyan, V.; Song, X.; Frank, A.J.; Johnson, J.T.M.G.; da Silva, M.; Pedersen, M. A Novel MEMS Capacitive Microphone with Semiconstrained Diaphragm Supported with Center and Peripheral Backplate Protrusions. Micromachines 2022, 13, 22. [Google Scholar] [CrossRef] [PubMed]
- Dehe, A.; Wurzer, M.; Füldner, M.; Krumbein, U. A4.3—The Infineon Silicon MEMS Microphone; AMA Service GmbH: Wunstorf, Germany, 2013; pp. 95–99. [Google Scholar] [CrossRef]
- Shubham, S.; Nawaz, M.; Song, X.; Seo, Y.; Zaman, M.F.; Kuntzman, M.L.; Pedersen, M. A behavioral nonlinear modeling implementation for MEMS capacitive microphones. Sens. Actuators A Phys. 2024, 371, 115294. [Google Scholar] [CrossRef]
- Peña-García, N.N.; Aguilera-Cortés, L.A.; González-Palacios, M.A.; Raskin, J.P.; Herrera-May, A.L. Design and Modeling of a MEMS Dual-Backplate Capacitive Microphone with Spring-Supported Diaphragm for Mobile Device Applications. Sensors 2018, 18, 3545. [Google Scholar] [CrossRef]
- Bao, M.; Yang, H.; Sun, Y.; Wang, Y. Squeeze-film air damping of thick hole-plate. Sens. Actuators A Phys. 2003, 108, 212–217. [Google Scholar] [CrossRef]
- Tas, N.R.; Lammerink, T.S.J.; Leussink, P.J.; Berenschot, J.W.; de Bree, H.E.; Elwenspoek, M.C. Toward thermal flow-sensing with pL/s resolution. In Proceedings of the Micromachined Devices and Components VI, Santa Clara, CA, USA, 18–21 September 2000; Peeters, E., Paul, O., Eds.; International Society for Optics and Photonics. SPIE: Santa Clara, CA, USA, 2000; Volume 4176, pp. 106–121. [Google Scholar] [CrossRef]
- Li, Z.; Chang, W.; Gao, C.; Hao, Y. A new 3-hot-wire acoustic particle velocity sensor with improved detection capability. Electron. Lett. 2019, 55, 201–202. [Google Scholar] [CrossRef]
- Honschoten, J.; Svetovoy, V.; Krijnen, G.; Elwenspoek, M. Optimization of a thermal flow sensor for acoustic particle velocity measurements. J. Microelectromech. Syst. 2005, 14, 436–443. [Google Scholar] [CrossRef]
- Benvenuti, L.; Catania, A.; Bruschi, P.; Piotto, M. Modeling and optimization of directive acoustical particle velocity sensors for ultrasonic applications. Sens. Actuators A Phys. 2021, 318, 112504. [Google Scholar] [CrossRef]
- Gupta, A.; Bittner, A.; Dehé, A. Novel Thermal Mems Dynamic Pressure Sensor. In Proceedings of the 2023 22nd International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers), Kyoto, Japan, 25–29 June 2023; pp. 108–111. [Google Scholar]
- Gupta, A.; Bittner, A.; Dehé, A. SNR Enhancement of a MEMS Thermal Acoustic Pressure Sensor. In Proceedings of the 36th Eurosensors Conference (Eurosensors XXXVI), Berlin, Germany, 11–14 September 2022; p. PT4.12. [Google Scholar] [CrossRef]
- Pao, Y.H. Optoacoustic Spectroscopy and Detection; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Ingle, J.; Crouch, S. Spectrochemical Analysis; Number v. 1 in Spectrochemical Analysis; Prentice Hall: New York, NY, USA, 1988. [Google Scholar]
- Morse, P.M.; Ingard, K.U. Theoretical Acoustics; Princeton University Press: Princeton, NJ, USA, 1986. [Google Scholar]
- Gupta, A.; Bittner, A.; Dehe, A. Frequency Dynamics of Micro-Perforated Thermal Sensors: Unlocking Potential in Acoustic Sensing. In Proceedings of the 2025 23rd International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers), Orlando, FL, USA, 22–26 June 2025; pp. 1748–1751. [Google Scholar] [CrossRef]
- Gordon, I.E.; Rothman, L.S.; Hargreaves, R.J.; Hashemi, R.; Karlovets, E.V.; Skinner, F.M.; Conway, E.K.; Hill, C.; Kochanov, R.V.; Tan, Y.; et al. The HITRAN2020 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 2022, 277, 107949. [Google Scholar] [CrossRef]
- Xiong, S.; Yin, X.; Wang, Q.; Xia, J.; Chen, Z.; Lei, H.; Yan, X.; Zhu, A.; Qiu, F.; Chen, B.; et al. Photoacoustic Spectroscopy Gas Detection Technology Research Progress. Appl. Spectrosc. 2024, 78, 139–158. [Google Scholar] [CrossRef] [PubMed]
- Fu, L.; Lu, P.; Sima, C.; Zhao, J.; Pan, Y.; Li, T.; Zhang, X.; Liu, D. Small-volume highly-sensitive all-optical gas sensor using non-resonant photoacoustic spectroscopy with dual silicon cantilever optical microphones. Photoacoustics 2022, 27, 100382. [Google Scholar] [CrossRef]
- Gong, Z.; Wu, G.; Chen, K.; Guo, M.; Ma, J.; Li, H.; Ma, F.; Mei, L.; Peng, W.; Yu, Q. Fiber-Tip Gas Transducer Based on All-Optical Photoacoustic Spectroscopy. J. Light. Technol. 2022, 40, 5300–5306. [Google Scholar] [CrossRef]
- Lauwers, T.; Glière, A.; Basrour, S. An all-Optical Photoacoustic Sensor for the Detection of Trace Gas. Sensors 2020, 20, 3967. [Google Scholar] [CrossRef] [PubMed]















| Detector | Detection | Compactness | Sensitivity | Bandwidth |
|---|---|---|---|---|
| Tuning fork (QEPAS) [3] | resonant | Medium | High | Narrow |
| Cantilever (CEPAS) [4,5,6] | resonant | Low | Very high | Narrow |
| Commercial MEMS microphone [10,11] | non-resonant (robust) | High | Medium | Broad (20 Hz–20 kHz) |
| Fluidic microphone (this work) | non-resonant (robust) | High | Low-Medium | Broad (DC-100 Hz) |
| Parameter | Value | Unit |
|---|---|---|
| Pa·s·m−3 | ||
| m2 | ||
| m | ||
| m | ||
| 18.4 | m3 | |
| m3·Pa−1 | ||
| s | ||
| fit parameter | - | |
| fit parameter | m3 | |
| G | fit parameter | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gupta, A.; Bhardwaj, A.; Bittner, A.; Dehé, A. Photoacoustic Gas Sensing Using a Novel Fluidic Microphone Based on Thermal MEMS. Sensors 2025, 25, 7411. https://doi.org/10.3390/s25247411
Gupta A, Bhardwaj A, Bittner A, Dehé A. Photoacoustic Gas Sensing Using a Novel Fluidic Microphone Based on Thermal MEMS. Sensors. 2025; 25(24):7411. https://doi.org/10.3390/s25247411
Chicago/Turabian StyleGupta, Akash, Anant Bhardwaj, Achim Bittner, and Alfons Dehé. 2025. "Photoacoustic Gas Sensing Using a Novel Fluidic Microphone Based on Thermal MEMS" Sensors 25, no. 24: 7411. https://doi.org/10.3390/s25247411
APA StyleGupta, A., Bhardwaj, A., Bittner, A., & Dehé, A. (2025). Photoacoustic Gas Sensing Using a Novel Fluidic Microphone Based on Thermal MEMS. Sensors, 25(24), 7411. https://doi.org/10.3390/s25247411

