Mine Gas Time-Series Data Prediction and Fluctuation Monitoring Method Based on Decomposition-Enhanced Cross-Graph Forecasting and Anomaly Finding
Abstract
1. Introduction
2. Materials and Methods
2.1. Improved MVMD-Based Gas Sensor Data Decomposition Method
2.1.1. Definition of Variational Problem
2.1.2. Unconstrained Transformation via Lagrangian Function
2.1.3. Modal and Centre Frequency Update via Alternating Direction Method of Multipliers
2.2. EWM-Based Multi-Index Comprehensive Scoring Optimisation Method
2.2.1. Index Preprocessing
2.2.2. Information Entropy and Weight Calculation
2.2.3. Comprehensive Score Calculation
2.2.4. Wavelet Denoising Method
2.3. Gas Time-Series Data Prediction and Data Importance Analysis Method
2.3.1. GrossGNN Model Architecture
2.3.2. Cross-Scale Graph Neural Network
2.3.3. Shapley Interpretability Analysis
2.4. Unsupervised Diagnosis Method for Gas Data
2.4.1. Data Preprocessing
2.4.2. Mean Change-Point Detection After Segmentation
2.4.3. Significance Testing for High-Fluctuation Segments
3. Results
3.1. Data Decomposition and Preprocessing
3.2. Gas Time-Series Prediction with the Interpretable CrossGNN Algorithm
3.3. Ablation Study for Algorithmic Comparison
3.4. Interpretability Analysis of Gas Prediction Results
3.5. Analysis of Gas Fluctuation and Sudden Increase Results
3.6. Limitations of the Algorithm
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
| Module | Hyperparameter/Setting | Value |
|---|---|---|
| Data sampling | Sampling frequency | 0.0333 Hz (every 30 s) |
| Forecasting task | Prediction horizon T | 12 steps (30 s each, total 6 min) |
| Training config | Random seed | 2025 |
| Training/environment | Hardware and environment | AMD EPYC 7B12 × 2; NVIDIA T4 × 2; Python 3.8; ~10 min |
| MVMD decomposition | Number of modes K | 4 |
| MVMD decomposition | Penalty α | 1000 |
| Wavelet denoising | Wavelet/levels | db4, 3-level soft-thresholding |
| Post-decomposition | Valid mode selection | Automatically selected by Pearson correlation with the raw signal |
| Multi-scale construction | Top-K periods | 4 |
| CrossGNN | Hidden dimension H | 8 |
| Temporal graph convolution | Order K | 2 |
| Temporal graph convolution | Temporal embedding dim E_t | 1 |
| Node graph convolution | Top-k node mask | k = 3 |
| Node graph convolution | Node embedding dim E_n | 1 |
| Change-point detection | Minimum segment length L_min | 58 |
| Multiple testing | FDR control | q = 0.10 |
| Data size | N (samples) | 83,970 |
| Preprocessing | Standardisation and missing handling | Robust scaling (MAD); interpolation + forward/backward fill |
| ACF threshold | ACF falls below | 0.1 |
| Algorithm A1: CrossGNN for gas prediction |
| Input: Sequence X ∈; horizon T; hyperparameters H = 8, K = 2, E_t = 1, E_n = 1, TopKperiods = 4, tk = 10, topk_nodes = 3, dropout = 0.05, e_layers = 2, anti_ood ∈ {0,1} Output: Predictions Ŷ ∈ 1: if anti_ood == 1 then 2: seq_last ← X[:, L−1, :] //baseline for de-biasing 3: X ← X − seq_last 4: end if 5: for ℓ = 1 to e_layers do 6: //---- Multi-scale expansion + projection (Equation (20)) 7: P ← {1} ∪ TOPK_PERIODS_BY_FFT(X, k = TopKperiods) 8: S ← { AVGPOOL1D(X, kernel = p, stride = p) for p ∈ P } 9: X_multi ← CONCAT_ALONG_TIME(S); X_multi ← PAD/CROP to L_max = 2L 10: X_emb ← LINEAR_1toH(X_multi) //B × L_max × H 11: //---- Temporal adaptive adjacency A_t (Equation (21)) 12: A_raw ← ReLU(V_t1 · V_t2^T) //L_max × L_max 13: M ← ADJACENT_MASK() ∧ CROSSSCALE_MASK(P, tk, min_per_segment = 5) 14: A_t ← SOFTMAX (MASKED_FILL(A_raw, M, −∞), dim = rows) 15: //---- Temporal K-order GCN with residual (Equation (22)) 16: X_t ← K_ORDER_GCN(X_emb, A_t, K, dropout, mode = ‘time’) 17: X_t ← X_t + X_emb 18: //---- Node adaptive adjacency A_n (Equation (23)) 19: A_n_raw ← ReLU(V_n1 · V_n2^T) //H × H 20: M_pos ← TOPK_MASK(A_n_raw, k = topk_nodes, largest = True) 21: M_neg ← TOPK_MASK(A_n_raw, k = topk_nodes, largest = False) 22: A_pos ← SOFTMAX (MASKED_FILL(A_n_raw, ¬M_pos, −∞), dim = cols) 23: A_neg ← −SOFTMAX (MASKED_FILL(1/(A_n_raw + 1), ¬M_neg, −∞), dim = cols) 24: A_n ← A_pos + A_neg 25: //---- Node K-order GCN with residual (Equation (24)) 26: X_n ← K_ORDER_GCN(X_t, A_n, K, dropout, mode = ‘nodes’) 27: X_n ← X_n + X_t 28: //---- Local fusion & compression (toward Equation (25)) 29: Z ← CONCAT_FEATURE([X_emb, X_n]) //B × L_max × (2H) 30: z ← LINEAR(Z → 1); z ← DROPOUT(z, p = dropout) 31: X ← z[:, :L, :] //keep first L steps 32: end for 33://---- Prediction head (Equation (25)) 34: F ← FLATTEN(X) //B × (L × 1) 35: Ŷ ← LINEAR(F → T); reshape to B × T 36: if anti_ood == 1 then 37: Ŷ ← Ŷ + seq_last[:, None,:] 38: end if 39: return Ŷ |
| Algorithm A2: Multi-Variate Variational Mode Decomposition Process |
| Input: signal //multichannel time series (C channels, length T) α (alpha) > 0 //quadratic bandwidth penalty τ (tau) > 0 //dual ascent step size K ∈ ℕ //number of modes DC ∈ {0,1} //whether to enforce a DC mode init ∈ {1, 2, other} //initialization type for center frequencies tol > 0 //convergence tolerance Output: u //time-domain modes (trimmed to original length) u_hat //centered full spectra (after trimming) ω //center frequencies per iteration 1: //---------- Input shape & basic set-up ---------- 2: If signal is T × C then transpose → C × T 3: fs ← 1/T //nominal sampling frequency used in init 4: 5: //---------- Mirror extension (to reduce boundary effects) ---------- 6: f[:, 1 : ⌊T/2⌋] ← signal[:, ⌊T/2⌋ : 1 : −1] //left mirror 7: f[:, ⌊T/2⌋ + 1 : ⌊3T/2⌋] ← signal //center (original) 8: f[:, ⌊3T/2⌋ + 1 : 2T] ← signal[:, T : −1 : ⌊T/2⌋ + 1] //right mirror 9: 10: // Update length after mirroring 11: Tm ← number of columns of f 12: t ← (1:Tm)/Tm 13: freqs ← t − 0.5 − 1/Tm //centered frequency grid 14: 15: //---------- Frequency-domain representation (keep positive freqs only) ---------- 16: f_hat ← fftshift (fft(f, along cols), along cols) 17: f_hat_plus ← f_hat; f_hat_plus[:, 1:Tm/2] ← 0 //zero out negative/zero freqs 18: 19: //---------- Initialization ---------- 20: Nmax ← 500 21: Alpha ← α · 1_K //same α for all modes 22: u_plus_prev ← zeros(Tm, C, K) //u_hat_plus at previous iter 23: u_plus ← zeros(Tm, C, K) //u_hat_plus at current iter 24: ω_plus ← zeros(Nmax, K) //center freq trajectory 25: 26: if init == 1 then 27: ω_plus [1, k] ← (0.5/K) · (k − 1) //uniform spacing in (0, 0.5) 28: else if init == 2 then 29: ω_plus [1, :] ← sort (exp (log(fs) + (log(0.5) − log(fs)) · rand(1,K))) 30: else 31: ω_plus [1, :] ← 0 32: end if 33: if DC == 1 then 34: ω_plus [1, 1] ← 0 //enforce DC for the first mode at init 35: end if 36: 37: λ_hat ← zeros(Tm, C, Nmax) //dual variable (Fourier domain) 38: uDiff ← tol + ε //convergence monitor 39: n ← 1 //iteration counter 40: sum_uk ← zeros(Tm, C) //accumulator of “other modes” 41: 42: //---------- Main loop: ADMM-like updates ---------- 43: while (uDiff > tol) and (n < Nmax) do 44: for k = 1..K do 45: //----- maintain sum of all modes except k (cyclic update) ----- 46: if k > 1 then 47: sum_uk ← u_plus[:, :, k−1] + sum_uk − u_plus_prev[:, :, k] 48: else 49: sum_uk ← u_plus_prev[:, :, K] + sum_uk − u_plus_prev[:, :, k] 50: end if 51: 52: //----- Wiener-filter update in the positive spectrum ----- 53: for c = 1..C do 54: denom ← 1 + Alpha[k] · (freqs’ − ω_plus[n, k])^2 55: resid ← f_hat_plus[c, :]’ − sum_uk[:, c] − λ_hat[:, c, n]/2 56: u_plus[:, c, k] ← resid ./denom 57: end for 58: 59: //----- Center frequency update (weighted average of positive freqs) ----- 60: //Note: in the provided code, ω_k is updated for all k (including k = 1 even when DC = 1) 61: if (DC == 1) or (k > 1) then 62: Upos ← u_plus[Tm/2 + 1 : Tm, :, k] 63: num ← freqs[Tm/2 + 1 : Tm] · |Upos|^2 //sum over freqs & channels 64: den ← sum (|Upos|^2) 65: ω_plus[n + 1, k] ← sum(num)/sum(den) 66: end if 67: end for 68: 69: //----- Dual ascent (enforce Σ_k u_k ≈ f_plus) ----- 70: λ_hat[:, :, n+1] ← λ_hat[:, :, n] + τ · ( SUM_k u_plus[:, :, k] − f_hat_plus’ ) 71: 72: //----- Convergence check ----- 73: n ← n + 1 74: u_prev ← u_plus_prev 75: u_plus_prev ← u_plus 76: Δ ← u_plus_prev − u_prev 77: uDiff ← ε + |sum ((Δ .* conj(Δ))/Tm )| 78: end while 79: 80: //---------- Outputs so far ---------- 81: N_iter ← min(Nmax, n) 82: ω ← ω_plus[1 : N_iter, :] 83: 84: //---------- Reconstruct full spectra (Hermitian symmetry) ---------- 85: u_hat_full ← zeros(Tm, K, C) 86: for c = 1..C do 87: u_hat_full[Tm/2 + 1 : Tm, :, c] ← u_plus[Tm/2 + 1 : Tm, c, :] 88: u_hat_full[Tm/2 + 1 : −1 : 2, :, c] ← conj (u_plus[Tm/2 + 1 : Tm, c, :]) //negative freqs 89: u_hat_full [1, :, c] ← conj (u_hat_full[end, :, c]) //DC symmetry 90: end for 91: 92: //---------- Inverse FFT to time domain ---------- 93: u_long ← zeros(K, Tm, C) 94: for k = 1..K do 95: for c = 1..C do 96: u_long[k, :, c] ← real (ifft (ifftshift (u_hat_full[:, k, c]))) 97: end for 98: end for 99: 100: //---------- Remove mirror part (keep the center segment) ---------- 101: u ← u_long[:, ⌊Tm/4⌋ + 1 : ⌊3Tm/4⌋, :] //back to original length 102: 103: //---------- Recompute centered spectra for the trimmed u ---------- 104: for k = 1..K do 105: for c = 1..C do 106: u_hat[:, k, c] ← fftshift (fft( u[k, :, c]))’ 107: end for 108: end for 109: return u, u_hat, ω |
References
- Ali, M.; Khan, D.M.; Alshanbari, H.M.; El-Bagoury, A.A.H. Prediction of complex stock market data using an improved hybrid EMD-LSTM model. Appl. Sci. 2023, 13, 1429. [Google Scholar] [CrossRef]
- Zhao, X.; Ma, G. Research progress and prospect of key technology of intelligent gas drainage in coal mine. Coal Sci. Technol. 2021, 49, 27–34. [Google Scholar] [CrossRef]
- Karijadi, I.; Chou, S. A hybrid RF-LSTM based on CEEMDAN for improving the accuracy of building energy consumption prediction. Energy Build. 2022, 259, 111908. [Google Scholar] [CrossRef]
- Liu, B.; Liu, C.; Zhou, Y.; Wang, D. A chatter detection method in milling based on gray wolf optimization VMD and multi-entropy features. Int. J. Adv. Manuf. Technol. 2023, 125, 831–854. [Google Scholar] [CrossRef]
- Liang, Y.; Lin, Y.; Lu, Q. Forecasting gold price using a novel hybrid model with ICEEMDAN and LSTM-CNN-CBAM. Expert Syst. Appl. 2022, 206, 117847. [Google Scholar] [CrossRef]
- Fan, J.; Zhang, K.; Huang, Y.; Zhu, Y.; Chen, B. Parallel spatio-temporal attention-based TCN for multivariate time series prediction. Neural Comput. Appl. 2023, 35, 13109–13118. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, D.; Li, Z.; Han, X.; Liu, H.; Dong, C.; Wang, J.; Liu, C.; Xia, Y. Power prediction of a wind farm cluster based on spatiotemporal correlations. Appl. Energy 2021, 302, 117568. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, M.; Miao, H.; Peng, Z.; Yu, P.S. Multivariate correlation-aware spatio-temporal graph convolutional networks for multi-scale traffic prediction. ACM Trans. Intell. Syst. Technol. 2022, 13, 38. [Google Scholar] [CrossRef]
- Ding, C.; Sun, S.; Zhao, J. MST-GAT: A multimodal spatial–temporal graph attention network for time series anomaly detection. Inf. Fusion 2023, 89, 527–536. [Google Scholar] [CrossRef]
- Wang, C.; Zhou, D.; Wang, X.; Liu, S.; Shao, T.; Shui, C.; Yan, J. Multiscale graph based spatio-temporal graph convolutional network for energy consumption prediction of natural gas transmission process. Energy 2024, 307, 132489. [Google Scholar] [CrossRef]
- Zhang, X.; Dimitrov, N. Variable importance analysis of wind turbine extreme responses with Shapley value explanation. Renew. Energy 2024, 232, 121049. [Google Scholar] [CrossRef]
- Agrawal, P.; Gnanaprakash, R.; Dhawane, S.H. Prediction of biodiesel yield employing machine learning: Interpretability analysis via Shapley additive explanations. Fuel 2024, 359, 130516. [Google Scholar] [CrossRef]
- Chang, H.; Wang, X.; Cristea, A.I.; Meng, X.; Hu, Z.; Pan, Z. Explainable artificial intelligence and advanced feature selection methods for predicting gas concentration in longwall mining. Inf. Fusion 2025, 118, 102976. [Google Scholar] [CrossRef]
- Lin, H.; Li, W.; Li, S.; Wang, L.; Ge, J.; Tian, Y.; Zhou, J. Coal mine gas emission prediction based on multifactor time series method. Reliab. Eng. Syst. Saf. 2024, 252, 110443. [Google Scholar] [CrossRef]
- Yu, W.; Yang, J.; Zhou, M.; Wang, Z. Quantitative Analysis of Prediction Indicators for Coal and Gas Outburst Risk. Geotech. Geol. Eng. 2024, 42, 3671–3690. [Google Scholar] [CrossRef]
- Ji, P.; Shi, S. Hazard prediction of coal and gas outburst based on the Hamming distance artificial intelligence algorithm (HDAIA). J. Saf. Sci. Resil. 2023, 4, 151–158. [Google Scholar] [CrossRef]
- Wang, Q.; Chen, H.; Xu, N.; Wang, X. Research on the spatial–temporal series prediction method of methane concentration based on GCN-Crossformer modeling. Measurement 2025, 256, 118217. [Google Scholar]
- Wang, Y.; Qin, Z.; Yan, Z.; Deng, J.; Huang, Y.; Zhang, L.; Cao, Y.; Wang, Y. Research on Coal and Gas Outburst Prediction and Sensitivity Analysis Based on an Interpretable Ali Baba and the Forty Thieves–Transformer–Support Vector Machine Model. Fire 2025, 8, 37. [Google Scholar] [CrossRef]
- Diaz, J.; Agioutantis, Z.; Hristopulos, D.T.; Schafrik, S.; Luxbacher, K. Time Series Modeling of Methane Gas in Underground Mines. Min. Metall. Explor. 2022, 39, 1961–1982. [Google Scholar] [CrossRef]
- Brodny, J.; Felka, D.; Tutak, M. The Use of the Neuro-Fuzzy Model to Predict the Methane Hazard during the Underground Coal Mining Production Process. J. Clean. Prod. 2022, 368, 133258. [Google Scholar] [CrossRef]
- Tutak, M.; Krenicky, T.; Pirník, R.; Brodny, J.; Grebski, W.W. Predicting Methane Concentrations in Underground Coal Mining Using a Multi-Layer Perceptron Neural Network Based on Mine Gas Monitoring Data. Sustainability 2024, 16, 8388. [Google Scholar] [CrossRef]
- Ur Rehman, N.; Aftab, H. Multivariate Variational Mode Decomposition. IEEE Trans. Signal Process. 2019, 67, 6039–6052. [Google Scholar] [CrossRef]
- Alkhayat, G.; Hasan, S.H.; Mehmood, R. A Hybrid Model of Variational Mode Decomposition and Long Short-Term Memory for next-Hour Wind Speed Forecasting in a Hot Desert Climate. Sustainability 2023, 15, 16759. [Google Scholar] [CrossRef]
- Huang, J.; Dai, S.; Wang, X.; Wu, Y.; Lu, H.; Liu, Y. A Multi-Objective Decision Making Method Based on Entropy Weight Calculation. In Proceedings of the 18th Annual Conference of China Electrotechnical Society, Nanchang, China, 15–17 September 2023; Yang, Q., Li, Z., Luo, A., Eds.; Springer Nature: Singapore, 2024; pp. 534–541. [Google Scholar]
- Huang, Q.; Shen, L.; Zhang, R.; Ding, S.; Wang, B.; Zhou, Z.; Wang, Y. Crossgnn: Confronting Noisy Multivariate Time Series Via Cross Interaction Refinement. Adv. Neural Inf. Process. Syst. 2023, 36, 46885–46902. [Google Scholar]
- Aryasomayajula, B.; Sil, D.; Palit, S. Fast Periodicity Estimation and Reconstruction of Hidden Components from Noisy Periodic Signal. arXiv 2019, arXiv:1901.09167. [Google Scholar] [CrossRef]
- He, J.; Zheng, N.; Ding, R.; Liu, X. Soil Moisture Retrieval Using GNSS Signal-to-Noise Ratio Data Based on an Improved Optimal Arc Selection Method. GPS Solut. 2024, 29, 27. [Google Scholar] [CrossRef]
- Hyndman, R.J.; Koehler, A.B. Another Look at Measures of Forecast Accuracy. Int. J. Forecast. 2006, 22, 679–688. [Google Scholar] [CrossRef]
- Rožanec, J.M.; Petelin, G.; Costa, J.; Bertalanič, B.; Cerar, G.; Guček, M.; Papa, G.; Mladenić, D. Dealing with Zero-Inflated Data: Achieving SOTA with a Two-Fold Machine Learning Approach. arXiv 2023, arXiv:2310.08088. [Google Scholar] [CrossRef]
- Kim, S.; Kim, H. A New Metric of Absolute Percentage Error for Intermittent Demand Forecasts. Int. J. Forecast. 2016, 32, 669–679. [Google Scholar] [CrossRef]
- Liu, M.; Zhang, L.; Yan, Z.; Wang, X.; Qiao, W.; Feng, L. Research on Gas Concentration Anomaly Detection in Coal Mining Based on SGDBO-Transformer-LSSVM. Processes 2025, 13, 2699. [Google Scholar] [CrossRef]
















| Mode | PSNR | SSIM | MAE | RMSE | Correlation | SNR |
|---|---|---|---|---|---|---|
| Channel 1 Joint Denoised | 33.9328 | 0.9849 | 0.0023 | 0.0201 | 0.9642 | 31.5790 dB |
| Channel 1 Wavelet Denoised | 33.0621 | 0.9833 | 0.0026 | 0.0222 | 0.9561 | 30.7067 dB |
| Channel 2 Joint Denoised | 39.8648 | 0.4306 | 0.0046 | 0.0102 | 0.9923 | 20.7668 dB |
| Channel 2 Wavelet Denoised | 38.9081 | 0.4907 | 0.0053 | 0.0113 | 0.9905 | 19.7668 dB |
| Channel 3 Joint Denoised | 41.3086 | 0.6559 | 0.0045 | 0.0086 | 0.9865 | 21.3465 dB |
| Channel 3 Wavelet Denoised | 40.5214 | 0.7378 | 0.0051 | 0.0094 | 0.9839 | 20.5250 dB |
| Channel 4 Joint Denoised | 41.2254 | 0.1792 | 0.0021 | 0.0087 | 0.9910 | 17.9090 dB |
| Channel 4 Wavelet Denoised | 40.6837 | 0.1995 | 0.0024 | 0.0092 | 0.9898 | 17.2827 dB |
| Algorithm | MAE | MSE | RMSE | AUC_ROC |
|---|---|---|---|---|
| STGNN | 0.0095 | 0.00025 | 0.016 | 0.977 |
| MTGNN | 0.0096 | 0.00027 | 0.016 | 0.9752 |
| FourierGNN | 0.012 | 0.00034 | 0.018 | 0.970 |
| CrossGNN | 0.0087 | 0.00024 | 0.015 | 0.978 |
| Non-decomposed CrossGNN | 0.02035 | 0.00035 | 0.023 | 0.893 |
| Algorithm | MAE_std | MSE_std | RMSE_std | AUC_ROC_std |
| STGNN | 0.0029 | 0.0002 | 0.0053 | 0.0178 |
| MTGNN | 0.0032 | 0.0002 | 0.0054 | 0.0187 |
| FourierGNN | 0.0031 | 0.0002 | 0.0056 | 0.0191 |
| CrossGNN | 0.0031 | 0.0002 | 0.0051 | 0.0156 |
| Non-decomposed CrossGNN | 0.0071 | 0.0006 | 0.0083 | 0.0692 |
| Algorithm | MAE (+95%CI) | MSE (+95%CI) | RMSE (+95%CI) | AUC_ROC (+95%CI) |
| STGNN | [0.0089, 0.010] | [0.00023, 0.00027] | [0.015, 0.017] | [0.97, 0.98] |
| MTGNN | [0.0090, 0.010] | [0.00025, 0.00029] | [0.015, 0.017] | [0.97, 0.98] |
| FourierGNN | [0.011, 0.013] | [0.00031, 0.00037] | [0.017, 0.019] | [0.96, 0.98] |
| CrossGNN | [0.0082, 0.0092] | [0.00022, 0.00026] | [0.014, 0.016] | [0.93, 0.98] |
| Non-decomposed CrossGNN | [0.019, 0.022] | [0.00032, 0.00038] | [0.021, 0.025] | [0.88, 0.90] |
| Algorithm | Precision | Recall | F1 | |
| STGNN | 0.90 | 0.88 | 0.89 | |
| MTGNN | 0.90 | 0.89 | 0.90 | |
| FourierGNN | 0.90 | 0.88 | 0.89 | |
| CrossGNN | 0.91 | 0.91 | 0.90 | |
| Non-decomposed CrossGNN | 0.84 | 0.83 | 0.86 | |
| Algorithm | Precision_std | Recall_std | F1_std | |
| STGNN | 0.046 | 0.058 | 0.044 | |
| MTGNN | 0.045 | 0.056 | 0.043 | |
| FourierGNN | 0.047 | 0.061 | 0.048 | |
| CrossGNN | 0.036 | 0.047 | 0.037 | |
| Non-decomposed CrossGNN | 0.189 | 0.200 | 0.174 | |
| Algorithm | Precision (+95%CI) | Recall (+95%CI) | F1 (+95%CI) | |
| STGNN | [0.88, 0.92] | [0.86, 0.90] | [0.87, 0.91] | |
| MTGNN | [0.88, 0.92] | [0.87, 0.91] | [0.88, 0.92] | |
| FourierGNN | [0.88, 0.92] | [0.86, 0.90] | [0.87, 0.91] | |
| CrossGNN | [0.89, 0.93] | [0.89, 0.93] | [0.88, 0.92] | |
| Non-decomposed CrossGNN | [0.80, 0.88] | [0.79, 0.87] | [0.82, 0.90] | |
| Algorithm | MAE | MSE | RMSE | AUC_ROC |
|---|---|---|---|---|
| CrossGNN (Baseline) | 0.0087 | 0.00024 | 0.0150 | 0.978 |
| w/o Temporal Graph Conv | 0.0105 | 0.00028 | 0.0167 | 0.973 |
| w/o Node Graph Conv | 0.0099 | 0.00027 | 0.0164 | 0.974 |
| w/o Feature Dim Expansion | 0.0092 | 0.00026 | 0.0161 | 0.976 |
| No Masks M/M_n | 0.0101 | 0.00029 | 0.0170 | 0.972 |
| K = 1 Only | 0.0096 | 0.00027 | 0.0163 | 0.975 |
| Simple Fusion | 0.0094 | 0.00026 | 0.0162 | 0.975 |
| Non-decomposed CrossGNN | 0.02035 | 0.00035 | 0.023 | 0.893 |
| Algorithm | Precision | Recall | F1 | |
| CrossGNN (Baseline) | 0.91 | 0.91 | 0.90 | |
| w/o Temporal Graph Conv | 0.90 | 0.88 | 0.89 | |
| w/o Node Graph Conv | 0.90 | 0.89 | 0.90 | |
| w/o Feature Dim Expansion | 0.905 | 0.900 | 0.902 | |
| No Masks M/M_n | 0.895 | 0.885 | 0.889 | |
| K = 1 Only | 0.905 | 0.895 | 0.900 | |
| Simple Fusion | 0.906 | 0.898 | 0.902 | |
| Non-decomposed CrossGNN | 0.84 | 0.83 | 0.86 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, L. Mine Gas Time-Series Data Prediction and Fluctuation Monitoring Method Based on Decomposition-Enhanced Cross-Graph Forecasting and Anomaly Finding. Sensors 2025, 25, 7014. https://doi.org/10.3390/s25227014
Yuan L. Mine Gas Time-Series Data Prediction and Fluctuation Monitoring Method Based on Decomposition-Enhanced Cross-Graph Forecasting and Anomaly Finding. Sensors. 2025; 25(22):7014. https://doi.org/10.3390/s25227014
Chicago/Turabian StyleYuan, Linyu. 2025. "Mine Gas Time-Series Data Prediction and Fluctuation Monitoring Method Based on Decomposition-Enhanced Cross-Graph Forecasting and Anomaly Finding" Sensors 25, no. 22: 7014. https://doi.org/10.3390/s25227014
APA StyleYuan, L. (2025). Mine Gas Time-Series Data Prediction and Fluctuation Monitoring Method Based on Decomposition-Enhanced Cross-Graph Forecasting and Anomaly Finding. Sensors, 25(22), 7014. https://doi.org/10.3390/s25227014
