Acoustic Metamaterial Nanogenerator for Multi-Band Sound Insulation and Acoustic–Electric Conversion
Abstract
1. Introduction
2. Principle and Design of the MBSI-TENG
3. Sound Insulation Analysis of the MBSI-TENG
3.1. Sound Insulation Mechanism
3.2. Regulation of the Sound Insulation Band
3.3. Influence of Silicone Membrane on Sound Insulation Performance
4. Experimental Analysis
4.1. Acoustic Insulation Performance of MBSI-TENG
4.2. Acoustic–Electric Conversion Performance of MBSI-TENG
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| TENG | Triboelectric Nanogenerator |
| MWCNTs | Multi-walled Carbon Nanotubes |
| MAM | Membrane-type Acoustic Metamaterial |
| IoT | Internet of Things |
| MBSI-TENG | Multi-Band Sound Insulation Triboelectric Nanogenerator |
| PLA | Polylactic Acid |
| PI | Polyimide |
| FEP | Fluorinated Ethylene Propylene |
| FEM | Finite Element Method |
| STL | Sound Transmission Loss |
| SPL | Sound Pressure Level |
| FDM | Fused Deposition Modeling |
References
- Thompson, R.; Smith, R.B.; Karim, Y.B.; Shen, C.; Drummond, K.; Teng, C.; Toledano, M.B. Noise pollution and human cognition: An updated systematic review and meta-analysis of recent evidence. Environ. Int. 2022, 158, 106905. [Google Scholar] [CrossRef]
- Wang, X.X.; Fu, T. A novel arc-type auxetic cellular doubly-curved shells with negative Poisson’s ratio for broadband low-frequency sound insulation. Eur. J. Mech. A-Solids 2024, 106, 105326. [Google Scholar] [CrossRef]
- Gao, N.S.; Zhang, Z.C.; Deng, J.; Guo, X.Y.; Cheng, B.Z.; Hou, H. Acoustic Metamaterials for Noise Reduction: A Review. Adv. Mater. Technol. 2022, 7, 2100698. [Google Scholar] [CrossRef]
- Arjunan, A.; Baroutaji, A.; Robinson, J.; Vance, A.; Arafat, A. Acoustic metamaterials for sound absorption and insulation in buildings. Build. Environ. 2024, 251, 111250. [Google Scholar] [CrossRef]
- Fu, T.; Wang, X.X.; Rabczuk, T. Broadband low-frequency sound insulation of stiffened sandwich PFGM doubly-curved shells with positive, negative and zero Poisson’s ratio cellular cores. Aerosp. Sci. Technol. 2024, 147, 109049. [Google Scholar] [CrossRef]
- Zhu, Y.Z.; Gong, C.; Zhang, X.; Long, H.Y.; Wang, T.M.; Cheng, Y.; Liu, X.J. An ultrathin absorber for broadband low-frequency sound enabled by an impedance boundary. Appl. Phys. Lett. 2025, 126, 251702. [Google Scholar] [CrossRef]
- Akbari-Farahani, F.; Ebrahimi-Nejad, S. From defect mode to topological metamaterials: A state-of-the-art review of phononic crystals & acoustic metamaterials for energy harvesting. Sens. Actuators A-Phys. 2024, 365, 114871. [Google Scholar] [CrossRef]
- Nakayama, M. Acoustic metamaterials based on polymer sheets: From material design to applications as sound insulators and vibration dampers. Polym. J. 2024, 56, 71–77. [Google Scholar] [CrossRef]
- Mir, F.; Mandal, D.; Banerjee, S. Metamaterials for Acoustic Noise Filtering and Energy Harvesting. Sensors 2023, 23, 4227. [Google Scholar] [CrossRef]
- Huang, H.Y.; Cao, E.R.; Zhao, M.Y.; Alamri, S.; Li, B. Spider Web-Inspired Lightweight Membrane-Type Acoustic Metamaterials for Broadband Low-Frequency Sound Isolation. Polymers 2021, 13, 1146. [Google Scholar] [CrossRef]
- Cao, E.R.; Jia, B.; Guo, D.; Li, B.; Wang, W.Z.; Huang, H.Y. Bionic design and numerical studies of spider web-inspired membrane-type acoustic metamaterials. Compos. Struct. 2023, 315, 117010. [Google Scholar] [CrossRef]
- Wu, S.; Xiong, L.; Wang, K. Development and prospect of membrane-type acoustic metamaterials. J. Appl. Acoust. 2025, 44, 252–264. [Google Scholar]
- Jang, J.Y.; Song, K.Y.J. Synergistic acoustic metamaterial for soundproofing: Combining membrane and locally resonant structure. Int. J. Mech. Sci. 2023, 256, 108500. [Google Scholar] [CrossRef]
- Li, X.Y.; Zhao, J.J.; Wang, W.J.; Xing, T.; Zhu, L.Y.; Liu, Y.A.; Li, X.H. Tunable acoustic insulation characteristics of membrane-type acoustic metamaterials array with compact magnets. Appl. Acoust. 2022, 187, 108514. [Google Scholar] [CrossRef]
- Ma, F.Y.; Wu, J.H.; Huang, M. Resonant modal group theory of membrane-type acoustical metamaterials for low-frequency sound attenuation. Eur. Phys. J. Appl. Phys. 2015, 71, 30504. [Google Scholar] [CrossRef]
- Ang, L.Y.L.; Koh, Y.K.; Lee, H.P. Plate-type acoustic metamaterial with cavities coupled via an orifice for enhanced sound transmission loss. Appl. Phys. Lett. 2018, 112, 051903. [Google Scholar] [CrossRef]
- Yuan, M.; Yao, W.Y.; Ding, Z.J.; Li, J.H.; Dai, B.Y.; Zhang, X.Y.; Xie, Y.N. Integrated acoustic metamaterial triboelectric nanogenerator for joint low-frequency acoustic insulation and energy harvesting. Nano Energy 2024, 122, 109328. [Google Scholar] [CrossRef]
- Du, Y.; Wu, W.G.; Chen, W.; Lin, Y.S.; Chi, Q.J. Control the structure to optimize the performance of sound absorption of acoustic metamaterial: A review. Aip Adv. 2021, 11, 060701. [Google Scholar] [CrossRef]
- Langfeldt, F.; Cheer, J. Controlling the effective surface mass density of membrane-type acoustic metamaterials using dynamic actuators. J. Acoust. Soc. Am. 2023, 153, 961–971. [Google Scholar] [CrossRef]
- Li, H.Z.; Liu, X.C.; Liu, Q.; Li, S.; Yang, J.S.; Tong, L.L.; Shi, S.B.; Schmidt, R.; Schroeder, K.U. Sound insulation performance of double membrane-type acoustic metamaterials combined with a Helmholtz resonator. Appl. Acoust. 2023, 205, 109297. [Google Scholar] [CrossRef]
- Zhang, J.; Yao, D.; Peng, W.; Li, J.; Guo, S.Y. Enhanced sound insulation in double wall structures via MAMs: An RBF-based optimisation approach. Mater. Des. 2025, 254, 114058. [Google Scholar] [CrossRef]
- Yang, X.; Hao, L.M.; Yan, X.L.; Liu, D.A.; Guo, J.F.; Cheng, H.; Pang, S.F.; Xie, Y.; Chen, Z. Tunable double-layer dual-band metamaterial with negative mass density. Phys. Scr. 2023, 98, 115952. [Google Scholar] [CrossRef]
- Yin, J.Y.; Wang, S.L.; Xu, J.; Zhao, X.; Chen, G.R.; Xiao, X.; Chen, J. Leveraging giant magnetoelasticity in soft matter for acoustic energy harvesting. Matter 2025, 8, 102156. [Google Scholar] [CrossRef]
- Che, Z.Y.; Xu, J.; Wan, X.; Duan, C.Y.L.; Chen, J. A Membrane Magnetoelastic Generator for Acoustic Energy Harvesting. Adv. Sci. 2025, 12, e2409063. [Google Scholar] [CrossRef]
- Zhou, S.Q.; Jia, C.E.; Shu, G.L.; Guan, Z.X.; Wu, H.; Li, J.; Ou-Yang, W. Recent advances in TENGs collecting acoustic energy: From low-frequency sound to ultrasound. Nano Energy 2024, 129, 109951. [Google Scholar] [CrossRef]
- Jean, F.; Khan, M.U.; Alazzam, A.; Mohammad, B. Advancement in piezoelectric nanogenerators for acoustic energy harvesting. Microsyst. Nanoeng. 2024, 10, 197. [Google Scholar] [CrossRef]
- Yang, D.; Zhao, J.H. Acoustic Wake-Up Technology for Microsystems: A Review. Micromachines 2023, 14, 129. [Google Scholar] [CrossRef]
- Son, G.; Seo, D.; Kim, D.; Kim, S.; Kong, J.; Kim, K.; Chung, J. Capacitive Structure-Based Acoustic Triboelectric Nanogenerator for Advanced Warning Sound Recognition. Adv. Eng. Mater. 2025, 27, 2402442. [Google Scholar] [CrossRef]
- Yuan, M.; Zhu, B.; Jiang, Q.S.; Xie, Y.N.; Ohayon, R. Multifunctional subwavelength device for wide-band sound absorption and acoustic-electric conversion. Sens. Actuators A-Phys. 2025, 389, 116554. [Google Scholar] [CrossRef]
- Yuan, M.; Yu, W.P.; Jiang, Y.W.; Ding, Z.J.; Zhang, Z.F.; Zhang, X.Y.; Xie, Y.N. Triboelectric nanogenerator metamaterials for joint structural vibration mitigation and self-powered structure monitoring. Nano Energy 2022, 103, 107773. [Google Scholar] [CrossRef]
- Wang, W.L.; Yang, D.F.; Yan, X.R.; Wang, L.C.; Hu, H.; Wang, K. Triboelectric nanogenerators: The beginning of blue dream. Front. Chem. Sci. Eng. 2023, 17, 635–678. [Google Scholar] [CrossRef]
- Jean, F.; Khan, M.U.; Alazzam, A.; Mohammad, B. Harnessing ambient sound: Different approaches to acoustic energy harvesting using triboelectric nanogenerators. J. Sci. Adv. Mater. Devices 2024, 9, 100805. [Google Scholar] [CrossRef]
- Song, Z.W.; Yin, J.H.; Wang, Z.H.; Lu, C.Y.; Yang, Z.; Zhao, Z.H.; Lin, Z.N.; Wang, J.Y.; Wu, C.S.; Cheng, J.; et al. A flexible triboelectric tactile sensor for simultaneous material and texture recognition. Nano Energy 2022, 93, 106798. [Google Scholar] [CrossRef]
- Yuan, H.C.; Yu, H.Y.; Liu, X.Y.; Zhao, H.F.; Zhang, Y.P.; Xi, Z.Y.; Zhang, Q.Q.; Liu, L.; Lin, Y.J.; Pan, X.X.; et al. A High-Performance Coniform Helmholtz Resonator-Based Triboelectric Nanogenerator for Acoustic Energy Harvesting. Nanomaterials 2021, 11, 3431. [Google Scholar] [CrossRef]
- Xiao, X.; Liu, L.; Xi, Z.Y.; Yu, H.Y.; Li, W.X.; Wang, Q.Y.; Zhao, C.; Huang, Y.; Xu, M.Y. Research on an Optimized Quarter-Wavelength Resonator-Based Triboelectric Nanogenerator for Efficient Low-Frequency Acoustic Energy Harvesting. Nanomaterials 2023, 13, 1676. [Google Scholar] [CrossRef]
- Yuan, M.; Zhang, W.L.; Tai, Y.H.; Yan, W.Z.; Jiang, Y.W.; Zhang, S.; Xie, Y.N. Tympanic membrane metamaterial inspired multifunctional low-frequency acoustic triboelectric nanogenerator. Nano Energy 2024, 128, 109816. [Google Scholar] [CrossRef]
- Han, J.; Park, S.H.; Jung, Y.S.; Cho, Y.S. High-performance piezoelectric energy harvesting in amorphous perovskite thin films deposited directly on a plastic substrate. Nat. Commun. 2024, 15, 4129. [Google Scholar] [CrossRef]
- Feng, H.Z.; Bu, L.; Ling, Y.S.; Jiang, S.Y.; Zhao, X.Y.; Li, Z.S.H.; Xu, M.H.; Xu, S.X.; Wang, X.H. A Heterogeneous Cascaded Resonant MEMS Energy Harvester with In Situ Integrated PVDF Films for Sub-10 Hz Ultra-Low-Frequency Vibration Energy Harvesting. Small 2025, 21, e2504771. [Google Scholar] [CrossRef]
- Lee, S.H.; Kim, J. Cellulose Nanofiber Films and Their Vibration Energy Harvesting. Sensors 2022, 22, 6280. [Google Scholar] [CrossRef]
- Cavagnoli, S.; Fabiani, C.; Landi, F.F.D.; Pisello, A.L. Advancing sustainable construction through comprehensive analysis of thermal, acoustic, and environmental properties in prefabricated panels with recycled PET materials. Energy Build. 2024, 312, 114218. [Google Scholar] [CrossRef]
- Hu, Y.; Guo, R.Y.; Qiao, E.Z.; Chen, W.J. An Experimental and Numerical Comparison of the Mechanical Characteristics of a Space Inflatable Antenna Reflector Made with Kapton and Mylar Films. Aerospace 2025, 12, 853. [Google Scholar] [CrossRef]
- Hegde, V.; Chaulagain, N.; Tamang, H.B. Design, fabrication and experimental analysis of piezoresistive bidirectional acoustic sensor. Sens. Rev. 2024, 44, 284–289. [Google Scholar] [CrossRef]









| Material | Young’s Modulus (MPa) | Density (kg/m3) | Poisson’s Ratio |
|---|---|---|---|
| PLA | 2530 | 1240 | 0.38 |
| Kapton | 2760 | 1420 | 0.34 |
| Steel | 20,000 | 8356 | 0.28 |
| Silicone membrane | 0.5 | 1200 | 0.48 |
| Type | Various Curved Structures | Without a Central-Curved Structure | Only a Central-Curved Structure |
|---|---|---|---|
| Average STL(dB) | 28.236 | 22.428 | 13.031 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, X.; Yuan, M. Acoustic Metamaterial Nanogenerator for Multi-Band Sound Insulation and Acoustic–Electric Conversion. Sensors 2025, 25, 6693. https://doi.org/10.3390/s25216693
Liang X, Yuan M. Acoustic Metamaterial Nanogenerator for Multi-Band Sound Insulation and Acoustic–Electric Conversion. Sensors. 2025; 25(21):6693. https://doi.org/10.3390/s25216693
Chicago/Turabian StyleLiang, Xinwu, and Ming Yuan. 2025. "Acoustic Metamaterial Nanogenerator for Multi-Band Sound Insulation and Acoustic–Electric Conversion" Sensors 25, no. 21: 6693. https://doi.org/10.3390/s25216693
APA StyleLiang, X., & Yuan, M. (2025). Acoustic Metamaterial Nanogenerator for Multi-Band Sound Insulation and Acoustic–Electric Conversion. Sensors, 25(21), 6693. https://doi.org/10.3390/s25216693

