Use of Digital Biomarkers from Sensing Technologies to Explore the Relationship Between Daytime Activity Levels and Sleep Quality in Nursing Home Residents with Dementia: A Proof-of-Concept Study
Abstract
1. Introduction
- What is the adherence, feasibility, and quality of digital data acquired by Garmin Vivoactive5 and Somnofy?
- To what extent are the selected digital biomarkers for activity and sleep related to the selected clinical questionnaires in dementia?
- Which digital sleep parameters show the strongest correlations with daytime activity levels in nursing home residents with dementia?
2. Materials and Methods
2.1. Design and Study Population
2.2. Clinical Assessment Tools
2.3. Sensing Technologies
3. Data Quality, Extraction, and Preprocessing
3.1. Adherence, Feasibility, and Residents’ Safety
3.2. Acceleration
3.3. Sleep Digital Biomarkers
3.4. Statistical Analysis
3.5. Ethics
4. Results
4.1. Adherence, Feasibility, Quality of Data
4.2. Digital Snapshot: Day/Nighttime Physical Activity and Sleep Quality
4.3. Digital Biomarker Comparisons
4.4. Traditional Outcome Measures and Digital Biomarkers
5. Discussion
Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ATC | Anatomical Therapeutic Chemical |
| 4AT’s | Assessment Test for Delirium |
| BPSD | Behavioral and Psychological Symptoms of Dementia |
| CDR | Clinical Dementia Rating |
| CSV | Comma-Separated Values |
| 5-D | Decoding Death and Dying in People with Dementia by Digital Thanotyping |
| DIPH.DEM | Digital Phenotyping for Changes in Activity in People with Dementia |
| DPIA | Data Protection Impact Assessment |
| ENMO | Euclidean Norm Minus One |
| GB | Gigabytes |
| GDPR | General Data Protection Regulation |
| GMHR | General Medical Health Rating |
| HAR | Human Activity Recognition |
| NPI-NH | Neuropsychiatric Inventory–Nursing Home Version |
| PSMS | Physical Self Maintenance Score |
| REK | Regional Committee for Medical and Healthcare Research Ethics |
| SE | Sleep Efficiency |
| SRI | Sleep Regulatory Index |
| TST | Total Sleep Time |
| VO2 | Volume Oxygen |
| WASO | Wake After Sleep Onset |
References
- Livingston, G.; Huntley, J.; Liu, K.Y.; Costafreda, S.G.; Selbæk, G.; Alladi, S.; Ames, D.; Banerjee, S.; Burns, A.; Brayne, C.; et al. Dementia prevention, intervention, and care: 2024 report of the Lancet standing Commission. Lancet 2024, 404, 572–628. [Google Scholar] [CrossRef]
- Casagrande, M.; Forte, G.; Favieri, F.; Corbo, I. Sleep Quality and Aging: A Systematic Review on Healthy Older People, Mild Cognitive Impairment and Alzheimer’s Disease. Int. J. Environ. Res. Public Health 2022, 19, 8457. [Google Scholar] [CrossRef]
- Mukamel, D.B.; Saliba, D.; Ladd, H.; Konetzka, R.T. Dementia Care is Widespread in US Nursing Homes; Facilities with The Most Dementia Patients May Offer Better Care. Health Aff. 2023, 42, 795–803. [Google Scholar] [CrossRef]
- Ouden, M.D.; Bleijlevens, M.H.; Meijers, J.M.; Zwakhalen, S.M.; Braun, S.M.; Tan, F.E.; Hamers, J.P. Daily (In)Activities of Nursing Home Residents in Their Wards: An Observation Study. J. Am. Med. Dir. Assoc. 2015, 16, 963–968. [Google Scholar] [CrossRef] [PubMed]
- Moyle, W.; Jones, C.; Murfield, J.; Draper, B.; Beattie, E.; Shum, D.; Thalib, L.; O’dwyer, S.; Mervin, C.M. Levels of physical activity and sleep patterns among older people with dementia living in long-term care facilities: A 24-h snapshot. Maturitas 2017, 102, 62–68. [Google Scholar] [CrossRef]
- Corbett, A.; Husebo, B.; Malcangio, M.; Staniland, A.; Cohen-Mansfield, J.; Aarsland, D.; Ballard, C. Assessment and treatment of pain in people with dementia. Nat. Rev. Neurol. 2012, 8, 264–274. [Google Scholar] [CrossRef]
- Li, J.; Vitiello, M.V.; Gooneratne, N.S. Sleep in Normal Aging. Sleep Med. Clin. 2018, 13, 1–11. [Google Scholar] [CrossRef]
- Shin, H.Y.; Han, H.J.; Shin, D.J.; Park, H.M.; Lee, Y.B.; Park, K.H. Sleep problems associated with behavioral and psychological symptoms as well as cognitive functions in Alzheimer’s disease. J. Clin. Neurol. 2014, 10, 203–209. [Google Scholar] [CrossRef]
- Webster, L.; Gonzalez, S.C.; Stringer, A.; Lineham, A.; Budgett, J.; Kyle, S.; Barber, J.; Livingston, G. Measuring the prevalence of sleep disturbances in people with dementia living in care homes: A systematic review and meta-analysis. Sleep 2020, 43, zsz251. [Google Scholar] [CrossRef] [PubMed]
- Blytt, K.M.; Bjorvatn, B.; Husebo, B.; Flo, E. Clinically significant discrepancies between sleep problems assessed by standard clinical tools and actigraphy. BMC Geriatr. 2017, 17, 253. [Google Scholar] [CrossRef] [PubMed]
- Boyle, L.D.; Giriteka, L.; Marty, B.; Sandgathe, L.; Haugarvoll, K.; Steihaug, O.M.; Husebo, B.S.; Patrascu, M. Activity and Behavioral Recognition Using Sensing Technology in Persons with Parkinson’s Disease or Dementia: An Umbrella Review of the Literature. Sensors 2025, 25, 668. [Google Scholar] [CrossRef]
- Au-Yeung, W.-T.M.; Miller, L.; Beattie, Z.; May, R.; Cray, H.V.; Kabelac, Z.; Katabi, D.; Kaye, J.; Vahia, I.V. Monitoring Behaviors of Patients With Late-Stage Dementia Using Passive Environmental Sensing Approaches: A Case Series. Am. J. Geriatr. Psychiatry 2022, 30, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Thabane, L.; Ma, J.; Chu, R.; Cheng, J.; Ismaila, A.; Rios, L.P.; Robson, R.; Thabane, M.; Giangregorio, L.; Goldsmith, C.H. A tutorial on pilot studies: The what, why and how. BMC Med. Res. Methodol. 2010, 10, 1, Erratum in BMC Med. Res. Methodol. 2023, 23, 59. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kunselman, A.R. A brief overview of pilot studies and their sample size justification. Fertil. Steril. 2024, 121, 899–901, Erratum in Fertil. Steril. 2024, 122, 1169. https://doi.org/10.1016/j.fertnstert.2024.09.036. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Al-Mekhlafi, A.; Becker, T.; Klawonn, F. Sample size and performance estimation for biomarker combinations based on pilot studies with small sample sizes. Commun. Stat.-Theory Methods 2022, 51, 5534–5548. [Google Scholar] [CrossRef]
- Morris, J.C. Clinical dementia rating: A reliable and valid diagnostic and staging measure for dementia of the Alzheimer type. Int. Psychogeriatr. 1997, 9 (Suppl. S1), 173–176; discussion 7–8. [Google Scholar] [CrossRef]
- Tieges, Z.; Maclullich, A.M.J.; Anand, A.; Brookes, C.; Cassarino, M.; O’connor, M.; Ryan, D.; Saller, T.; Arora, R.C.; Chang, Y.; et al. Diagnostic accuracy of the 4AT for delirium detection in older adults: Systematic review and meta-analysis. Age Ageing 2021, 50, 733–743. [Google Scholar] [CrossRef]
- Lyketsos, C.G.; Galik, E.; Steele, C.; Steinberg, M.; Rosenblatt, A.; Warren, A.; Sheppard, J.; Baker, A.; Brandt, J. The General Medical Health Rating: A bedside global rating of medical comorbidity in patients with dementia. J. Am. Geriatr. Soc. 1999, 47, 487–491. [Google Scholar] [CrossRef]
- Selbaek, G.; Kirkevold, O.; Sommer, O.H.; Engedal, K. The reliability and validity of the Norwegian version of the Neuropsychiatric Inventory, nursing home version (NPI-NH). Int. Psychogeriatr. 2008, 20, 375–382. [Google Scholar] [CrossRef] [PubMed]
- Saari, T.; Koivisto, A.; Hintsa, T.; Hanninen, T.; Hallikainen, I. Psychometric Properties of the Neuropsychiatric Inventory: A Review. J. Alzheimer’s Dis. 2022, 86, 1485–1499. [Google Scholar] [CrossRef] [PubMed]
- Wood, S.; Cummings, J.L.; Hsu, M.-A.; Barclay, T.; Wheatley, M.V.; Yarema, K.T.; Schnelle, J.F. The use of the neuropsychiatric inventory in nursing home residents. Characterization and measurement. Am. J. Geriatr. Psychiatry 2000, 8, 75–83. [Google Scholar] [CrossRef] [PubMed]
- Lawton, M.P.; Brody, E.M. Self-maintenance P. Assessment of older people: Self-maintaining and instrumental activities of daily living. Gerontologist 1969, 9, 179–186. [Google Scholar] [CrossRef]
- Edwards, M.M. The reliability and validity of self-report activities of daily living scales. Can. J. Occup. Ther. 1990, 57, 273–278. [Google Scholar] [CrossRef]
- Kastelic, K.; Dobnik, M.; Lofler, S.; Hofer, C.; Sarabon, N. Validity, Reliability and Sensitivity to Change of Three Consumer-Grade Activity Trackers in Controlled and Free-Living Conditions among Older Adults. Sensors 2021, 21, 6245. [Google Scholar] [CrossRef]
- Boyle, L.D.; Marty, B.; Haugarvoll, K.; Steihaug, O.M.; Patrascu, M.; Husebo, B.S. Selecting a smartwatch for trials involving older adults with neurodegenerative diseases: A researcher’s framework to avoid hidden pitfalls. J. Biomed. Inform. 2025, 162, 104781. [Google Scholar] [CrossRef] [PubMed]
- Khaled, M.; Sareban, M.; Kreuzthaler, M.; Schulz, S.; Hussein, R. Overview of Existing Tools for Extracting Health and Fitness Data from mHealth Apps. Stud. Health Technol. Inform. 2022, 295, 49–50. [Google Scholar] [PubMed]
- Toften, S.; Pallesen, S.; Hrozanova, M.; Moen, F.; Gronli, J. Validation of sleep stage classification using non-contact radar technology and machine learning (Somnofy(R)). Sleep Med. 2020, 75, 54–61. [Google Scholar] [CrossRef]
- Miller, R.; Chan, S.H.; Whelan, H.; Gregório, J. A Comparison of Data Quality Frameworks: A Review. Big Data Cogn. Comput. 2025, 9, 93. [Google Scholar] [CrossRef]
- Vähä-Ypyä, H.; Vasankari, T.; Husu, P.; Mänttäri, A.; Vuorimaa, T.; Suni, J.; Sievänen, H. Validation of Cut-Points for Evaluating the Intensity of Physical Activity with Accelerometry-Based Mean Amplitude Deviation (MAD). PLoS ONE 2015, 10, e0134813. [Google Scholar] [CrossRef]
- Reed, D.L.; Sacco, W.P. Measuring Sleep Efficiency: What Should the Denominator Be? J. Clin. Sleep Med. 2016, 12, 263–266. [Google Scholar] [CrossRef] [PubMed]
- Corral-Pérez, J.; Casals, C.; Ávila-Cabeza-De-Vaca, L.; González-Mariscal, A.; Mier, A.; Espinar-Toledo, M.; Soler, N.G.-A.; Vázquez-Sánchez, M.Á. Associations Between Physical Activity and Inactivity Levels on Physical Function and Sleep Parameters of Older Adults With Frailty Phenotype. J. Appl. Gerontol. 2024, 43, 910–921. [Google Scholar] [CrossRef]
- Hertenstein, E.; Gabryelska, A.; Spiegelhalder, K.; Nissen, C.; Johann, A.F.; Umarova, R.; Riemann, D.; Baglioni, C.; Feige, B. Reference Data for Polysomnography-Measured and Subjective Sleep in Healthy Adults. J. Clin. Sleep Med. 2018, 14, 523–532. [Google Scholar] [CrossRef]
- Windred, D.P.; Burns, A.C.; Lane, J.M.; Saxena, R.; Rutter, M.K.; Cain, S.W.; Phillips, A.J.K. Sleep regularity is a stronger predictor of mortality risk than sleep duration: A prospective cohort study. Sleep 2024, 47, zsad253. [Google Scholar] [CrossRef]
- Maher, J.M.; Markey, J.C.; Ebert-May, D. The other half of the story: Effect size analysis in quantitative research. CBE Life Sci. Educ. 2013, 12, 345–351. [Google Scholar] [CrossRef]
- Gignac, G.E.; Szodorai, E.T. Effect size guidelines for individual differences researchers. Personal. Individ. Differ. 2016, 102, 74–78. [Google Scholar] [CrossRef]
- Shen, Y.; Lv, Q.-K.; Xie, W.-Y.; Gong, S.-Y.; Zhuang, S.; Liu, J.-Y.; Mao, C.-J.; Liu, C.-F. Circadian disruption and sleep disorders in neurodegeneration. Transl. Neurodegener. 2023, 12, 8. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Chen, S.-J.; Ma, M.-Y.; Bao, Y.-P.; Han, Y.; Wang, Y.-M.; Shi, J.; Vitiello, M.V.; Lu, L. Sleep disturbances increase the risk of dementia: A systematic review and meta-analysis. Sleep Med. Rev. 2018, 40, 4–16. [Google Scholar] [CrossRef] [PubMed]
- Verma, A.K.; Singh, S.; Rizvi, S.I. Aging, circadian disruption and neurodegeneration: Interesting interplay. Exp. Gerontol. 2023, 172, 112076. [Google Scholar] [CrossRef] [PubMed]
- Atoui, S.; Chevance, G.; Romain, A.J.; Kingsbury, C.; Lachance, J.P.; Bernard, P. Daily associations between sleep and physical activity: A systematic review and meta-analysis. Sleep Med. Rev. 2021, 57, 101426. [Google Scholar] [CrossRef]
- Seol, J.; Lee, J.; Park, I.; Tokuyama, K.; Fukusumi, S.; Kokubo, T.; Yanagisawa, M.; Okura, T. Bidirectional associations between physical activity and sleep in older adults: A multilevel analysis using polysomnography. Sci. Rep. 2022, 12, 15399. [Google Scholar] [CrossRef]
- Lin, C.Y.; Lin, K.P.; Hsueh, M.C.; Liao, Y. Associations of accelerometer-measured sedentary behavior and physical activity with sleep in older adults. J. Formos. Med. Assoc. 2024, 123, 1239–1245. [Google Scholar] [CrossRef]
- Gonzales, P.N.; Villaraza, S.G.; Rosa, J.A. The association between sleep and Alzheimer’s disease: A systematic review. Dement. Neuropsychol. 2024, 18, e20230049. [Google Scholar] [CrossRef]
- Crowley, P.; O’Donovan, M.R.; Leahy, P.; Flanagan, E.; O’Caoimh, R. Pharmacological and Non-Pharmacological Interventions to Improve Sleep in People with Cognitive Impairment: A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2025, 22, 956. [Google Scholar] [CrossRef]
- Angeles, R.C.; Berge, L.I.; Gedde, M.H.; Kjerstad, E.; Vislapuu, M.; Puaschitz, N.G.; Husebo, B.S. Which factors increase informal care hours and societal costs among caregivers of people with dementia? A systematic review of Resource Utilization in Dementia (RUD). Health Econ. Rev. 2021, 11, 37. [Google Scholar] [CrossRef]
- Karas, M.; Muschelli, J.; Leroux, A.; Urbanek, J.K.; Wanigatunga, A.A.; Bai, J.; Crainiceanu, C.M.; Schrack, J.A. Comparison of Accelerometry-Based Measures of Physical Activity: Retrospective Observational Data Analysis Study. JMIR mHealth uHealth 2022, 10, e38077. [Google Scholar] [CrossRef]
- van Hees, V.T.; Gorzelniak, L.; Dean Leon, E.C.; Eder, M.; Pias, M.; Taherian, S.; Ekelund, U.; Renström, F.; Franks, P.W.; Horsch, A.; et al. Separating movement and gravity components in an acceleration signal and implications for the assessment of human daily physical activity. PLoS ONE 2013, 8, e61691. [Google Scholar] [CrossRef]
- Bakrania, K.; Yates, T.; Rowlands, A.V.; Esliger, D.W.; Bunnewell, S.; Sanders, J.; Davies, M.; Khunti, K.; Edwardson, C.L. Intensity Thresholds on Raw Acceleration Data: Euclidean Norm Minus One (ENMO) and Mean Amplitude Deviation (MAD) Approaches. PLoS ONE 2016, 11, e0164045. [Google Scholar] [CrossRef] [PubMed]
- Rubeis, G. The disruptive power of Artificial Intelligence. Ethical aspects of gerontechnology in elderly care. Arch. Gerontol. Geriatr. 2020, 91, 104186. [Google Scholar] [CrossRef] [PubMed]
- Habibi, F.; Ghaderkhani, S.; Shokoohi, M.; Banari, T.; Morsali, M.; Abadi, R.N.S.; Kiamehr, H. Harnessing artificial intelligence in Alzheimer’s disease management: Navigating ethical challenges in AI. AI Ethics 2025, 5, 3461–3477. [Google Scholar] [CrossRef]



| Variables | Mean, Standard Deviation, Range (N) |
|---|---|
| Age, years | 84.0 ± 6.1, 77–93 (11) |
| Gender, female (male) | 8 (3) |
| Months in the nursing home | 17.6 ± 12.5, 3–42 (11) |
| Dementia as primary diagnosis | 6 |
| Alzheimer’s dementia | 3 |
| Parkinson’s disease | 1 |
| CDR score (0–3) | 2.2 ± 0.7, 1–3 (11) |
| Mild | 4 |
| Moderate | 5 |
| Severe | 2 |
| PSMS score (6–30) | 15.7 ± 5.7, 8–23 (11) |
| Comorbidities (GMHR) | 2.6 ± 0.7, 1–3 (11) |
| NPI-NH | |
| Agitation | 2.2 ± 2.2, 1–6 (5) |
| Delusion | 3.0 ± 2.4, 1–6 (4) |
| Hallucinations | 3.0 ± 2.6, 1–6 (3) |
| Depression | 2.0 ± 1.4, 1–4 (4) |
| Anxiety | 1.3 ± 0.6, 1–2 (3) |
| Apathy | 5.8 ± 4.6, 1–12 (4) |
| Irritability | 3.6 ± 2.9, 1–8 (5) |
| Euphoria | 8.0 ± 0.0, 8–8 (1) |
| Disinhibition | 1.5 ± 0.6, 1–2 (4) |
| Aberrant motor behavior | 1.0 ± 0.0, 1–1 (4) |
| Nighttime behavior disturbances | 4.7 ± 2.9, 1–8 (6) |
| Appetite/eating | 4.0 ± 2.9, 1–8 (4) |
| Total medication | 7.6 ± 3.4, 2–13 (11) |
| Psychotropic drugs | 1.9 ± 1.4, 1–5 (8) |
| Variable | Mean ± SD | Range |
|---|---|---|
| Daytime activity (ENMO) * | 42.5 ± 10.4 | 9.5–63.2 |
| 24 h activity (ENMO) | 43.5 ± 9.2 | 17.0–65.6 |
| Daytime activity (MAD) | 26.5 ± 10.5 | 11.7–47.2 |
| M5 (5 h with highest activity) | 52.2 ± 11.7 | 15.3–69.2 |
| Sleep efficiency (SE) (%) | 70.8 ± 17.9 | 15.4–94.8 |
| Sleep score Somnofy (%) † | 76.4 ± 25.3 | 11.6–100.0 |
| Wake after sleep onset (WASO), min | 102.5 ± 70.6 | 3.5–258.9 |
| Sleep regularity index (SRI, %) | 72.1 ± 9.8 | 53.0–92.8 |
| Total sleep time (TST), h | 9.6 ± 2.8 | 1.37–18.1 |
| Sleep latency, min | 35.6 ± 48.1 | 0–244.9 |
| Total time in bed, h | 10.6 ± 2.7 | 1.9–18.6 |
| No presence, min | 7.7 ± 9.8 | 0–47.5 |
| Explored Relationships | ρ (Spearman) | Std Error | p-Value | 95% CI |
|---|---|---|---|---|
| CDR–SE | 0.41 | 0.38 | 0.30 | [−0.33, 1.1] |
| CDR–WASO | −0.35 | 0.33 | 0.30 | [−1.0, −0.30] |
| CDR–Sleep Score | 0.70 | 0.25 | 0.005 * | [0.21, 1.1] |
| CDR–SRI | 0.14 | 0.36 | 0.70 | [−0.56, 0.83] |
| ENMO day–SE | 0.21 | 0.17 | 0.20 | [−0.11, 0.54] |
| ENMO day–WASO | −0.34 | 0.16 | 0.03 * | [−0.65, −0.3] |
| ENMO day–Sleep Score | 0.15 | 0.19 | 0.45 | [−0.24, 0.53] |
| ENMO day–SRI | 0.19 | 0.17 | 0.27 | [−0.49, 0.52] |
| MAD day–SE | −0.01 | 0.18 | 0.58 | [−0.44, 0.25] |
| MAD day–WASO | 0.23 | 0.18 | 0.20 | [−0.12, 0.58] |
| MAD day–Sleep Score | −0.39 | 0.20 | 0.05 | [−0.78, 0.0] |
| MAD day–SRI | 0.43 | 0.17 | 0.01 * | [0.09, 0.76] |
| NPI-NH-K–SE | −0.48 | 0.34 | 0.16 | [−1.14, 0.18] |
| NPI-NH-K–WASO | 0.58 | 0.26 | 0.03 * | [0.07, 1.1] |
| NPI-NH-K–Sleep Score | −0.17 | 0.42 | 0.69 | [−1, 0.66] |
| NPI-NH-K–SRI | −0.19 | 0.39 | 0.63 | [−1.0, 0.58] |
| NPI-NH-K–Total meds | 0.68 | 0.28 | 0.02 * | [0.13, 1.24] |
| NPI-NH-K–Psychotropics | 0.82 | 0.09 | 0.000 * | [0.63, 0.99] |
| PSMS–ENMO day | −0.11 | 0.33 | 0.74 | [−0.33, 0.31] |
| PSMS–MAD day | 0.10 | 0.41 | 0.80 | [−0.76, 0.54] |
| SE-WASO | −0.69 | 0.10 | 0.000 * | [−0.87, −0.50] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boyle, L.D.; Patrascu, M.; Husebo, B.S.; Steihaug, O.M.; Haugarvoll, K.; Marty, B. Use of Digital Biomarkers from Sensing Technologies to Explore the Relationship Between Daytime Activity Levels and Sleep Quality in Nursing Home Residents with Dementia: A Proof-of-Concept Study. Sensors 2025, 25, 6635. https://doi.org/10.3390/s25216635
Boyle LD, Patrascu M, Husebo BS, Steihaug OM, Haugarvoll K, Marty B. Use of Digital Biomarkers from Sensing Technologies to Explore the Relationship Between Daytime Activity Levels and Sleep Quality in Nursing Home Residents with Dementia: A Proof-of-Concept Study. Sensors. 2025; 25(21):6635. https://doi.org/10.3390/s25216635
Chicago/Turabian StyleBoyle, Lydia D., Monica Patrascu, Bettina S. Husebo, Ole Martin Steihaug, Kristoffer Haugarvoll, and Brice Marty. 2025. "Use of Digital Biomarkers from Sensing Technologies to Explore the Relationship Between Daytime Activity Levels and Sleep Quality in Nursing Home Residents with Dementia: A Proof-of-Concept Study" Sensors 25, no. 21: 6635. https://doi.org/10.3390/s25216635
APA StyleBoyle, L. D., Patrascu, M., Husebo, B. S., Steihaug, O. M., Haugarvoll, K., & Marty, B. (2025). Use of Digital Biomarkers from Sensing Technologies to Explore the Relationship Between Daytime Activity Levels and Sleep Quality in Nursing Home Residents with Dementia: A Proof-of-Concept Study. Sensors, 25(21), 6635. https://doi.org/10.3390/s25216635

