Computer Vision for Glass Waste: Technologies and Sensors
Abstract
1. Introduction: Glass Waste and Recycling
1.1. A Brief Introduction to Global Solid Waste
1.2. Representative Figures on Glass Waste Generation and Recycling
2. Objectives, Contributions, and Structure of the Paper
3. Methodological Aspects of the Review
- Type of study: peer-reviewed journal articles, theses, technical reports, or patents.
- Time period: publications between 2015 and 2025.
- Language: studies written in English.
- Thematic relevance: studies directly related to glass waste, and connection with computer vision.
- Full-text availability: only articles with complete text available for review.
- Thematic irrelevance: for example, studies dealing with the recycling of materials other than glass, or computer vision applications unrelated to waste management.
- Duplicates: repeated publications or preliminary versions of the same study.
- Lack of full-text access: abstracts, posters, or articles not available in full.
- Language other than English.
- Low quality or lack of scientific rigor: studies without a clear methodology or with unverifiable results.
- Publication year outside the defined range.
- The source provides information directly relevant to the topic and presents data not available in peer-reviewed literature.
- The authoring entity, company, university, or individual is recognized in the field.
- The information is recent and relevant to the current state of knowledge.
- The source is openly accessible and cited in full, including the URL of the archived websites or DOI.
4. Overview of Equipment and Technologies
5. Equipment and Technologies for Glass Waste Management (Excluding Computer Vision)
5.1. Technologies for Collecting Glass Waste
- Trucks and Robotic Arms
- Weight sensors
- Ultrasonic Sensors
- Temperature Sensors
- Sensors and Communication Networks
5.2. Waste Sorting and Classification Processes
- Magnetic Separators
- Air suction systems
- Screens and Crushers
5.3. Representative Studies
6. Computer Vision-Based Technologies for Glass Waste Management
6.1. Computer Vision in Glass Waste Collection Tasks
- RGB Cameras
- LIDAR and Stereo cameras
6.2. Computer Vision in Glass Waste Sorting and Classification
- RGB cameras
- Hyperspectral or Spectral Cameras (HSI)
- Infrared Cameras (IR)
- Stereo RGB Cameras
- Active 3D Vision Systems
- Polarimetry in Computer Vision
- Fluorescence Vision
- Active Laser Spectroscopy and Optical Computed Tomography
- Hybrid Imaging Technologies
6.3. Representative Studies
7. Brief Remarks on Algorithms and Public Image Datasets for Glass Waste
7.1. Computer Vision Algorithms
7.2. Image Datasets
8. Statistical Analysis of Technology Use
9. Discussion
9.1. Conclusion and Limitations of Computer Vision Technologies
9.2. Challenges and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| AI | Artificial intelligence | 
| ANN | Artificial neural network | 
| C&D | Construction and demolition | 
| BiLSTM | Bidirectional Long Short-Term Memory | 
| CCD | Charge-coupled device | 
| CMOS | Complementary metal oxide semiconductor | 
| CNN | Convolutional neural network | 
| CRT | Cathode ray tube | 
| CV | Computer vision | 
| DL | Deep learning | 
| FIR | Far-infrared | 
| FPGA | Field-Programmable Gate Array | 
| GANS | Generative Adversarial Networks | 
| GDD | Glass Detection Dataset | 
| GIS | Geographic Information System | 
| GPS | Global Positioning System | 
| GSM | Global System for Mobile Communications | 
| HLSN | Haar-Like Shape Network | 
| HSI | Hyperspectral imaging | 
| ISW | Industrial Solid Waste | 
| IoT | Internet of Things | 
| KNN | K-Nearest Neighbors | 
| LIBS | Laser-Induced Breakdown Spectroscopy | 
| LoRaWAN | Long-Range Wide-Area Network | 
| LTE | Long-Term Evolution | 
| LIDAR | Laser Imaging Detection and Ranging | 
| ML | Machine learning | 
| MRF | Material Recovery Facility | 
| MSW | Municipal solid waste | 
| NIR | Near-infrared | 
| OCT | Optical Coherence Tomography | 
| R-CNN | Region-based convolutional neural network | 
| RGB | Red, green, and blue | 
| RGB-D Red | Green Blue—Depth | 
| RFID | Radio-Frequency Identification | 
| RNN | Recurrent Neural Networks | 
| SIFT | Scale-invariant feature transform | 
| SPP-net | Spatial Pyramid Pooling Network | 
| SVM | Support vector machine | 
| SWIR | Short-wave infrared | 
| ToF | Time-of-flight | 
| UV | Ultraviolet. | 
| WCV | Waste collection vehicles | 
| WoS | Web of Science | 
| WSN | Wireless Sensor Networks | 
References
- Statista. Global Waste Generation—Statistics & Facts|Statista. Available online: https://perma.cc/9YY8-3SPV (accessed on 23 May 2025).
- Kaza, S.; Yao, L.C.; Bhada-Tata, P.; Van Woerden, F. What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050; Urban Development Series; World Bank: Washington, DC, USA, 2018. [Google Scholar]
- U. S. E. P. Agency. Facts and Figures About Materials, Waste and Recycling|US EPA. Available online: https://perma.cc/4W7Z-WD7M (accessed on 24 June 2025).
- Bellopede, R.; Zichella, L.; Marini, P. Glass Waste3: A Preliminary Study for a New Industrial Recovery Processing. Sustainability 2020, 12, 1997. [Google Scholar] [CrossRef]
- Tihomirovs, P.; Kara De Maeijer, P.; Korjakins, A. Demolition Waste Glass Usage in the Construction Industry. Infrastructures 2023, 8, 182. [Google Scholar] [CrossRef]
- Mary, J.S.; Meenambal, T. Inventorisation of E-Waste and Developing a Policy—Bulk Consumer Perspective. Procedia Environ. Sci. 2016, 35, 643–655. [Google Scholar] [CrossRef]
- Harder, J. Glass Recycling—Current Market Trends—Recovery. Available online: https://www.recovery-worldwide.com/en/artikel/glass-recycling-current-market-trends-3248774.html (accessed on 24 June 2025).
- Aliance, G. The World of Glass—Glass Alliance. Available online: https://perma.cc/9U8U-C879 (accessed on 24 June 2025).
- The European Container Glass Federation (FEVE). Homepage. Available online: https://perma.cc/Z9CE-CUR5 (accessed on 24 June 2025).
- Ran, W.; Chen, F.; Wu, Q.; Liu, S. A Study of the Closed-Loop Supply Chain Coordination on Waste Glass Bottles Recycling. Math. Probl. Eng. 2016, 2016, 1049514. [Google Scholar] [CrossRef]
- Baek, C.R.; Kim, H.D.; Jang, Y.C. Exploring glass recycling: Trends, technologies, and future trajectories. Environ. Eng. Res. 2025, 30, 240241. [Google Scholar] [CrossRef]
- Eurostat. Home—Eurostat. Available online: https://perma.cc/4TZ7-AFBX (accessed on 24 June 2025).
- Global Recycling Day. Available online: https://perma.cc/XV9P-5UWN (accessed on 24 June 2025).
- de Souza-Dal Bó, G.C.; Assunção, V.K.; Bernardin, A.M. The recycling chain of post-consumer glass in the coal region of southern Brazil and the behavior of all stakeholders. Clean. Waste Syst. 2025, 12, 100350. [Google Scholar] [CrossRef]
- Delbari, S.A.; Hof, L.A. Glass waste circular economy—Advancing to high-value glass sheets recovery using industry 4.0 and 5.0 technologies. J. Clean. Prod. 2024, 462, 142629. [Google Scholar] [CrossRef]
- Zheng, A. Evaluating Machine Learning Models. 2015, p. 20. Available online: https://www.oreilly.com/library/view/evaluating-machine-learning/9781492048756/ (accessed on 19 October 2025).
- Langley, A.; Lonergan, M.; Huang, T.; Rahimi Azghadi, M. Analyzing mixed construction and demolition waste in material recovery facilities: Evolution, challenges, and applications of computer vision and deep learning. Resour. Conserv. Recycl. 2025, 217, 108218. [Google Scholar] [CrossRef]
- Shen, Y.L.; Lan, D.Y.; He, P.J.; Qi, Y.P.; Peng, W.; Lü, F.; Zhang, H. Nondestructive optical and spectroscopic techniques combined with machine learning for identifying solid waste: A review. TrAC Trends Anal. Chem. 2025, 186, 118195. [Google Scholar] [CrossRef]
- Lu, W.; Chen, J. Computer vision for solid waste sorting: A critical review of academic research. Waste Manag. 2022, 142, 29–43. [Google Scholar] [CrossRef]
- Brouwer, Y.; Barbosa-Póvoa, A.P.; Antunes, A.P.; Rodrigues Pereira Ramos, T. Comparison of different waste bin monitoring approaches: An exploratory study. Waste Manag. Res. 2023, 41, 1570–1583. [Google Scholar] [CrossRef]
- Yerraboina, S.; Kumar, N.; Parimala, K.; Jyothi, N. Monitoring the smart garbage bin filling status: An IoT application towards waste management. Int. J. Civ. Eng. Technol. 2018, 9, 373–381. [Google Scholar]
- Rovetta, A.; Xiumin, F.; Vicentini, F.; Minghua, Z.; Giusti, A.; Qichang, H. Early detection and evaluation of waste through sensorized containers for a collection monitoring application. Waste Manag. 2009, 29, 2939–2949. [Google Scholar] [CrossRef] [PubMed]
- Hannan, M.A.; Arebey, M.; Begum, R.A.; Basri, H. Radio Frequency Identification (RFID) and communication technologies for solid waste bin and truck monitoring system. Waste Manag. 2011, 31, 2406–2413. [Google Scholar] [CrossRef]
- Eddy Current Separators for Recovering Non-Ferrous Metals • STEINERT. Available online: https://steinertglobal.com/sorting-systems/magnetic-separation/eddy-current-separators/ (accessed on 9 July 2025).
- Trennso Technik. ZZS Wind Sifter Optimizes Glass Recycling. Available online: https://perma.cc/C64J-RQXR (accessed on 9 July 2025).
- Efremenkov, V.V. Technological Aspects of the Delabeling of Crushed Glass Containers. Glas. Ceram. 2023, 79, 433–436. [Google Scholar] [CrossRef]
- European Commission. Glass Recovering Revolution: High performance Optical Sorter for glass collection from Waste (Grant ID 719098). 2016. Available online: https://cordis.europa.eu/project/id/719098 (accessed on 20 October 2025).
- PICVISA. Innovators in Recycling Automation. Available online: https://web.archive.org/web/20250919071038/https://picvisa.com/about-us/ (accessed on 16 July 2025).
- Wu, Q.; Liang, T.; Fang, H.; Cao, J.; Wang, M.; He, D. Multiple object characterization of recyclable domestic waste using binocular stereo vision. Instrum. Sci. Technol. 2025, 53, 194–223. [Google Scholar] [CrossRef]
- Oh, J.K.; Lee, S.; Lee, C.H. Stereo vision based automation for a bin-picking solution. Int. J. Control Autom. Syst. 2012, 10, 362–373. [Google Scholar] [CrossRef]
- Bonifazi, G.; Serranti, S. Imaging spectroscopy based strategies for ceramic glass contaminants removal in glass recycling. Waste Manag. 2006, 26, 627–639. [Google Scholar] [CrossRef]
- Huo, D.; Wang, J.; Qian, Y.; Yang, Y.-H. Glass Segmentation with RGB-Thermal Image Pairs. IEEE Trans. Image Process. 2023, 32, 1911–1926. [Google Scholar] [CrossRef]
- Recyling Portal. New Sensor Technology for Sorting Reduces Loss of Good Material. Available online: https://web.archive.org/web/20250919072028/https://www.recycling-portal.com/product-news/2015/new-sensor-technology-for-sorting-reduces-loss-of-good-material.html (accessed on 16 July 2025).
- Taglione, C.; Mateo, C.; Stolz, C. Polarimetric Imaging for Robot Perception: A Review. Sensors 2024, 24, 4440. [Google Scholar] [CrossRef]
- US20070029233A1—Method for Detecting and Sorting Glass—Google Patents. Available online: https://patents.google.com/patent/US20070029233A1/en (accessed on 17 July 2025).
- Pontes, G.; Schneider, R.; Senesi, G.S.; Nicolodelli, G. Glass waste analysis and differentiation by laser-induced breakdown spectroscopy associated to support vector machine: The influence of color and particle size. J. Non-Cryst. Solids 2024, 627, 122814. [Google Scholar] [CrossRef]
- Casao, S.; Peña, F.; Sabater, A.; Castillón, R.; Suárez, D.; Montijano, E.; Murillo, A.C. SpectralWaste Dataset: Multimodal Data for Waste Sorting Automation. In Proceedings of the 2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Abu Dhabi, United Arab Emirates, 14–18 October 2024; pp. 5852–5858. [Google Scholar] [CrossRef]
- Yuan, Y.Y.; Chiu, Y.J.; Yang, W.Q.; Shih, Y.H. Resource Recovery Vehicle Picking Up Resource Recovery Bin Robot Arm Structure Design. In Advances in Smart Vehicular Technology, Transportation, Communication and Applications. Smart Innovation, Systems and Technologies; Springer: Singapore, 2023; Volume 347, pp. 203–217. [Google Scholar] [CrossRef]
- Ogawa, A.; Pandyaswargo, A.H.; Tsubouchi, R.; Onoda, H. Demonstration of a contactless waste collection system: A Japanese case study. IET Smart Cities 2023, 5, 303–316. [Google Scholar] [CrossRef]
- Li, H.; Li, Y. Finite element analysis and structural optimization design of multifunctional robotic arm for garbage truck. Front. Mech. Eng. 2025, 11, 1543967. [Google Scholar] [CrossRef]
- Rai, S.; Goyal, N. Waste Management Through Smart Bin. Int. J. Eng. Res. Technol. 2020, 9, 1093–1097. [Google Scholar]
- Huh, J.H.; Choi, J.H.; Seo, K. Smart Trash Bin Model Design and Future for Smart City. Appl. Sci. 2021, 11, 4810. [Google Scholar] [CrossRef]
- Vishnu, S.; Jino Ramson, S.R.; Rukmini, M.S.S.; Abu-Mahfouz, A.M. Sensor-Based Solid Waste Handling Systems: A Survey. Sensors 2022, 22, 2340. [Google Scholar] [CrossRef]
- Ramson, S.R.J.; Moni, D.J.; Vishnu, S.; Anagnostopoulos, T.; Kirubaraj, A.A.; Fan, X. An IoT-based bin level monitoring system for solid waste management. J. Mater. Cycles Waste Manag. 2021, 23, 516–525. [Google Scholar] [CrossRef]
- Catania, V.; Ventura, D. An approch for monitoring and smart planning of urban solid waste management using smart-M3 platform. In Proceedings of the 15th Conference of Open Innovations Association FRUCT, St. Petersburg, Russia, 21–25 April 2014; pp. 24–31. [Google Scholar] [CrossRef]
- Aazam, M.; St-Hilaire, M.; Lung, C.H.; Lambadaris, I. Cloud-based smart waste management for smart cities. In Proceedings of the 2016 IEEE 21st International Workshop on Computer Aided Modelling and Design of Communication Links and Networks (CAMAD), Toronto, ON, Canada, 23–25 October 2016; pp. 188–193. [Google Scholar] [CrossRef]
- Wang, S.; Wang, J.; Yang, S.; Li, J.; Zhou, K. From intention to behavior: Comprehending residents’ waste sorting intention and behavior formation process. Waste Manag. 2020, 113, 41–50. [Google Scholar] [CrossRef]
- Gundupalli, S.P.; Hait, S.; Thakur, A. A review on automated sorting of source-separated municipal solid waste for recycling. Waste Manag. 2017, 60, 56–74. [Google Scholar] [CrossRef]
- Bristogianni, T.; Oikonomopoulou, F. Glass up-casting: A review on the current challenges in glass recycling and a novel approach for recycling “as-is” glass waste into volumetric glass components. Glass Struct. Eng. 2022, 8, 255–302. [Google Scholar] [CrossRef]
- Arutsev, M.V. The use of a magnetic separator for freeing glass cullet from crown crust. Glass Ceram. 1962, 18, 580. [Google Scholar] [CrossRef]
- Eriez. Eriez—Articles. Available online: https://perma.cc/FL6V-E5XU (accessed on 9 July 2025).
- Binder+Co. Glass. Available online: https://perma.cc/G7SQ-NYLU (accessed on 9 July 2025).
- Recycling Plant & Machinery Ltd. Air Separation|Recycling Plant & Machinery Ltd. Available online: https://perma.cc/3H9P-GNBG (accessed on 9 July 2025).
- Lee, H.; Kim, K.; Lee, H. The process development of cullet and recycled glass aggregate for improving waste glass bottles recycling rate. J. Mater. Cycles Waste Manag. 2023, 25, 3217–3227. [Google Scholar] [CrossRef]
- Juba, B.; Le, H.S. Precision-Recall versus Accuracy and the Role of Large Data Sets. Proc. AAAI Conf. Artif. Intell. 2019, 33, 4039–4048. [Google Scholar] [CrossRef]
- Páez-Ubieta, I.d.L.; Castaño-Amorós, J.; Puente, S.T.; Gil, P. Vision and Tactile Robotic System to Grasp Litter in Outdoor Environments. J. Intell. Robot. Syst. Theory Appl. 2023, 109, 36. [Google Scholar] [CrossRef]
- Wahyutama, A.B.; Hwang, M. YOLO-Based Object Detection for Separate Collection of Recyclables and Capacity Monitoring of Trash Bins. Electronics 2022, 11, 1323. [Google Scholar] [CrossRef]
- Bansal, S.; Patel, S.; Shah, I.; Patel, P.A.; Makwana, P.J.; Thakker, D.R. AGDC: Automatic Garbage Detection and Collection. 2019. Available online: https://arxiv.org/abs/1908.05849 (accessed on 16 July 2025).
- Nowakowski, P.; Pamuła, T. Application of deep learning object classifier to improve e-waste collection planning. Waste Manag. 2020, 109, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Alourani, A.; Ashraf, M.U.; Aloraini, M. Smart waste management and classification system using advanced IoT and AI technologies. PeerJ Comput. Sci. 2025, 11, e2777. [Google Scholar] [CrossRef]
- Abdallah, M.; Abu Talib, M.; Feroz, S.; Nasir, Q.; Abdalla, H.; Mahfood, B. Artificial intelligence applications in solid waste management: A systematic research review. Waste Manag. 2020, 109, 231–246. [Google Scholar] [CrossRef]
- Aziz, F.; Arof, H.; Mokhtar, N.; Mubin, M.; Abu Talip, M.S. Rotation invariant bin detection and solid waste level classification. Measurement 2015, 65, 19–28. [Google Scholar] [CrossRef]
- Islam, M.S.; Hannan, M.A.; Basri, H.; Hussain, A.; Arebey, M. Solid waste bin detection and classification using Dynamic Time Warping and MLP classifier. Waste Manag. 2014, 34, 281–290. [Google Scholar] [CrossRef] [PubMed]
- Sarc, R.; Curtis, A.; Kandlbauer, L.; Khodier, K.; Lorber, K.E.; Pomberger, R. Digitalisation and intelligent robotics in value chain of circular economy oriented waste management—A review. Waste Manag. 2019, 95, 476–492. [Google Scholar] [CrossRef] [PubMed]
- Jacobsen, R.M.; Johansen, P.S.; Bysted, L.B.L.; Skov, M.B. Waste Wizard: Exploring Waste Sorting using AI in Public Spaces. In Proceedings of the 11th Nordic Conference on Human-Computer Interaction: Shaping Experiences, Shaping Society, Tallinn, Estonia, 25–29 October 2020. [Google Scholar] [CrossRef]
- White, G.; Cabrera, C.; Palade, A.; Li, F.; Clarke, S. WasteNet: Waste Classification at the Edge for Smart Bins. 2020. Available online: https://web.archive.org/web/20250918175747/https://arxiv.org/pdf/2006.05873 (accessed on 22 July 2025).
- Tibebu, H.; Roche, J.; De Silva, V.; Kondoz, A. LiDAR-Based Glass Detection for Improved Occupancy Grid Mapping. Sensors 2021, 21, 2263. [Google Scholar] [CrossRef] [PubMed]
- Chae, J.; Seo, H.; Lee, S.; Park, Y.; Park, H.-S.; Park, K.-J. PINMAP: A Cost-Efficient Algorithm for Glass Detection and Mapping Using Low-Cost 2-D LiDAR. IEEE Trans. Instrum. Meas. 2025, 74, 1–14. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, H.; Wan, X.; Skitmore, M.; Sun, H. An Intelligent Waste Removal System for Smarter Communities. Sustainability 2020, 12, 6829. [Google Scholar] [CrossRef]
- EP1752228B1—Process and Device for Detection and Sorting of Glass—Google Patents. Available online: https://patents.google.com/patent/EP1752228B1/en (accessed on 16 July 2025).
- Krcmarik, D.; Petru, M.; Masin, I. Increasing of Precision Technology of Glass Sorting Based on Very Fast Reconfigurable Image Processing. Manuf. Technol. 2019, 19, 431–438. [Google Scholar] [CrossRef]
- Cheng, T.; Kojima, D.; Hu, H.; Onoda, H.; Pandyaswargo, A.H.; Cheng, T.; Kojima, D.; Hu, H.; Onoda, H.; Pandyaswargo, A.H. Optimizing Waste Sorting for Sustainability: An AI-Powered Robotic Solution for Beverage Container Recycling. Sustainability 2024, 16, 10155. [Google Scholar] [CrossRef]
- Echeverry, A.P.; López, C.F. AUTORECYCLER: Prototype based on artificial vision to automate the material classification process (Plastic, Glass, Cardboard and Metal). HardwareX 2024, 19, e00575. [Google Scholar] [CrossRef]
- Tahmasbian, I.; Morgan, N.K.; Bai, S.H.; Dunlop, M.W.; Moss, A.F. Comparison of Hyperspectral Imaging and Near-Infrared Spectroscopy to Determine Nitrogen and Carbon Concentrations in Wheat. Remote Sens. 2021, 13, 1128. [Google Scholar] [CrossRef]
- Lenz Instruments. Hyperspectral Imaging for Sorting—WiserSort—Lenz Instruments. Available online: https://lenz-instruments.com/en/producto/hyperspectral-imaging-for-waste-sorting/ (accessed on 22 October 2025).
- Menezes, J.; Hemachandra, N.; Isidro, K. Role of big data analytics and hyperspectral imaging in waste management for circular economy. Discov. Sustain. 2024, 5, 298. [Google Scholar] [CrossRef]
- Cho, Y.; Bianchi-Berthouze, N.; Marquardt, N.; Julier, S.J. Deep Thermal Imaging: Proximate material type recognition in the wild through deep learning of spatial surface temperature patterns. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, Montreal, QC, Canada, 21–26 April 2018. [Google Scholar] [CrossRef]
- Shapiro, L.G.; Haralick, R.M. Computer and Robot Vision: Volume II; Addison-Wesley: Reading, MA, USA, 1992. [Google Scholar]
- Shuang, Y.C.; Wang, Z.Z. Active stereo vision three-dimensional reconstruction by RGB dot pattern projection and ray intersection. Measurement 2021, 167, 108195. [Google Scholar] [CrossRef]
- Zivid. Zivid 2 Plus R-Series. Available online: https://web.archive.org/web/20250919072750/https://www.zivid.com/zivid-2-plus-r-series (accessed on 29 July 2025).
- Li, X.; Han, Y.; Wang, H.; Liu, T.; Chen, S.C.; Hu, H. Polarimetric Imaging Through Scattering Media: A Review. Front. Phys. 2022, 10, 815296. [Google Scholar] [CrossRef]
- Quan, H.; Shi, W.; Kong, L.; Quan, H.; Shi, W.; Kong, L. Non-destructive optical measurement of transparent objects: A review. Light Adv. Manuf. 2025, 6, 333–357. [Google Scholar] [CrossRef]
- Serres, J.R.; Lapray, P.J.; Viollet, S.; Kronland-Martinet, T.; Moutenet, A.; Morel, O.; Bigué, L. Passive Polarized Vision for Autonomous Vehicles: A Review. Sensors 2024, 24, 3312. [Google Scholar] [CrossRef]
- Wolff, L.B. Polarization-Based Material Classification from Specular Reflection. IEEE Trans. Pattern Anal. Mach. Intell. 1990, 12, 1059–1071. [Google Scholar] [CrossRef]
- Fernandes Andrade, D.; Pereira-Filho, E.R.; Amarasiriwardena, D. Current trends in laser-induced breakdown spectroscopy: A tutorial review. Appl. Spectrosc. Rev. 2021, 56, 98–114. [Google Scholar] [CrossRef]
- Walecki, W.J.; Szondy, F. Integrated quantum efficiency, reflectance, topography and stress metrology for solar cell manufacturing. In Interferometry XIV: Applications; SPIE: Bellingham, WA, USA, 2008; Volume 7064, pp. 77–84. [Google Scholar] [CrossRef]
- Arbash, E.; Afifi, A.J.; Belahsen, Y.; Fuchs, M.; Ghamisi, P.; Scheunders, P.; Gloaguen, R.; Dresden-Rossendorf, H.-Z. Electrolyzers-HSI: Close-Range Multi-Scene Hyperspectral Imaging Benchmark Dataset. 2025. Available online: https://arxiv.org/pdf/2505.20507 (accessed on 17 July 2025).
- Tao, J.; Gu, Y.; Hao, X.; Liang, R.; Wang, B.; Cheng, Z.; Yan, B.; Chen, G. Combination of hyperspectral imaging and machine learning models for fast characterization and classification of municipal solid waste. Resour. Conserv. Recycl. 2023, 188, 106731. [Google Scholar] [CrossRef]
- Adán, A.; Merchán, P.; Salamanca, S. 3D scene retrieval and recognition with Depth Gradient Images. Pattern Recognit. Lett. 2011, 32, 1337–1353. [Google Scholar] [CrossRef]
- Szeliski, R. Computer Vision; Springer Nature: Durham, NC, USA, 2022; ISBN 9783030343712. [Google Scholar]
- Guo, S.; Yue, B.; Gao, M.; Zhou, X.; Wang, B. Classification for Glass Bottles Based on Improved Selective Search Algorithm. Comput. Mater. Contin. 2020, 64, 233–251. [Google Scholar] [CrossRef]
- Deguillemont, D.; Lecoeuche, S.; Dubus, J.-P. Pattern recognition of industrial defects by multiresolution analysis with wavelet decomposition. In Wavelet Applications in Signal and Imaging Processing VI; SPIE: Bellingham, WA, USA, 1998; Volume 3458, pp. 210–220. [Google Scholar] [CrossRef]
- Lang, S.; Chen, F.; Cai, Y. Highly transparent material classification using the refractive index, reflectivity, and transmissivity features from an imaging model of a time-of-flight camera. Mach. Vis. Appl. 2023, 34, 90. [Google Scholar] [CrossRef]
- Kandel, P.; Zacharski, R.; Computer Vision For Recycling. Student Research Submissions. 2020. Available online: https://scholar.umw.edu/student_research/379 (accessed on 22 May 2025).
- Li, N.; Chen, Y. Municipal solid waste classification and real-time detection using deep learning methods. Urban Clim. 2023, 49, 101462. [Google Scholar] [CrossRef]
- Sarswat, P.K.; Singh, R.S.; Pathapati, S.V.S.H. Real time electronic-waste classification algorithms using the computer vision based on Convolutional Neural Network (CNN): Enhanced environmental incentives. Resour. Conserv. Recycl. 2024, 207, 107651. [Google Scholar] [CrossRef]
- Sreelakshmi, K.; Akarsh, S.; Vinayakumar, R.; Soman, K.P. Capsule Neural Networks and Visualization for Segregation of Plastic and Non-Plastic Wastes. In Proceedings of the 2019 5th International Conference on Advanced Computing and Communication Systems, ICACCS 2019, Coimbatore, India, 15–16 March 2019; pp. 631–636. [Google Scholar] [CrossRef]
- Aral, R.A.; Keskin, S.R.; Kaya, M.; Haciömeroǧlu, M. Classification of TrashNet Dataset Based on Deep Learning Models. In Proceedings of the 2018 IEEE International Conference on Big Data (Big Data), Seattle, WA, USA, 10–13 December 2018; pp. 2058–2062. [Google Scholar] [CrossRef]
- Chen, J.; Lu, W.; Xue, F. “Looking beneath the surface”: A visual-physical feature hybrid approach for unattended gauging of construction waste composition. J. Environ. Manag. 2021, 286, 112233. [Google Scholar] [CrossRef]
- Lu, W.; Chen, J.; Xue, F. Using computer vision to recognize composition of construction waste mixtures: A semantic segmentation approach. Resour. Conserv. Recycl. 2022, 178, 106022. [Google Scholar] [CrossRef]
- Adan, A.; Molina, F.; Vazquez, A.S.; Morena, L. 3D feature tracking using a dynamic structured light system. In Proceedings of the 2nd Canadian Conference on Computer and Robot Vision (CRV’05), Victoria, BC, Canada, 9–11 May 2005; pp. 168–175. [Google Scholar] [CrossRef]
- Yang, M.; Thung, G. Classification of Trash for Recyclability Status. CS229 Project Report, Stanford University. 2016. Available online: https://cs229.stanford.edu/proj2016/report/ThungYang-ClassificationOfTrashForRecyclabilityStatus-report.pdf (accessed on 23 October 2025).
- Proença, P.F.; Simões, P. TACO: Trash Annotations in Context for Litter Detection. 2020. Available online: https://web.archive.org/web/20250919073708/https://arxiv.org/pdf/2003.06975 (accessed on 24 July 2025).
- Panwar, H.; Gupta, P.K.; Siddiqui, M.K.; Morales-Menendez, R.; Bhardwaj, P.; Sharma, S.; Sarker, I.H. AquaVision: Automating the detection of waste in water bodies using deep transfer learning. Case Stud. Chem. Environ. Eng. 2020, 2, 100026. [Google Scholar] [CrossRef]
- Kaggle. DataCluster Labs 2021. Domestic Trash/Garbage Dataset. 2021. Available online: https://www.kaggle.com/datasets/dataclusterlabs/domestic-trash-garbage-dataset (accessed on 23 October 2025).
- Mei, H.; Yang, X.; Yu, L.; Zhang, Q.; Wei, X.; Lau, R.W.H. Large-Field Contextual Feature Learning for Glass Detection. IEEE Trans. Pattern Anal. Mach. Intell. 2023, 45, 3329–3346. [Google Scholar] [CrossRef] [PubMed]
- Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; et al. ImageNet Large Scale Visual Recognition Challenge. Int. J. Comput. Vis. 2015, 115, 211–252. [Google Scholar] [CrossRef]
- Fei-Fei, L.; Fergus, R.; Perona, P. Learning generative visual models from few training examples: An incremental Bayesian approach tested on 101 object categories. Comput. Vis. Image Underst. 2007, 106, 59–70. [Google Scholar] [CrossRef]
- Sampath, V.; Maurtua, I.; Aguilar Martín, J.J.; Gutierrez, A. A survey on generative adversarial networks for imbalance problems in computer vision tasks. J. Big Data 2021, 8, 27. [Google Scholar] [CrossRef]
- Jain, S.; Seth, G.; Paruthi, A.; Soni, U.; Kumar, G. Synthetic data augmentation for surface defect detection and classification using deep learning. J. Intell. Manuf. 2022, 33, 1007–1020. [Google Scholar] [CrossRef]
- Alcohol Bottle Images|Glass Bottles. Available online: https://www.kaggle.com/datasets/dataclusterlabs/alcohol-bottle-images-glass-bottles (accessed on 17 October 2025).
- Glass|Roboflow Universe Search. Available online: https://universe.roboflow.com/search?q=glass (accessed on 17 October 2025).
- GitHub—Andreabazerla/Anomaly-Detection: Anomaly Detection on a Image Dataset of Glass Bottle Using CNN Architecture to Decide Either to Keep or to Discard. Available online: https://github.com/andreabazerla/anomaly-detection (accessed on 17 October 2025).
- Segmenting Transparent Objects in the Wild. Available online: https://xieenze.github.io/projects/TransLAB/TransLAB.html?utm_source (accessed on 17 October 2025).
- GitHub—Datacluster-Labs/Bottles-and-Cups-Image-Dataset: This Dataset Consists of Images of Bottles and Cups. Available online: https://github.com/datacluster-labs/Bottles-and-Cups-Image-Dataset (accessed on 17 October 2025).
- GitHub—Sagieppel/Materials-in-Vessels-Data-Set: Data Set of Pixel-Wise Annotated Images of Materials in Glass Vessels in Chemistry Laboratory Setting. Available online: https://github.com/datacluster-labs/ (accessed on 17 October 2025).
- GitHub—0815LHL/TrashIVL: A Recyclable Trash Image Dataset. Available online: https://github.com/0815LHL/TrashIVL?utm_source (accessed on 17 October 2025).
- GitHub—Nikhilvenkatkumsetty/TrashBox: Dataset of Trash Objects for Waste Classification and Detection. Available online: https://github.com/nikhilvenkatkumsetty/TrashBox (accessed on 17 October 2025).
- Hossen, M.M.; Majid, M.E.; Kashem, S.B.A.; Khandakar, A.; Nashbat, M.; Ashraf, A.; Hasan-Zia, M.; Kunju, A.K.A.; Kabir, S.; Chowdhury, M.E.H. A Reliable and Robust Deep Learning Model for Effective Recyclable Waste Classification. IEEE Access 2024, 12, 13809–13821. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, X.; Zheng, X.; Huang, D.; Jiang, B. Computer Vision System for Multi-Robot Construction Waste Management: Integrating Cloud and Edge Computing. Buildings 2024, 14, 3999. [Google Scholar] [CrossRef]
- Jose, J.; Mana, S.C.; Babu, K.S.; Kalaiarasi, G.; Selvi, M. Enhancing waste classification accuracy with Channel and Spatial Attention-Based Multiblock Convolutional Network. Environ. Monit. Assess. 2025, 197, 198. [Google Scholar] [CrossRef] [PubMed]
- Arbeláez-Estrada, J.C.; Vallejo, P.; Aguilar, J.; Tabares-Betancur, M.S.; Ríos-Zapata, D.; Ruiz-Arenas, S.; Rendón-Vélez, E. A Systematic Literature Review of Waste Identification in Automatic Separation Systems. Recycling 2023, 8, 86. [Google Scholar] [CrossRef]
- Wu, T.W.; Zhang, H.; Peng, W.; Lü, F.; He, P.J. Applications of convolutional neural networks for intelligent waste identification and recycling: A review. Resour. Conserv. Recycl. 2023, 190, 106813. [Google Scholar] [CrossRef]
- Abeygunawardhana, A.G.D.T.; Shalinda, R.M.M.M.; Bandara, W.H.M.D.; Anesta, W.D.S.; Kasthurirathna, D.; Abeysiri, L. AI—Driven smart bin for waste management. In Proceedings of the 2020 2nd International Conference on Advancements in Computing (ICAC), Malabe, Sri Lanka, 10–11 December 2020; pp. 482–487. [Google Scholar] [CrossRef]
- Singh, A.; Banerjee, A.; Chatterjee, S.; Das, H.; Das, N.; Saha, S.; Mandal, H. Sustainable Smart Trash Bin Based Waste Segregation and Collection System. In Proceedings of the 2024 4th International Conference on Computer, Communication, Control & Information Technology (C3IT), Hooghly, India, 28–29 September 2024. [Google Scholar] [CrossRef]






| Item | Reason | Target | Search String | 
|---|---|---|---|
| 1 | Type of waste | Glass waste | Waste AND Glass | 
| 2 | Interaction with waste | Identification | Glass AND (recognition OR collection OR recycling) | 
| 3 | General device interaction (excluding CV) | Sensors | Glass AND (robotics OR ultrasonics OR communication networks OR magnetics OR air suction) | 
| 4 | Computer vision devices | Vision-based sensors | Glass AND (camera OR scanner OR 3D system OR hyperspectral) | 
| Technology | Ref. | Publication | Enviro. | Glass and… | Stage | Objective | 
|---|---|---|---|---|---|---|
| Trucks | Yuan et al. [38] (A1) | Journal | Public spaces | Plastic, metals | Collection | Optimize automated collection using robotic arms | 
| Robots | Ogawa et al. [39] (A1) | Web/Industry | Public spaces | Mixed waste | Collection | Automate collection with robots and IoT sensors | 
| Weight sensors | Brouwer et al. [20] (A1) | Journal | Commercial areas | General urban waste | Collection | Logistic control and waste weighing | 
| Ultrasonic sensors | Yerraboina et al. [21] (A1) | Journal | Public spaces | Not specified | Collection | Measure container fill level | 
| Thermal probe | Rovetta et al. [22] (A1) | Journal | Public spaces | Not specified | Collection | Alert for thermal conditions or tipping | 
| Magnetic separator | Bellopede et al. [4] (A1) | Journal | Industrial areas | Metals, ceramics | Separation of other materials | Remove metallic contaminants from glass | 
| Magnetic pulleys | Eriez [51] (B3) | Web | Industrial areas | Metals | Separation of other materials | Fine separation of metallic particles | 
| Eddy current separators | Steinert [24] (B3) | Web | Industrial areas | Aluminium, brass | Separation of other materials | Remove non-ferrous metals like aluminium | 
| Air suction | ZZS [25] (B3) | Web/Industry | Industrial areas | Paper, plastics | Separation of other materials | Remove light contaminants such as paper or plastic | 
| Sieves | Efremenkov [26] (A1) | Journal | Industrial areas | Plastics, metals, organics | Classification | Separate cullet into specific particle size fractions | 
| Communication networks | Hannan et al. [23] (A1) | Journal | Public spaces | Urban solid waste | Collection | Optimize routes and collection using RFID, GPS, GSM | 
| Technology | Ref. | Publication | Environ. | Glass and… | Stage | Objective | 
|---|---|---|---|---|---|---|
| RGB cameras | Cheng et al. [72] (A1) | Journal | Industrial areas | Glass, paper, cardboard, plastic, metal | Classification | Automated classification of glass bottles within mixed waste | 
| Spectral/Hyperspectral c. | Bonifazi et al. [31] (A1) | Journal | Industrial areas | Ceramics, glass | Classification | Spectral recognition of glass and ceramic materials | 
| Infrared (thermal) cameras | Huo et al. [32] (A1) | Journal | Industrial areas | Mixed waste | Recognition | Reliable glass segmentation using thermal and RGB imaging | 
| RGB stereo cameras | Wu et al. [29] (A1) | Journal | Households | Mixed recyclable waste | Classification | Three-dimensional characterization of recyclable objects | 
| 3D active vision systems | [33] (B3) | Web/Industry | Industrial areas | Dark glass, contaminants | Classification | Advanced glass identification with structured light and HSI sensors | 
| Polarimetry | Taglione et al. [34] (A1) | Journal | Public spaces/Robotics | Glass, plastics, metals | Recognition | Distinguish transparent objects such as glass by polarization signature | 
| Fluorescence/UV vision | Reinhold et al. [35] (A2) | Patent | Industrial areas | Glass with additives, lead | Classification | Identification of special glass using UV fluorescence | 
| Optical/laser tomography | Pontes et al. [36] (A1) | Journal | Industrial areas | Technical glass | Recognition | Characterization of type and granulometry using LIBS | 
| Hybrid technologies | Casao et al. [37] (A1) | Journal | Industrial areas | Glass, plastic, paper | Classification | Improved classification through fusion of RGB and spectral sensors | 
| Estimated Range by Category (%) | |||||||||
|---|---|---|---|---|---|---|---|---|---|
| Ref. B3 | Aprox. Size | T1 | T2 | T3 | T4 | T5 | T6 | Company/Authors | Most Frequent Cases | 
| [111] | 12,500 | 35–40 | 4–7 | 2–4 | 25–30 | 20–25 | 12–15 | DataCluster Labs | Glass bottles, jars, ampoules, vials. Windows, façades, doors, shower screens | 
| [112] | 297,500 | 25–30 | 15–20 | 10–15 | 20–25 | 15–20 | 10–15 | Roboflow Universe | Bottles, jars, vials, flasks, ampoules (e.g., beverage bottles, cosmetic containers. Windows, doors, façades, shower screens, glass blocks | 
| [113] | 4150 | 35–40 | 0 | 0 | 0 | 55–60 | 1–5 | MVTec Software GmbH | Flat glass sheets with surface defects (scratches, bubbles, inclusions). Inspection of glass bottles for cracks, scratches, contamination | 
| [114] | 9500 | 25–30 | 10–12 | 8–10 | 35–40 | 5–7 | 3–5 | Enze Xie et al. | Windows, doors, partitions, glass walls. Transparent bottles, jars, cosmetic containers, drink packaging | 
| [115] | 2925 | 25–30 | 10–15 | 10–15 | 20–25 | 10–15 | 5–10 | Datacluster-labs | Transparent bottles, jars, drink containers. Window panes, glass walls, partitions | 
| [116] | 1050 | 10–15 | 0 | 0 | 0 | 80–85 | 0 | Sagieppel. MIT | Laboratory glassware (beakers, flasks, test tubes, cylinders) used in chemistry experiments | 
| [117] | 1275 | 70–75 | 5–10 | 3–7 | 5–10 | 7–12 | 10–14 | TrashIVL Dataset | Glass bottles used as recyclable waste | 
| [118] | 1935 | 40–45 | 5–7 | 3–5 | 5–10 | 7–10 | 5–8 | TashBox Dataset | Glass bottles, jars, containers in waste | 
| Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adán, E.; Adán, A. Computer Vision for Glass Waste: Technologies and Sensors. Sensors 2025, 25, 6634. https://doi.org/10.3390/s25216634
Adán E, Adán A. Computer Vision for Glass Waste: Technologies and Sensors. Sensors. 2025; 25(21):6634. https://doi.org/10.3390/s25216634
Chicago/Turabian StyleAdán, Eduardo, and Antonio Adán. 2025. "Computer Vision for Glass Waste: Technologies and Sensors" Sensors 25, no. 21: 6634. https://doi.org/10.3390/s25216634
APA StyleAdán, E., & Adán, A. (2025). Computer Vision for Glass Waste: Technologies and Sensors. Sensors, 25(21), 6634. https://doi.org/10.3390/s25216634
 
        



 
       