Hardware Implementation of Improved Oriented FAST and Rotated BRIEF-Simultaneous Localization and Mapping Version 2
Abstract
1. Introduction
- TRACKING: Matches local map features by searching and pre-processing (Extract ORB) in this phase.
- LOCAL MAPPING: Manages and optimizes local maps through local bundle adjustment (BA).
- LOOP CLOSING: Detects large loops, optimizes pose, and corrects drift errors.
- FULL BA: Computes the optimal structure and motion results for the entire system after pose optimization.
2. Research Method
2.1. Hardware Architecture
2.2. Software Architecture
2.3. Image Descriptors
3. Experimental Architecture and Steps
3.1. EuRoC MAV Dataset
- Aircraft Platform: AscTec Firefly.
- Stereo VIO Cameras: Global shutter, monochrome, operating at a frequency of 20 Hz, with hardware (HW) synchronization between the camera and IMU. The stereo camera model is MT9V034, and the IMU model is ADIS16448.
- VICON: Reflective markers used in conjunction with the VICON motion capture system.
- LEICA: Sensing prism associated with the laser tracking system.
3.2. Experimental Scene Architecture
4. Experimental Results
4.1. Real Scene Data
4.2. Experimental Performance Comparison
5. Conclusions and Future Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vu, D.-Q.; Le, N.; Wang, J.-C. Teaching Yourself: A Self-Knowledge Distillation Approach to Action Recognition. IEEE Access 2021, 9, 105711–105723. [Google Scholar] [CrossRef]
- Thi Le, P.; Pham, T.; Hsu, Y.-C.; Wang, J.-C. Convolutional Blur Attention Network for Cell Nuclei Segmentation. Sensors 2022, 22, 1586. [Google Scholar] [CrossRef] [PubMed]
- Putri, W.R.; Liu, S.-H.; Aslam, M.S.; Li, Y.-H.; Chang, C.-C.; Wang, J.-C. Self-Supervised Learning Framework toward State-of-the-Art Iris Image Segmentation. Sensors 2022, 22, 2133. [Google Scholar] [CrossRef] [PubMed]
- Pranata, Y.D.; Wang, K.-C.; Wang, J.-C.; Idram, I.; Lai, J.-Y.; Liu, J.-W.; Hsieh, I.-H. Deep Learning and SURF for Automated Classification and Detection of Calcaneus Fractures in CT Images. Comput. Methods Programs Biomed. 2019, 171, 27–37. [Google Scholar] [CrossRef] [PubMed]
- Cao, H.N.; Duc-Quang, V.; Huong, H.L.; Chien-Lin, H.; Jia-Ching, W. Cyclic Transfer Learning for Mandarin-English Code-Switching Speech Recognition. IEEE Signal Process Lett. 2023, 30, 1387–1391. [Google Scholar]
- Wang, C.-Y.; Chang, P.-C.; Ding, J.-J.; Tai, T.-C.; Santoso, A.; Liu, Y.-T.; Wang, J.-C. Spectral–Temporal Receptive Field-Based Descriptors and Hierarchical Cascade Deep Belief Network for Guitar Playing Technique Classification. IEEE Trans. Cybern. 2022, 52, 3684–3695. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.-Y.; Tai, T.-C.; Wang, J.-C.; Santoso, A.; Mathulaprangsan, S.; Chiang, C.-C.; Wu, C.-H. Sound Events Recognition and Retrieval Using Multi-Convolutional-Channel Sparse Coding Convolutional Neural Networks. IEEE/ACM Trans. Audio Speech Lang. Process. 2020, 28, 1875–1887. [Google Scholar] [CrossRef]
- Levels of Automation. Available online: https://www.nhtsa.gov/sites/nhtsa.gov/files/2022-05/Level-of-Automation-052522-tag.pdf (accessed on 20 August 2022).
- ROS. Available online: http://wiki.ros.org/ROS/Tutorials (accessed on 18 August 2021).
- Xiaomi Intelligence|ORB-SLAM Learning Notes. Available online: https://zhuanlan.zhihu.com/p/47451004 (accessed on 7 November 2019).
- Iqbal, J.; Khan, H.; Chellali, R. A unified SLAM solution using partial 3D structure. Elektron. Elektrotechnika 2014, 20, 3–8. [Google Scholar]
- Zohaib, M.; Ahsan, M.; Khan, M.; Iqbal, J. A featureless approach for object detection and tracking in dynamic environments. PLoS ONE 2023, 18, e0280476. [Google Scholar] [CrossRef] [PubMed]
- RTAB-Map. Available online: http://introlab.github.io/rtabmap/ (accessed on 18 August 2021).
- Zhang, S.; Zheng, L.; Tao, W. Survey and Evaluation of RGB-D SLAM. IEEE Access 2021, 9, 21367–21387. [Google Scholar] [CrossRef]
- Mur-Artal, R.; Tardos, J.D. ORB-SLAM2: An Open-Source SLAM System for Monocular, Stereo and RGB-D Cameras. IEEE Trans. Robot. 2017, 33, 1255–1262. [Google Scholar] [CrossRef]
- OpenSLAM-Gmapping. Available online: https://openslam-org.github.io/gmapping.html (accessed on 18 August 2021).
- Campos, C.; Elvira, R.; Rodriguez, J.J.G.; Montiel, J.M.M.; Tardos, J.D. ORB-SLAM3: An Accurate Open-Source Library for Visual, Visual-Inertial and Multi-Map SLAM. IEEE Trans. Robot. 2021, 37, 1874–1890. [Google Scholar] [CrossRef]
- Davison, A.J.; Reid, I.D.; Molton, N.D.; Stasse, O. MonoSLAM: Real-Time Single Camera SLAM. IEEE Trans. Pattern Anal. Mach. Intell. 2007, 29, 1052–1067. [Google Scholar] [CrossRef] [PubMed]
- Parallel Tracking and Mapping for Small AR Workspaces (PTAM). Available online: https://www.robots.ox.ac.uk/~gk/PTAM/ (accessed on 18 August 2021).
- Gao, X.; Zhang, T. Visual SLAM: 14 Lectures on Visual SLAM: From Theory to Practice; Tsinghua University Press: Beijing, China, 2017. [Google Scholar]
- Computer Vision Group. Visual SLAM-LSD-SLAM: Large-Scale Direct Monocular SLAM. Available online: https://vision.in.tum.de/research/vslam/lsdslam (accessed on 5 July 2021).
- Engel, J.; Schöps, T.; Cremers, D. LSD-SLAM: Large-Scale Direct Monocular SLAM. In Computer Vision—ECCV 2014; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2014; pp. 834–849. [Google Scholar]
- Forster, C.; Pizzoli, M.; Scaramuzza, D. SVO: Fast Semi-Direct Monocular Visual Odometry. In Proceedings of the 2014 IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, China, 31 May–7 June 2014. [Google Scholar]
- Newcombe, R.A.; Lovegrove, S.J.; Davison, A.J. DTAM: Dense Tracking and Mapping in Real-Time. In Proceedings of the 2011 International Conference on Computer Vision, Barcelona, Spain, 6–13 November 2011. [Google Scholar]
- Gordon, A.; Li, H.; Jonschkowski, R.; Angelova, A. Depth From Videos in the Wild: Unsupervised Monocular Depth Learning From Unknown Cameras. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October–2 November 2019. [Google Scholar]
- Computer Vision Group. Visual SLAM-DSO: Direct Sparse Odometry. Available online: https://vision.in.tum.de/research/vslam/dso (accessed on 18 August 2021).
- Elastic Fusion. Available online: http://www.imperial.ac.uk/a-z-research/dyson-robotics-lab/downloads/elastic-fusion/ (accessed on 18 August 2021).
- Kohlbrecher, S.; Meyer, J.; Graber, T.; Petersen, K.; Klingauf, U.; von Stryk, O. Hector Open Source Modules for Autonomous Mapping and Navigation with Rescue Robots. In RoboCup 2013: Robot World Cup XVII; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2014; pp. 624–631. [Google Scholar]
- Hamadi, A.; Latoui, A. An accurate smartphone-based indoor pedestrian localization system using ORB-SLAM camera and PDR inertial sensors fusion approach. Measurement 2025, 240, 115642. [Google Scholar] [CrossRef]
- Long, J.; Wang, F.; Liu, M.; Wang, Y.; Zou, Q. DOG-SLAM: Enhancing dynamic visual SLAM precision through GMM-based dynamic object removal and ORB-boost. IEEE Trans. Instrum. Meas. 2025, 74, 5014211. [Google Scholar] [CrossRef]
- ASUS XtionPro Live. Available online: https://aivero.com/product/asus-xtionpro-live/ (accessed on 18 August 2021).
- Basler Ace Classic acA2000-50gc. Available online: https://www.baslerweb.com/en-us/shop/aca2000-50gc/ (accessed on 18 August 2021).
- Hokuyo UTM-30LX. Available online: https://www.hokuyo-aut.jp/search/single.php?serial=169#spec (accessed on 18 August 2021).
- Raspberry Pi DC Motor Expansion Board. Available online: https://www.dfrobot.com.cn/goods-2020.html (accessed on 18 August 2023).
- Raspberry Pi 3 Model b. Available online: https://guchao.blog.csdn.net/article/details/83508792?spm=1001.2014.3001.5502 (accessed on 18 August 2021).
- High-Definition Binocular USB Camera. Available online: https://www.ruten.com.tw/item/show?22350349501688 (accessed on 18 August 2021).
- Gravity: MiniQ Robot Chassis Encoder. Available online: https://www.dfrobot.com/product-823.html (accessed on 18 August 2021).
- SKU: DFRO592. Available online: https://wiki.dfrobot.com/DC_Motor_Driver_HAT_SKU_DFR0592 (accessed on 18 August 2021).
- Calonder, M.; Lepetit, V.; Strecha, C.; Fua, P. BRIEF: Binary Robust Independent Elementary Features. In Computer Vision—ECCV 2010; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2010; pp. 778–792. [Google Scholar]
- BELID: Boosted Efficient Local Image Descriptor. Available online: https://www.researchgate.net/publication/334230975_BELID_Boosted_Efficient_Local_Image_Descriptor. (accessed on 18 August 2021).
- Burri, M.; Nikolic, J.; Gohl, P.; Schneider, T.; Rehder, J.; Omari, S.; Achtelik, M.W.; Siegwart, R. The EuRoC Micro Aerial Vehicle Datasets. Int. J. Robot. Res. 2016, 35, 1157–1163. [Google Scholar] [CrossRef]
- Hu, Z.; Qi, B.; Luo, Y.; Zhang, Y.; Chen, Z. Mobile Robot V-SLAM Based on Improved Closed-Loop Detection Algorithm. In Proceedings of the 2019 IEEE 8th Joint International Information Technology and Artificial Intelligence Conference (ITAIC), Chongqing, China, 24–26 May 2019. [Google Scholar]













| SLAM Algorithm | Types of Sensors |
|---|---|
| RGB-DSLAM [14] | RGB-D |
| GMapping [16] | Lidar |
| MonoSLAM [18] | Monocular |
| Parallel Tracking and Mapping [19] | Monocular |
| ORB-SLAM(2)(3) [10,15,16,17,20] | Monocular/stereo/RGB-D |
| LSD-SLAM [21,22] | Monocular |
| Semi-Direct Visual Odometry [23] | Monocular |
| Dense Tracking and Mapping [24] | RGB-D |
| Depth From Videos [25] | Monocular |
| Direct Sparse Odometry [26] | Monocular |
| RTAB-MAP [13] | Stereo/RGB-D/Lidar |
| Elastic Fusion [27] | RGB-D |
| Hector SLAM [28] | Lidar |
| ORB-SLAM and PDR Inertial Sensors Fusion [29] | Monocular |
| DOG-SLAM [30] | RGB-D |
| Parameter | Value | ||
|---|---|---|---|
| Model | Asus XtionPro Live | Basler acA2000-50gc | Hokuyo UTM-30LX |
| Type | Stereo and RGB-D | Monocular | Lidar |
| Resolution | 1280 × 1024 | 2046 × 1086 | 0.25° (360°/1440 steps) |
| Frame Rate | 60 fps | 50 fps | 40 fps (25 ms/scan) |
| Interface | USB 2.0 | GigE | USB2.0 |
| Parameter | Value |
|---|---|
| Product Model | 3D-1MP02-V92 |
| Sensor | OV9750 |
| Lens Size | 1/3 inch |
| Pixel size | 3.75 um × 3.75 um |
| Highest effective pixel | 2560 (H) × 960 (V) |
| Output image format | MJPEG |
| Signal to Noise Ratio | 39 dB |
| Camera lens | Standard M9 lens FOV (D) 126 (H) 92 Degree |
| Sensitivity | 3.7 V/lux-sec@550 nm |
| Shutter type | Electronic rolling shutter/Frame exposure |
| Interface type | USB 2.0 High Speed |
| Support free drive protocol | USB Video Class (UVC) |
| Support OTG protocol | USB 2.0 OTG |
| Automatic Exposure Control (AEC) | Support |
| Automatic White Balance (AEB) | Support |
| Automatic Gain Control (AGC) | Support |
| Support resolution | MJPEG: 340 × 240@64FPS 1280 × 480@64FPS 2560 × 720@64FPS 2560 × 960@64FPS |
| Power supply mode | MICRO USB |
| Supported systems | Win7 Win8 Linux 2.6 or above Android 4.0 or above |
| Parameter | Value |
|---|---|
| Working Voltage | 3.3 V or 5 V |
| Working Current | <14 mA @5 V |
| Pulse Output | 12 per revolution |
| Compatibility | 2 mm × 19 mm (1.65 × 0.75″) wheel |
| Receiver Sensitivity | Adjustable |
| Error Analysis | Stereo Camera | Monocular Camera |
|---|---|---|
| RMSE | 0.2323 m | 3.5948 m |
| Mean | 0.1940 m | 3.4407 m |
| Median | 0.1875 m | 3.7131 m |
| Standard Deviation | 0.1277 m | 1.0414 m |
| Minimum Error | 0.0068 m | 0.9900 m |
| Maximum Error | 0.7981 m | 5.1786 m |
| Error Analysis | Stereo Camera | Monocular Camera |
|---|---|---|
| RMSE | 0.2329 m | 3.6226 m |
| Mean | 0.1957 m | 3.4139 m |
| Median | 0.1901 m | 3.2597 m |
| Standard Deviation | 0.1263 m | 1.2118 m |
| Minimum Error | 0.0136 m | 2.0093 m |
| Maximum Error | 0.8071 m | 5.1181 m |
| Error Analysis | Stereo Camera | Monocular Camera |
|---|---|---|
| RMSE | 0.2321 m | 4.0648 m |
| Mean | 0.1935 m | 3.8147 m |
| Median | 0.1892 m | 4.4489 m |
| Standard Deviation | 0.1281 m | 1.4041 m |
| Minimum Error | 0.0063 m | 1.1627 m |
| Maximum Error | 0.8095 m | 5.1062 m |
| Error Analysis | Stereo Camera | Monocular Camera |
|---|---|---|
| RMSE | 0.2318 m | 2.2692 m |
| Mean | 0.1943 m | 1.9656 m |
| Median | 0.1859 m | 2.2620 m |
| Standard Deviation | 0.1264 m | 1.1338 m |
| Minimum Error | 0.0113 m | 0.4421 m |
| Maximum Error | 0.8070 m | 3.3696 m |
| Error Analysis | Stereo Camera | Monocular Camera |
|---|---|---|
| RMSE | 0.2316 m | 2.9437 m |
| Mean | 0.1933 m | 2.6504 m |
| Median | 0.1903 m | 2.6205 m |
| Standard Deviation | 0.1264 m | 1.2810 m |
| Minimum Error | 0.1275 m | 1.0715 m |
| Maximum Error | 0.8060 m | 4.2889 m |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, J.-L.; Chen, Y.-H.; Putri, W.R.; Huang, C.-I.; Su, M.-H.; Li, K.-C.; Wang, J.-H.; Chen, S.-L.; Li, Y.-H.; Wang, J.-C. Hardware Implementation of Improved Oriented FAST and Rotated BRIEF-Simultaneous Localization and Mapping Version 2. Sensors 2025, 25, 6404. https://doi.org/10.3390/s25206404
He J-L, Chen Y-H, Putri WR, Huang C-I, Su M-H, Li K-C, Wang J-H, Chen S-L, Li Y-H, Wang J-C. Hardware Implementation of Improved Oriented FAST and Rotated BRIEF-Simultaneous Localization and Mapping Version 2. Sensors. 2025; 25(20):6404. https://doi.org/10.3390/s25206404
Chicago/Turabian StyleHe, Ji-Long, Ying-Hua Chen, Wenny Ramadha Putri, Chung-I. Huang, Ming-Hsiang Su, Kuo-Chen Li, Jian-Hong Wang, Shih-Lun Chen, Yung-Hui Li, and Jia-Ching Wang. 2025. "Hardware Implementation of Improved Oriented FAST and Rotated BRIEF-Simultaneous Localization and Mapping Version 2" Sensors 25, no. 20: 6404. https://doi.org/10.3390/s25206404
APA StyleHe, J.-L., Chen, Y.-H., Putri, W. R., Huang, C.-I., Su, M.-H., Li, K.-C., Wang, J.-H., Chen, S.-L., Li, Y.-H., & Wang, J.-C. (2025). Hardware Implementation of Improved Oriented FAST and Rotated BRIEF-Simultaneous Localization and Mapping Version 2. Sensors, 25(20), 6404. https://doi.org/10.3390/s25206404

