Radon Exposure Assessment: IoT-Embedded Sensors
Abstract
1. Introduction
2. Methodology
3. Comparative Analysis of IoT-Integrated Radon Monitoring Studies: Core and Emerging Systems
Recent Advances in IoT-Integrated Radon Monitoring (2023–2025)
4. IoT Radon Sensing Technologies: Principles, Components, and Trade-Offs
4.1. Radon Detection Methods for Embedded Systems
4.2. Embedded System Design
4.3. Connectivity Architectures
4.4. Calibration and Validation Requirements
4.5. In-Depth Exploration of Sensor Technology
4.6. Wider Uses of Environmental IoT Sensors-Similar Lessons
5. Deployment Strategies: Indoor Mapping to Large-Scale Networks
5.1. Mapping the Spatial Distribution of Radon
5.2. Temporal Dynamics and Environmental Drivers
5.3. Real-World Deployment Scales
5.4. Lessons from Other IoT Domains Applied to Radon Monitoring
5.5. Examples of Real-World Deployments
6. Data Lifecycle Management: Edge to Cloud to Insight
6.1. Edge Processing and Compression
6.2. Cloud Infrastructure and Storage
6.3. Visualization, Alerts and User Interfaces
6.4. Exposure Metrics and Risk Modeling
7. Critical Challenges: Barriers to Real-World Impact
7.1. The Validation Crisis
7.2. Power and Connectivity Constraints
7.3. Security, Privacy and Ethics
7.4. Socio-Economic Equity and Accessibility
8. Future Directions
8.1. Next-Generation Sensor Technologies
8.2. Data Analytics and Predictive Monitoring
8.3. Mitigation Integration and Automation
8.4. Policy, Standardization and Scalable Adoption
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Eggers, C. Developing a National Database of Radon Test Data in Collaboration with EPA: A Pilot Project to Ascertain Feasibility. Online J. Public Health Inform. 2015, 7, e61515. [Google Scholar] [CrossRef]
- El-Araby, E.H.; Babeer, A.M. Assessment of Indoor Radon Concentration in Different Houses in Jazan City in Saudi Arabia. Web Pub 2013, 1, 1–6. [Google Scholar]
- Ferri, G.M.; Cavone, D.; Intranuovo, G.; Birtolo, F.; Tricase, P.; Fuso, R.; Vimercati, L. 484 Radon and Risk of Lung Cancer in Apulia Region Southern Italy. Occup. Envrion. Med. 2018, 75, A420. [Google Scholar] [CrossRef]
- Larsson, L.S. Risk-Reduction Strategies to Expand Radon Care Planning with Vulnerable Groups. Public Health Nurs. 2014, 31, 526–536. [Google Scholar] [CrossRef] [PubMed]
- Eising, E. Correspondence (Letter to the Editor): Risk Associated with Radon Is Overestimated. Dtsch. Arztebl. Int. 2010, 107, 731, author reply 732. [Google Scholar] [CrossRef] [PubMed]
- Shahbazi Sehrani, M.; Boudaqpoor, S.; Mirmohammadi, M. Measurement of Indoor Radon Gas Concentration and Assessment of Health Risk in Tehran, Iran. Int. J. Environ. Sci. Technol. 2019, 16, 2619–2626. [Google Scholar] [CrossRef]
- Frutos-Puerto, S.; Hurtado-Sanchez, M.; Pérez, J.d.l.T.; Pinilla-Gil, E.; Miró, C. Radon Alpha Track Counting on Solid State Nuclear Track Detector by an ImageJ-Based Software Macro. Appl. Radiat. Isot. 2021, 173, 109695. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Zhuo, W.; Fan, D.; Yi, Y.; Chen, B. Effects of Atmospheric Parameters on Radon Measurements Using Alpha-Track Detectors. Rev. Sci. Instrum. 2014, 85, 022101. [Google Scholar] [CrossRef]
- Sorimachi, A.; Nagamatsu, Y.; Omori, Y.; Ishikawa, T. Comparison Experiments for Radon and Thoron Measuring Instruments at Low-Level Concentrations in One Room of a Japanese Concrete Building. Appl. Radiat. Isot. 2021, 173, 109696. [Google Scholar] [CrossRef]
- Hofmann, W.; Arvela, H.S.; Harley, N.H.; Marsh, J.W.; McLaughlin, J.; Röttger, A.; Tokonami, S. 8. Variabilities and Uncertainties of Radon and Radon Progeny Exposure and Dosimetry. J. ICRU 2012, 12, 135–150. [Google Scholar] [CrossRef]
- Ruvira, B.; García-Fayos, B.; Juste, B.; Arnal, J.M.; Verdú, G. Determination of the Radon Diffusion Coefficient of Thin Polyethene and Aluminium Foils Used as Single or Multilayer Configuration Barriers. Radiat. Phys. Chem. 2022, 200, 110329. [Google Scholar] [CrossRef]
- Hazar, N.; Karbakhsh, M.; Yunesian, M.; Nedjat, S.; Naddafi, K. Perceived Risk of Exposure to Indoor Residential Radon and Its Relationship to Willingness to Test among Health Care Providers in Tehran. J. Environ. Health Sci. Eng. 2014, 12, 118. [Google Scholar] [CrossRef]
- Lopes, S.I.; Moreira, P.M.; Cruz, A.M.; Martins, P.; Pereira, F.; Curado, A. RnMonitor: A WebGIS-Based Platform for Expedite in Situ Deployment of IoT Edge Devices and Effective Radon Risk Management. In Proceedings of the 2019 IEEE International Smart Cities Conference (ISC2), Casablanca, Morocco, 14–17 October 2019; pp. 451–457. [Google Scholar]
- Marini, R.; Mikhaylov, K.; Pasolini, G.; Buratti, C. Low-Power Wide-Area Networks: Comparison of LoRaWAN and NB-IoT Performance. IEEE Internet Things J. 2022, 9, 21051–21063. [Google Scholar] [CrossRef]
- Pereira, F.; Lopes, S.I.; Carvalho, N.B.; Curado, A. RnProbe: A LoRa-Enabled IoT Edge Device for Integrated Radon Risk Management. IEEE Access 2020, 8, 203488–203502. [Google Scholar] [CrossRef]
- Peruzzi, G.; Pozzebon, A. Combining LoRaWAN and NB-IoT for Edge-to-Cloud Low Power Connectivity Leveraging on Fog Computing. Appl. Sci. 2022, 12, 1497. [Google Scholar] [CrossRef]
- Yousefian, F.; Nasiri, Z.; Kordi, M.; Marzi, Y.G.; Dehghani, R.; Mirzaei, N.; Janjani, H.; Aghaei, M.; Aboosaedi, Z. Indoor Radon and Its Health Risk Assessment in Iran: A Comprehensive Review Study. Indoor Air 2024, 2024, 2300116. [Google Scholar] [CrossRef]
- Barros, N.; Sobral, P.; Moreira, R.S.; Vargas, J.; Fonseca, A.; Abreu, I.; Guerreiro, M.S. SchoolAIR: A Citizen Science IoT Framework Using Low-Cost Sensing for Indoor Air Quality Management. Sensors 2024, 24, 148. [Google Scholar] [CrossRef] [PubMed]
- Dicu, T.; Burghele, B.D.; Botoş, M.; Cucoș, A.; Dobrei, G.; Florică, Ș.; Grecu, Ș.; Lupulescu, A.; Pap, I.; Szacsvai, K.; et al. A New Approach to Radon Temporal Correction Factor Based on Active Environmental Monitoring Devices. Sci. Rep. 2021, 11, 9925. [Google Scholar] [CrossRef]
- Emirhan, M.E. Active Radon Detection Unit. Radiat. Meas. 2025, 181, 107373. [Google Scholar] [CrossRef]
- Nikesh, M.; Bharathi, M.; Naaz, S.H.; Srinivas, T.A.S. IoT’s Biggest Headaches: Privacy, Security, and Data Management Challenges. J. IoT Secur. Smart Technol. 2025, 4, 1–23, e-ISSN: 2583-6226. [Google Scholar] [CrossRef]
- Garcia, A.; Saez, Y.; Harris, I.; Huang, X.; Collado, E. Advancements in Air Quality Monitoring: A Systematic Review of IoT-Based Air Quality Monitoring and AI Technologies. Artif. Intell. Rev. 2025, 58, 275. [Google Scholar] [CrossRef]
- Manono Fotso Kamgang, S.L.; Monti, M.M.; Salame-Alfie, A. Temporal Variation in Indoor Radon Concentrations Using Environmental Public Health Tracking Data. Health Phys. 2023, 124, 342. [Google Scholar] [CrossRef]
- Ren, H.; Liu, Y. A New Calibration Method for Radon Detector in Seismic Systems. Earthq. Sci. 2024, 37, 445–458. [Google Scholar] [CrossRef]
- Pratama, T.O.; Wijatna, A.B.; Sunarno, S.; Sari, H.K.; Yanti, R.J.; Wijaya, R.; Waruwu, M.M. Application of Continuous Radon Gas Concentration Telemonitoring for Predictive Seismic Hazard Assessment in Manado, Indonesia. Ecol. Eng. Environ. Technol. 2025, 26, 122–130. [Google Scholar] [CrossRef]
- Rey, J.F.; Cesari, M.; Schoenenweid, M.; Montet, F.; Gandolla, M.; Bonvin, L.; Bourquin, V.; Jacot, C.L.; Roman, J.; Mahecha, D.; et al. Autodigit-RAD: Towards an Automation of the Radon’s Concentration Dataflow in a New and Innovative Building. J. Phys. Conf. Ser. 2023, 2600, 102008. [Google Scholar] [CrossRef]
- Jang, S.H.; Lee, J.-K.; Lee, S.Y.; Oh, K.D. Basic Study on Development of the Radon Measurement System in Groundwater Stations for the Seismic Monitoring and Prediction. J. Korea Water Resour. Assoc. 2020, 53, 507–519. [Google Scholar] [CrossRef]
- Li, C.; Li, M.; Chen, G.; Yu, H.; Zhang, C.; Liu, W.; Guo, J.; Zhao, S.; Song, L.; Cui, X.; et al. In-Situ Detection Equipment for Radon-in-Water: Unattended Operation and Monthly Investigations. Acta Oceanol. Sin. 2023, 42, 178–184. [Google Scholar] [CrossRef]
- Blanco-Novoa, O.; Barros, P.; Fraga-Lamas, P.; Lopes, S.I.; Fernández-Caramés, T.M. IoT Architectures for Indoor Radon Management: A Prospective Analysis. In Smart Technologies for Sustainable and Resilient Ecosystems; Lopes, S.I., Fraga-Lamas, P., Fernándes-Camáres, T.M., Dawadi, B.R., Rawat, D.B., Shakya, S., Eds.; Springer Nature: Cham, Switzerland, 2023; pp. 59–74. [Google Scholar]
- Visca, L.; Amoroso, A.; Calabria, R.; Cotto, G.; Crosetto, A.; Destefanis, M.G.M.; Durisi, E.A.; Mallamace, F.; Trapani, P.P.; Zamprotta, L. Radon Detector Development Using a PIN Photodiode. J. Eur. Radon Assoc. 2023, 4, 8860. [Google Scholar] [CrossRef]
- Morishita, Y.; Ye, Y.; Mata, L.; Pozzi, S.A.; Kearfott, K.J. Radon Measurements with a Compact, Organic-Scintillator-Based Alpha/Beta Spectrometer. Radiat. Meas. 2020, 137, 106428. [Google Scholar] [CrossRef]
- Anastasio, A.; Ambrosino, F.; Basta, D.; Bonechi, L.; Brianzi, M.; Bross, A.; Callier, S.; Cassese, F.; Castellini, G.; Ciaranfi, R.; et al. The MU-RAY Experiment. An Application of SiPM Technology to the Understanding of Volcanic Phenomena. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2013, 718, 134–137. [Google Scholar] [CrossRef]
- Abdullah, A.N.; Kamarudin, K.; Kamarudin, L.M.; Adom, A.H.; Mamduh, S.M.; Mohd Juffry, Z.H.; Bennetts, V.H. Correction Model for Metal Oxide Sensor Drift Caused by Ambient Temperature and Humidity. Sensors 2022, 22, 3301. [Google Scholar] [CrossRef]
- Masson, N.; Piedrahita, R.; Hannigan, M. Approach for Quantification of Metal Oxide Type Semiconductor Gas Sensors Used for Ambient Air Quality Monitoring. Sens. Actuators B Chem. 2015, 208, 339–345. [Google Scholar] [CrossRef]
- Dai, C.-L.; Liu, M.-C.; Chen, F.-S.; Wu, C.-C.; Chang, M.-W. A Nanowire WO3 Humidity Sensor Integrated with Micro-Heater and Inverting Amplifier Circuit on Chip Manufactured Using CMOS-MEMS Technique. Sens. Actuators B Chem. 2007, 123, 896–901. [Google Scholar] [CrossRef]
- Jin, Z.; Zhao, J.; Liu, L.; Liu, F.; Wang, Z.; Wang, F.; Liu, J.; Mou, Y.; Wu, L.; Wu, X. Humidity-Independent Gas Sensors in the Detection of Hydrogen Sulfide Based on Nd2O3-Loaded In2O3 Porous Nanorods. Sens. Actuators B Chem. 2024, 403, 135237. [Google Scholar] [CrossRef]
- Kumar, A.; Gupta, G.; Bapna, K.; Shivagan, D.D. Semiconductor-Metal-Oxide-Based Nano-Composites for Humidity Sensing Applications. Mater. Res. Bull. 2023, 158, 112053. [Google Scholar] [CrossRef]
- Chakole, M.; Ainchwar, I.; Budhe, V.; Babhale, A.; Katolkar, A.; Dorle, S. IoT—Driven Bioelectrical Signals Detection and Monitoring System. In Proceedings of the 2024 International Conference on Computational Intelligence and Computing Applications (ICCICA), Samalkha, India, 23–24 May 2024; Volume 1, pp. 341–346. [Google Scholar]
- Tie, Y.; Chen, P.; Ma, Y. BLE Bluetooth Remote-Controlled Car Based on ESP32. Appl. Comput. Eng. 2024, 81, 25–32. [Google Scholar] [CrossRef]
- Hegade, V.G.; Krishna, Y.; Menezes, R. Analysis of Animals Health Condition after Post-Surgery Using LoRa Communication. Int. J. Emerg. Technol. Innov. Res. 2021, 8, c227–c230. [Google Scholar]
- Liew, Y.-H.; Tan, W.-H.; Ooi, C.-P. A Low-Power Embedded IoT System for Accurate Detection of Unauthorized Manhole Access. In Proceedings of the 2024 Multimedia University Engineering Conference (MECON), Cyberjaya, Malaysia, 23–25 July 2024; pp. 1–6. [Google Scholar]
- Wang, X.; Yi, X.; Ding, H. Battery Monitoring System Design Based on NB-IoT. In Proceedings of the 2022 First International Conference on Cyber-Energy Systems and Intelligent Energy (ICCSIE), Shenyang, China, 14–15 January 2023; pp. 1–5. [Google Scholar]
- Choi, H.; Yun, J.; Park, S.; Kim, Y.; Park, S. Long-Tail Watchdog Timer for High Availability on STM32F4-Based Real-Time Embedded Systems. J. Korea Multimed. Soc. 2015, 18, 723–733. [Google Scholar] [CrossRef]
- Li, X.; Chen, J. Design of Lithium Battery Management Control System Based on STM32. In Proceedings of the 5th International Conference on Information Technologies and Electrical Engineering; Association for Computing Machinery, New York, NY, USA, 10 April 2023; pp. 413–416. [Google Scholar]
- Lima, E.; Moraes, J.; Oliveira, H.; Cerqueira, E.; Zeadally, S.; Rosário, D. Adaptive Priority-Aware LoRaWAN Resource Allocation for Internet of Things Applications. Ad Hoc Netw. 2021, 122, 102598. [Google Scholar] [CrossRef]
- Bartolín-Arnau, L.M.; Todoli-Ferrandis, D.; Sempere-Payá, V.; Silvestre-Blanes, J.; Santonja-Climent, S. LoRaWAN Networks for Smart Applications in Rural Settings. IETE Tech. Rev. 2023, 40, 440–452. [Google Scholar] [CrossRef]
- Kamarudin, M.N.C.; Ayob, A.; Hussain, A.; Ansari, S.; Abdolrasol, M.G.M.; Saad, M.H.M. Review of LoRaWAN: Performance, Key Issues and Future Perspectives. J. Kejuruter. 2024, 36, 407–418. [Google Scholar] [CrossRef]
- Pasandi, H.B.; Haqiqat, A.; Moradbeikie, A.; Keshavarz, A.; Rostami, H.; Paiva, S.; Lopes, S.I. Low-Cost Traffic Sensing System Based on LoRaWAN for Urban Areas. In Proceedings of the 1st International Workshop on Emerging Topics in Wireless, New York, NY, USA, 6 December 2022; Association for Computing Machinery: New York, NY, USA, 2022; pp. 6–11. [Google Scholar]
- Phung, K.-H.; Tran, H.; Nguyen, Q.; Huong, T.T.; Nguyen, T.-L. Analysis and Assessment of LoRaWAN. In Proceedings of the 2018 2nd International Conference on Recent Advances in Signal Processing, Telecommunications & Computing (SigTelCom), Ho Chi Minh City, Vietnam, 29–31 January 2018; pp. 241–246. [Google Scholar]
- Gaitán, M.G.; d’Orey, P.M.; Cecílio, J.; Rodrigues, M.; Santos, P.M.; Pinto, L.; Oliveira, A.; Casimiro, A.; Almeida, L. Modeling LoRa Communications in Estuaries for IoT Environmental Monitoring Systems. IEEE Sens. J. 2022, 22, 21312–21325. [Google Scholar] [CrossRef]
- Reyneke, M.; Mullins, B.; Reith, M. LoRaWAN & The Helium Blockchain: A Study on Military IoT Deployment. Int. Conf. Cyber Warf. Secur. 2023, 18, 327–337. [Google Scholar] [CrossRef]
- Marais, J.M.; Abu-Mahfouz, A.M.; Hancke, G.P. A Survey on the Viability of Confirmed Traffic in a LoRaWAN. IEEE Access 2020, 8, 9296–9311. [Google Scholar] [CrossRef]
- Basu, S.S.; Sultania, A.K.; Famaey, J.; Hoebeke, J. Experimental Performance Evaluation of NB-IoT. In Proceedings of the 2019 International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), Barcelona, Spain, 21–23 October 2019; pp. 1–6. [Google Scholar]
- Ugwuanyi, S.; Paul, G.; Irvine, J. Survey of IoT for Developing Countries: Performance Analysis of LoRaWAN and Cellular NB-IoT Networks. Electronics 2021, 10, 2224. [Google Scholar] [CrossRef]
- Erbati, M.M.; Schiele, G.; Batke, G. Analysis of LoRaWAN Technology in an Outdoor and an Indoor Scenario in Duisburg-Germany. In Proceedings of the 2018 3rd International Conference on Computer and Communication Systems (ICCCS), Nagoya, Japan, 27–30 April 2018; pp. 273–277. [Google Scholar]
- Grübel, J.; Thrash, T.; Hélal, D.; Sumner, R.W.; Hölscher, C.; Schinazi, V.R. The Feasibility of Dense Indoor LoRaWAN Towards Passively Sensing Human Presence. In Proceedings of the 2021 IEEE International Conference on Pervasive Computing and Communications (PerCom), Kassel, Germany, 22–26 March 2021; pp. 1–11. [Google Scholar]
- Kamanga, I.A.; Lyimo, J.M.; Kamanga, I.A.; Lyimo, J.M. Review of LoRAWAN and the Protocol Suitability for Low Bandwidth Wireless Sensor Networks over 5G. Int. J. Sci. Res. Arch. 2022, 7, 291–305. [Google Scholar] [CrossRef]
- Rahman, M.; Saifullah, A. Boosting Reliability and Energy-Efficiency in Indoor LoRa. In Proceedings of the 8th ACM/IEEE Conference on Internet of Things Design and Implementation, New York, NY, USA, 9 May 2023; Association for Computing Machinery: New York, NY, USA, 2023; pp. 396–409. [Google Scholar]
- Andres-Maldonado, P.; Ameigeiras, P.; Prados-Garzon, J.; Navarro-Ortiz, J.; Lopez-Soler, J.M. An Analytical Performance Evaluation Framework for NB-IoT. IEEE Internet Things J. 2019, 6, 7232–7240. [Google Scholar] [CrossRef]
- Malarski, K.M.; Thrane, J.; Bech, M.G.; Macheta, K.; Christiansen, H.L.; Petersen, M.N.; Ruepp, S. Investigation of Deep Indoor NB-IoT Propagation Attenuation. In Proceedings of the 2019 IEEE 90th Vehicular Technology Conference (VTC2019-Fall), Honolulu, HI, USA, 22–25 September 2019; pp. 1–5. [Google Scholar]
- Sultania, A.; Blondia, C.; Famaey, J. Optimizing the Energy-Latency Tradeoff in NB-IoT with PSM and eDRX. IEEE Internet Things J. 2021, 8, 12436–12454. [Google Scholar] [CrossRef]
- Wan, L.; Zhang, Z.; Huang, Y.; Yan, Y.; Wang, J. Performance Analysis of NB-IoT Technology for Indoor IoT Applications. In Proceedings of the 2017 International Conference on Computer Technology, Electronics and Communication (ICCTEC), Dalian, China, 19–21 December 2017; pp. 1365–1369. [Google Scholar]
- Horn, B.K.P. Indoor Localization Using Uncooperative Wi-Fi Access Points. Sensors 2022, 22, 3091. [Google Scholar] [CrossRef]
- Ramalingam, S.P.; Shanmugam, P.K. A Comprehensive Review on Wired and Wireless Communication Technologies and Challenges in Smart Residential Buildings. Recent Adv. Comput. Sci. Commun. 2022, 15, 1140–1167. [Google Scholar] [CrossRef]
- Sadowski, S.; Spachos, P. RSSI-Based Indoor Localization with the Internet of Things. IEEE Access 2018, 6, 30149–30161. [Google Scholar] [CrossRef]
- Shashi Kiran, M.R.; Spoorthi Yadav, M.; Hemanth Kumar, R.V.; Thyagarajan, M. Optimal Placement of Wi-Fi Access Points for Indoor Regions to Provide 2.4 GHz and 60 GHz Spectrum Using Dual Band Architecture. In Proceedings of the 2018 International Conference on Advances in Computing, Communications and Informatics (ICACCI), Bangalore, India, 19–22 September 2018; pp. 2066–2072. [Google Scholar]
- Tung, T.C.W.; Burnett, J. Radon Measurement Protocol for Residences with Different Ventilation Rates. Indoor Built Environ. 2004, 13, 133–138. [Google Scholar] [CrossRef]
- Urazayev, D.; Eduard, A.; Ahsan, M.; Zorbas, D. Indoor Performance Evaluation of ESP-NOW. In Proceedings of the 2023 IEEE International Conference on Smart Information Systems and Technologies (SIST), Astana, Kazakhstan, 4–6 May 2023; pp. 1–6. [Google Scholar]
- Badihi, B.; Sheikh, M.U.; Ruttik, K.; Jäntti, R. On Performance Evaluation of BLE 5 In Indoor Environment: An Experimental Study. In Proceedings of the 2020 IEEE 31st Annual International Symposium on Personal, Indoor and Mobile Radio Communications, London, UK, 31 August–3 September 2020; pp. 1–5. [Google Scholar]
- Del Carpio, L.F.; Di Marco, P.; Skillermark, P.; Chirikov, R.; Lagergren, K. Comparison of 802.11ah, BLE and 802.15.4 for a Home Automation Use Case. Int. J. Wirel. Inf. Netw. 2017, 24, 243–253. [Google Scholar] [CrossRef]
- Fafoutis, X.; Tsimbalo, E.; Zhao, W.; Chen, H.; Mellios, E.; Harwin, W.; Piechocki, R.; Craddock, I. BLE or IEEE 802.15.4: Which Home IoT Communication Solution Is More Energy-Efficient? EAI Endorsed Trans. Internet Things 2016, 2, e4. [Google Scholar] [CrossRef]
- Morin, É.; Maman, M.; Guizzetti, R.; Duda, A. Comparison of the Device Lifetime in Wireless Networks for the Internet of Things. IEEE Access 2017, 5, 7097–7114. [Google Scholar] [CrossRef]
- Venkatesh, R.; Mittal, V.; Tammana, H. Indoor Localization in BLE Using Mean and Median Filtered RSSI Values. In Proceedings of the 2021 5th International Conference on Trends in Electronics and Informatics (ICOEI), Tirunelveli, India, 3–5 June 2021; pp. 227–234. [Google Scholar]
- Al-Sarawi, S.; Anbar, M.; Alieyan, K.; Alzubaidi, M. Internet of Things (IoT) Communication Protocols: Review. In Proceedings of the 2017 8th International Conference on Information Technology (ICIT), Amman, Jordan, 17–18 May 2017; pp. 685–690. [Google Scholar]
- Krzak, Ł.; Macheta, J.; Kubaszek, M.; Worek, C. Comparison of Wireless Data Transmission Protocols for Residential Water Meter Applications. Int. J. Electron. Telecommun. 2023, 69, 833–842. [Google Scholar] [CrossRef]
- Lauridsen, M.; Nguyen, H.; Vejlgaard, B.; Kovacs, I.Z.; Mogensen, P.; Sorensen, M. Coverage Comparison of GPRS, NB-IoT, LoRa, and SigFox in a 7800 Km2 Area. In Proceedings of the 2017 IEEE 85th Vehicular Technology Conference (VTC Spring), Sydney, Australia, 4–7 June 2017; pp. 1–5. [Google Scholar]
- Alqurashi, H.; Bouabdallah, F.; Khairullah, E. SCAP SigFox: A Scalable Communication Protocol for Low-Power Wide-Area IoT Networks. Sensors 2023, 23, 3732. [Google Scholar] [CrossRef]
- de Oliveira, F.C.; Rodrigues, J.J.P.C.; Rabêlo, R.A.L.; Mumtaz, S. Performance Delay Comparison in Random Access Procedure for NB-IoT, LoRa, and SigFox IoT Protocols. In Proceedings of the 2019 IEEE 1st Sustainable Cities Latin America Conference (SCLA), Arequipa, Peru, 26–29 August 2019; pp. 1–6. [Google Scholar]
- Kotrappa, P.; Stieff, F. One Cubic Metre NIST Traceable Radon Test Chamber. Radiat. Prot. Dosim. 2008, 128, 500–502. [Google Scholar] [CrossRef]
- Linzmaier, D.; Röttger, A. Development of a Low-Level Radon Reference Atmosphere. Appl. Radiat. Isot. 2013, 81, 208–211. [Google Scholar] [CrossRef]
- Xu, B.; Burnett, W.C.; Lane-Smith, D.; Yu, Z. A Simple Laboratory-Based Radon Calibration System. J. Radioanal. Nucl. Chem. 2010, 283, 457–463. [Google Scholar] [CrossRef]
- Aït-Ziane, M.; Allab, M.; Louns-Mokrani, Z. Response Verification of Integrated Device Used for Radon Measurements in Air. Braz. J. Rad. Sci. 2019, 7, 1–12. [Google Scholar] [CrossRef]
- Lin, C.-F.; Wang, J.-J.; Lin, S.-J.; Lin, C.-K. Performance Comparison of Electronic Radon Monitors. Appl. Radiat. Isot. 2013, 81, 238–241. [Google Scholar] [CrossRef]
- Staaf, H. The Future of Green Tech: Self-Powered IoT Sensors. Open Access Gov. 2025, 45, 396–397. [Google Scholar] [CrossRef]
- Rahmadani, A.A.; Syaifudin, Y.W.; Setiawan, B.; Panduman, Y.Y.F.; Funabiki, N. Enhancing Campus Environment: Real-Time Air Quality Monitoring Through IoT and Web Technologies. J. Sens. Actuator Netw. 2025, 14, 2. [Google Scholar] [CrossRef]
- Giammanco, S.; Bonfanti, P.; Neri, M. Radon on Mt. Etna (Italy): A Useful Tracer of Geodynamic Processes and a Potential Health Hazard to Populations. Front. Earth Sci. 2023, 11, 1176051. [Google Scholar] [CrossRef]
- Stojanovska, Z.; Boev, B.; Zunic, Z.S.; Ivanova, K.; Ristova, M.; Tsenova, M.; Ajka, S.; Janevik, E.; Taleski, V.; Bossew, P. Variation of Indoor Radon Concentration and Ambient Dose Equivalent Rate in Different Outdoor and Indoor Environments. Radiat. Environ. Biophys. 2016, 55, 171–183. [Google Scholar] [CrossRef]
- Stojanovska, Z.; Januseski, J.; Boev, B.; Ristova, M. Indoor Exposure of Population to Radon in the FYR of Macedonia. Radiat. Prot. Dosim. 2012, 148, 162–167. [Google Scholar] [CrossRef] [PubMed]
- Abbasi, A. Modeling of Lung Cancer Risk Due to Radon Exhalation of Granite Stone in Dwelling Houses. J. Can. Res. Ther. 2017, 13, 208. [Google Scholar] [CrossRef]
- Kitto, M.E.; Haines, D.K.; Arauzo, H.D. Emanation of Radon From Household Granite. Health Phys. 2009, 96, 477. [Google Scholar] [CrossRef]
- Barbosa, S.; Pereira, A.; Neves, L. High-Frequency Variability of Radon in a Stable Indoor Environment. 5 November 2018. Available online: https://ucdigitalis.uc.pt/pombalina/item/68226 (accessed on 17 June 2025).
- Janik, M.; Bossew, P. Analysis of Simultaneous Time Series of Indoor, Outdoor and Soil Air Radon Concentrations, Meteorological and Seismic Data. Nukleonika 2016, 61, 295–302. [Google Scholar] [CrossRef]
- Tsapalov, A.; Kovler, K. Temporal Uncertainty versus Coefficient of Variation for Rational Regulation of Indoor Radon. Indoor Air 2022, 32, e13098. [Google Scholar] [CrossRef]
- Tsapalov, A.; Kovler, K. Indoor Radon Regulation Using Tabulated Values of Temporal Radon Variation. J. Environ. Radioact. 2018, 183, 59–72. [Google Scholar] [CrossRef]
- Kouroukla, E.; Gooding, T.D. Distribution of Radon in Large Workplaces: An Analysis Performed on Radon Levels Measured in UK Schools. J. Radiol. Prot. 2024, 44, 041501. [Google Scholar] [CrossRef] [PubMed]
- Evans, C.E.; Kearfott, K.J. A 291-Day Evaluation of the Performance of a Consumer-Grade Temporal Radon Detector. Health Phys. 2025, 128, 60. [Google Scholar] [CrossRef]
- Denman, A.R.; Groves-Kirkby, C.J.; Phillips, P.S.; Crockett, R.G.M.; Woolridge, A.; Gillmore, G.K. The Practical Use of Electrets in a Public Health Radon Remediation Campaign. J. Environ. Radioact. 2005, 84, 375–391. [Google Scholar] [CrossRef]
- Whicker, J.; Mcnaughton, M. Work to save dose: Contrasting effective dose rates from radon exposure in workplaces and residences against the backdrop of public and occupational regulatory limits. Health Phys. 2009, 97, 248–256. [Google Scholar] [CrossRef]
- Excel, D.S. Edge Computing: Opportunities and Challenges. World J. Adv. Res. Rev. 2024, 23, 585–596. [Google Scholar] [CrossRef]
- Chatterjee, A. Development of Smart Sensor for IoT Based Environmental Data Analysis Through Edge Computing. In Proceedings of the Computing Science, Communication and Security, Mehsana, India, 6–7 February 2023; Chaubey, N., Thampi, S.M., Jhanjhi, N.Z., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 1–10. [Google Scholar]
- Roostaei, J.; Wager, Y.Z.; Shi, W.; Dittrich, T.; Miller, C.; Gopalakrishnan, K. IoT-Based Edge Computing (IoTEC) for Improved Environmental Monitoring. Sustain. Comput. Inform. Syst. 2023, 38, 100870. [Google Scholar] [CrossRef] [PubMed]
- Mete, M.O. Geospatial Big Data Analytics For Sustainable Smart Cities. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2023, XLVIII-4-W7-2023, 141–146. [Google Scholar] [CrossRef]
- Biswal, A.; Subhashini, J.; Pasayat, A.K. Air Quality Monitoring System for Indoor Environments Using IoT. AIP Conf. Proc. 2019, 2112, 020180. [Google Scholar] [CrossRef]
- Hahn, E.J.; Haneberg, W.C.; Stanifer, S.R.; Rademacher, K.; Backus, J.; Rayens, M.K. Geologic, Seasonal, and Atmospheric Predictors of Indoor Home Radon Values. Environ. Res. Health 2023, 1, 025011. [Google Scholar] [CrossRef]
- Qiao, Y. JCSE01.04 Risk Modeling for the Early Detection of Tin Miner Lung Cancer in China. J. Thorac. Oncol. 2018, 13, S311. [Google Scholar] [CrossRef]
- Zhukovsky, M.; Yarmoshenko, I.; Onishchenko, A.; Malinovsky, G. Prognostic Assessment of Lung Cancer Risk under Combined Action of Radon and Smoking Using an Additive-Multiplicative Risk Model. Radiatsionnaya Gygiena = Radiat. Hyg. 2021, 14, 41–55. [Google Scholar] [CrossRef]
- Ptiček Siročić, A.; Kovač, S.; Stanko, D.; Pejak, I. Dependence of Concentration of Radon on Environmental Parameters—Multiple Linear Regression Model. Environ. Eng.—Inženjerstvo Okoliša 2021, 8, 17–25. [Google Scholar] [CrossRef]
- Jacob, M.T.; François, K.; Dieu Souffit, G.; Modibo, O.B.; Yerima Abba, H.; Michaux, K.N.; Saïdou; Tokonami, S. Low-Cost Radon Monitoring with Validation by a Reference Instrument. Instrum. Sci. Technol. 2023, 51, 68–83. [Google Scholar] [CrossRef]
- Ladeira, E.F.; Jafari, S.N.; Pinto, R.P.; Silva, B.M.C. RuraLTHINGS: A Novel IoT Monitoring System for Remote and Rural Regions. In Proceedings of the 2024 20th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), Paris, France, 21–23 October 2024; pp. 277–282. [Google Scholar]
- Hevey, D.; Perko, T.; Martell, M.; Bradley, G.; Apers, S.; Rovenská, K.N. A Psycho-Social-Environmental Lens on Radon Air Pollutant: Authorities’, Mitigation Contractors’, and Residents’ Perceptions of Barriers and Facilitators to Domestic Radon Mitigation. Front. Public Health 2023, 11, 1252804. [Google Scholar] [CrossRef]
- Khan, S.M.; Gomes, J.; Nicol, A.-M. Residents’ Perception and Worldview about Radon Control Policy in Canada: A pro-Equity Social Justice Lens. Front. Public Health 2022, 10, 946652. [Google Scholar] [CrossRef]
- Bhat, N.; Ukkund, S.J.; Ashraf, M.; Acharya, K.; Ramegouda, N.J.; Puthiyillam, P.; Hasan, M.A.; Islam, S.; Koradoor, V.B.; Praveen, A.D.; et al. GO/CuO Nanohybrid-Based Carbon Dioxide Gas Sensors with an Arduino Detection Unit. ACS Omega 2023, 8, 32512–32519. [Google Scholar] [CrossRef]
- Nath, N.; Kumar, A.; Chakroborty, S.; Soren, S.; Barik, A.; Pal, K.; de Souza, F.G., Jr. Carbon Nanostructure Embedded Novel Sensor Implementation for Detection of Aromatic Volatile Organic Compounds: An Organized Review. ACS Omega 2023, 8, 4436–4452. [Google Scholar] [CrossRef]
- Owais, T.; Khater, M.; Al-Qahtani, H. Graphene-Based MEMS Devices for Gas Sensing Applications: A Review. Micro Nanostruct. 2024, 195, 207954. [Google Scholar] [CrossRef]
- Kotrappa, P.; Stieff, L.; Stieff, F. Measurement of Radon in Natural Gas and in Propane Using Electret Ion Chambers. 2016. Available online: https://www.radelec.com/publications/Kotrappa_MeasurementOfRadonInNaturalGasAndPropaneUsingEIC_2015.pdf (accessed on 24 September 2025).
- Nodari, B.; Caldara, M.; Re, V.; Fabris, L. Radon Fast Detection and Environmental Monitoring with a Portable Wireless System. In Proceedings of the 2015 6th International Workshop on Advances in Sensors and Interfaces (IWASI), Bari, Italy, 18–19 June 2015; pp. 254–259. [Google Scholar]
- Kaschner, M.; Kafka, V.; Marčišovský, M.; Staněk, P.; Švihra, P. Monte carlo simulation of polonium ion collection in electrostatic field for the purpose of radon detector development. Radiat. Prot. Dosim. 2022, 198, 791–795. [Google Scholar] [CrossRef] [PubMed]
- Salvi, F. Mapping the Fraction of Dwellings Exceeding Radon Level Thresholds in the Lazio Region, Central Italy. Radiat. Prot. Dosim. 2023, 199, 1202–1207. [Google Scholar] [CrossRef] [PubMed]
- Berquist, J.; Zhou, L.; Whyte, J.; Li, Y.; Vuotari, M.; Nong, G. Two Case Studies on Ventilation for Indoor Radon Control; National Research Council Canada: Ottawa, ON, Canada, 2019. [Google Scholar]
- Natarajan, C.; Seethapathy, C.; Challa, V.S.; Balasubramaniam, V. Study on the Dynamics of Radon Concentration Buildup in the Closed-Loop Measurement System with RAD7 Online Radon Monitor. Radiat. Prot. Dosim. 2025, 201, 18–30. [Google Scholar] [CrossRef]
- Xia, M.; Ye, Y.-J.; Liu, S.-Y. Numerical Simulations for Radon Migration and Exhalation Behavior during Measuring Radon Exhalation Rate with Closed-Loop Method. Nucl. Sci. Tech. 2024, 35, 9. [Google Scholar] [CrossRef]
- Sharma, M. Security and Compliance in Cloud ERP Systems: A Deep Dive into Workday’s Framework. Int. Sci. J. Eng. Manag. 2024, 3, 1–6. [Google Scholar] [CrossRef]
- Hussein, A.H.A.; Jabbar, K.A.; Mohammed, A.; Jasim, L. Harvesting the Future: AI and IoT in Agriculture. E3S Web Conf. 2024, 477, 00090. [Google Scholar] [CrossRef]
Study | Sensor Type | Deployment Context | Connectivity | Calibration & Validation | Power Configurations | Key Findings | Reported Limitations |
---|---|---|---|---|---|---|---|
[17] | Metal-oxide Semiconductor (MOS) | 120 public schools (Tehran) | NB-IoT | Co-location with RAD7; baseline environmental adjustment | Battery-operated with low-power duty cycling | Persistent radon in basement classrooms; informed local remediation policy | Calibration inconsistencies; variable device responses across humidity levels. |
[19] | Active detectors | 50 residential buildings (Alberta, Canada) | Wi-Fi | Cross-referenced with HVAC telemetry and seasonal indoor-outdoor trends | Grid-connected indoor devices | Radon peaks correlated with winter heating cycles and HVAC operations | Limited study duration (6 months); lack of standardized calibration |
[13] | Commercial Sensor array with WebGIS integration | Government and institutional buildings (Portugal) | Wi-Fi + Web-based GIS | Trend comparison with reference instruments; visual validation | Mains power; no battery autonomy | Enabled real-time spatial mapping of radon levels; facilitated risk communication | Limited deployment scale; dependent on fixed power infrastructure |
[18] | Open-source consumer-grade sensors | 30 school classrooms (Boston, USA) | Wi-Fi and BLE | Software-based calibration; citizen science protocol | Mains-powered classroom units | Raised awareness; improved air exchange behaviors through feedback loops | Sensor drift; variation in user-led setup and placement |
[15] | Custom LoRa-enabled prototype (RnProbe) | Simulated lab limited field setting | LoRaWAN | Laboratory validation against Alpha Guard | Solar-assisted battery | Demonstrated edge-processing and anomaly detection; low-power architecture | Prototype status; no extensive field validation |
Study | Sensor Type/Modality | Deployment Context | Connectivity/Link | Validation Method | Power/Autonomy | Key Findings | Limitations |
---|---|---|---|---|---|---|---|
[25] | Soil radon detectors with minute-level logging | Outdoor, seismic fault zone | Cellular IoT, cloud server | Seismic correlation and anomaly detection | Remove, solar-backed | ~84% prediction sensitivity, 2.65-day lead time | Non-health applications, indoor calibration not included |
[26] | Integrated indoor radon sensors in smart buildings | Residential building | Cloud-linked with web access | Internal calibration routines | Mains powered, autonomous | Fully automated monitoring system with user alerts | Deployment in one building; generalizability untested |
[27] | Radon sensors in groundwater stations | Seismic/geological zones | NB-IoT | Time-series validation | Low-power, battery-based | Remote radon monitoring feasible in harsh terrain | Indoor use not studied; long-term drift unaddressed |
[28] | Underwater radon-in-water detection | Marine and groundwater monitoring | Local storage and later upload | Laboratory calibration | 15+ days of autonomous operation | Demonstrated viability of remote aquatic radon monitoring | Cost and sensitivity vs. air systems not benchmarked |
Protocol | Range | Power Consumption | Bandwidth | Cost | Indoor Penetration | Suitability of Radon Monitoring | Source |
---|---|---|---|---|---|---|---|
LoRaWAN | Up to 15 km (rural) ~2–5 km (urban | Very low | Low (0.3–50 kbps) | Low | Moderate to good | Excellent for large-scale battery-powered, low-data deployments in remote or urban schools | [55,56,57,58] |
NB-IoT | Up to 10 km | Low to Moderate | Moderate (up to 250 kbps) | Medium | Excellent | Suitable for urban radon networks with good penetration through walls and basements | [59,60,61,62] |
Wi-Fi | <100 m (walls reduce range) | High | High (10+ Mbps) | Moderate to high | Poor to Moderate | Suitable for homes or labs with power; not practical for long-term remote monitoring. | [63,64,65,66,67,68] |
BLE | <50 m | Very Low | Low to moderate (~1 Mbps) | Low | Poor | Useful for indoor point sensing; often paired with LoRa or Wi-Fi for upstream data delivery | [69,70,71,72,73] |
Cellular (3G/4G/5G) | ~5–20 km | High | Very high (Mbps-Gbps) | High | Excellent | Too power-intensive for distributed sensing; suitable only for gateways or mobile monitoring. | [72,74,75,76] |
Sigfox | Up to 40 km (rural, ~10 km (urban) | Very Low | Very Low (~100 bps) | Low | Moderate | Power-efficient but limited bandwidth restricts real-time alerts and high-frequency sampling. | [72,74,75,76,77,78] |
Location | Nodes | Duration | Key Findings | Limitations | References |
---|---|---|---|---|---|
Alberta, Canada | 50 | 6 months | Seasonal radon spikes observed during winter; HVAC cycles impacted radon levels | Short-duration limited longitudinal analysis | [19] |
Tehran, Iran | 120 | 9 months | School basements showed concentrations above WHO action level; prompted policy changes | Inconsistent calibration across devices | [17] |
Seoul, Republic of Korea | 200 | 12 months | Identified radon hotspots in concrete-heavy buildings; material choice mattered | LoRaWAN connectivity issues in high-density areas | [13] |
Boston, USA | 30 | 3 months | Crowd-sourced sensors successfully mapped indoor air risks; public dashboards improved engagement | Calibration drift and user error in DIY setups | [18] |
Setting | Project/Study | Technology | Key Takeaway |
---|---|---|---|
Public buildings/school | RnMonitoring (Portugal) [13] | LoRaWAN, WebGIS | Scalable, municipal-level risk mapping and dashboarding |
School indoor mapping | UK School Analysis [95] | Statistical distribution modeling | Demonstrates room-to-room radon variation; supports dense sensor placement |
Residential settings | RadonEye Evaluation [96] | Consumer-grade continuous monitors | Affordable long-term monitoring is viable for households |
Community health programs | Northamptonshire Campaign [97] | Electret ion chamber (passive) | Mass-deployment potential in public health settings |
Home vs. workplace analysis | Los Alamos Study [98] | Track-etch detectors | Home exposure dominates; justifies a holistic, cross-setting monitoring strategy. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rathebe, P.C.; Kholopo, M. Radon Exposure Assessment: IoT-Embedded Sensors. Sensors 2025, 25, 6164. https://doi.org/10.3390/s25196164
Rathebe PC, Kholopo M. Radon Exposure Assessment: IoT-Embedded Sensors. Sensors. 2025; 25(19):6164. https://doi.org/10.3390/s25196164
Chicago/Turabian StyleRathebe, Phoka C., and Mota Kholopo. 2025. "Radon Exposure Assessment: IoT-Embedded Sensors" Sensors 25, no. 19: 6164. https://doi.org/10.3390/s25196164
APA StyleRathebe, P. C., & Kholopo, M. (2025). Radon Exposure Assessment: IoT-Embedded Sensors. Sensors, 25(19), 6164. https://doi.org/10.3390/s25196164