sensors

Review

Radon Exposure Assessment: IoT-Embedded Sensors

Phoka C. Rathebe *

check for
updates

Academic Editor: Valerio Bocci

Received: 28 August 2025
Revised: 15 September 2025
Accepted: 25 September 2025
Published: 5 October 2025

Citation: Rathebe, P.C.; Kholopo, M.

Radon Exposure Assessment:
IoT-Embedded Sensors. Sensors 2025,
25,6164. https://doi.org/10.3390/
525196164

Copyright: © 2025 by the authors.
Licensee MDP], Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license

(https:/ /creativecommons.org/
licenses /by /4.0/).

and Mota Kholopo

Department of Environmental Health, Faculty of Health Sciences, Doornfontein Campus, University of
Johannesburg, Johannesburg 2006, South Africa; motaliok@gmail.com
* Correspondence: prathebe@uj.ac.za; Tel.: +27-11-559-6641

Abstract

Radon exposure is the second leading cause of lung cancer worldwide, yet monitoring strate-
gies remain limited, expensive, and unevenly applied. Recent advances in the Internet of
Things (IoT) offer the potential to change radon surveillance through low-cost, real-time,
distributed sensing networks. This review consolidates emerging research on IoT-based radon
monitoring, drawing from both primary radon studies and analogous applications in environ-
mental IoT. A search across six major databases and relevant grey literature yielded only five
radon-specific IoT studies, underscoring how new this research field is rather than reflecting a
shortcoming of the review. To enhance the analysis, we delve into sensor physics, embedded
system design, wireless protocols, and calibration techniques, incorporating lessons from
established IoT sectors like indoor air quality, industrial safety, and volcanic gas monitoring.
This interdisciplinary approach reveals that many technical and logistical challenges, such as
calibration drift, power autonomy, connectivity, and scalability, have been addressed in related
fields and can be adapted for radon monitoring. By uniting pioneering efforts within the
broader context of loT-enabled environmental sensing, this review provides a reference point
and a future roadmap. It outlines key research priorities, including large-scale validation,
standardized calibration methods, Al-driven analytics integration, and equitable deployment
strategies. Although radon-focused IoT research is still at an early stage, current progress
suggests it could make continuous exposure assessment more reliable, affordable, and widely
accessible with clear public health benefits.

Keywords: radon exposure; Internet of Things (IoT); environmental monitoring; lung cancer;
calibration; real-time data; risk mitigation; Wireless Sensor Networks; Al-driven forecasting

1. Introduction

Radon is a leading cause of lung cancer after tobacco smoking and continues to pose
a major, yet preventable, global health burden. However, progress in reducing the risk is
limited by the availability of mitigation technologies rather than by the ongoing challenges in
radon monitoring. Radon is classified as a Group 1 carcinogen by the International Agency
for Research on Cancer (IARC) and migrates into indoor environments primarily via soil gas
intrusion, fissures in building foundations, and radon-emitting construction materials [1—4].
Its burden is well documented across various regions. The U.S. Environmental Protection
Agency (EPA) attributes approximately 21,000 lung cancer deaths annually to radon [4],
while European meta-analyses show that every 100 Bq/m? increase in radon concentration
is associated with an approximately 8.4% increase in lung cancer risks [5]. In the Middle
East, exposure in several provinces exceeded the World Health Organization (WHO) and EPA
standards, with household doses of up to 5 mSv per year [6]. These data emphasize radon’s
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role as a pervasive, independent carcinogen. Although scientific evidence links radon exposure
to adverse respiratory health outcomes, monitoring efforts remain fragmented and inconsistent
across regions. Passive detectors, such as alpha track and charcoal canisters, are cost-effective
and widely accessible; however, they provide only retrospective measurements and are
incapable of capturing temporal variations or accounting for environmental factors influencing
radon exposure risk [7,8]. Continuous radon monitors (CRMs) offer better temporal resolution,
but are expensive, complex to set up, and not suitable for widespread use in homes, schools,
or workplaces [9]. Additionally, current calibration and validation standards were designed
for passive or manually operated devices, and do not yet account for telemetry, automated
sampling, or embedded processing, which are key features of modern monitoring tools [10,11].
This monitoring gap presents a significant preventability challenge. Although mitigation
techniques such as sub-slab depressurization and enhanced ventilation have demonstrated
efficacy [12], the absence of affordable and scalable monitoring systems results in undetected
and consequently unmitigated radon exposures.

The rapid growth of the Internet of Things (IoT) offers a timely chance to address this
gap. loT-based radon monitoring systems use embedded micro-controllers, affordable sensors,
and long-range wireless connectivity (e.g., LoORaWAN, NB-IoT) combined with edge-to-cloud
analytics to deliver continuous, distributed, and high-resolution exposure data [13-16]. Pilot
deployments have demonstrated potential. For example, IoT networks in Tehran schools iden-
tified persistent basement hotspots [17], prototypes in Portugal enabled real-time mapping
through WebGIS dashboards [13], and experimental devices in Canada and the United States
revealed temporal links between ventilation cycles and radon peaks [18,19]. Still, there are sev-
eral challenges that need to be addressed. Low-cost sensors, like metal oxide semiconductors,
can be impacted by human drift [17]. Calibration protocols also differ significantly [13,18],
and the issue of power autonomy in areas with limited infrastructure or in rural settings
still needs to be resolved [15,20]. Furthermore, concerns about data ownership, privacy, and
regulatory acceptance add to the challenges [21]. These challenges show both the potential and
vulnerability of IoT radon systems, making a thorough, integrative review crucial at this point.
This review is driven by the urgent need to address the limitations of legacy radon monitoring
while taking advantage of the advances in IoT-enabled sensing. It aims to (i) synthesize the
evidence base on IoT radon systems, (ii) show how IoT can overcome the main shortcomings
of traditional monitoring, such as temporal blindness, sparse coverage, delayed feedback, and
unequal access, and (iii) identify the validation, standardization, and governance needs re-
quired to scale prototypes into a reliable public health infrastructure [10,11,13,15,17-19,22-24].
By placing radon monitoring within the broader context of environmental IoT applications,
this review highlights that effective radon control is not only a technical challenge but a matter
of health equity and policy readiness.

The review is organized as follows. Section 2 outlines the methodology and evidence
synthesis undertaken to compile this manuscript. Section 3 presents a comparative analysis of
the five IoT-radon studies identified, highlighting their technical designs, calibration practices,
and field performance. Section 4 provides the principles and components of IoT sensing tech-
nologies, including detection methods, embedded architecture, and communication protocols.
Section 5 discusses deployment strategies from single buildings to community networks and
draws lessons from related environmental IoT domains. Section 6 examines the data lifecycle,
from edge processing to cloud analytics, visualization, and exposure modeling. Section 7
addresses key challenges including validation, power and connectivity constraints, privacy,
and equity. Section 8 looks ahead to future directions, including next-generation sensors, pre-
dictive analytics, mitigation integration, and evolving policy frameworks. Section 9 concludes
by outlining the potential for IoT-enabled monitoring to transform radon surveillance from
static, fragmented testing into a proactive, real-time public health tool.
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2. Methodology

This review followed systematic evidence synthesis methods to identify and critically
assess studies on radon detection and IoT-enabled monitoring systems. The aim was to
identify, assess, and combine studies related to radon detection and IoT-enabled monitoring
systems. Searches were conducted in six major academic databases: Scopus, Web of Science,
IEEE Xplore, PubMed, ACM Digital Library, and Google Scholar using keyword combi-
nations such as ‘radon,” ‘IoT,” ‘Internet of Things,” ‘wireless sensor network,” “embedded
systems,” and ‘real-time monitoring.” Relevant gray literature was also reviewed, including
reports and standards from international organizations such as the WHO, U.S. EPA, and
the International Organization for Standards (ISO/IEC) was also reviewed to minimize
publication bias. The searches covered publications up to 2025. Eligible studies explicitly
integrated radon sensing with IoT features such as wireless communication, cloud or edge
computing, or real-time telemetry and provided sufficient methodological or deployment
details for critical appraisal. Excluded works were those describing radon sensing without
IoT connectivity, conceptual frameworks lacking implementation or validation, or IoT air
quality studies that did not include radon.

The initial search identified over 500 records. After removing duplicates and applying
the inclusion and exclusion criteria, only five primary studies remained for detailed review.
Screening and selection were conducted in accordance with the PRISMA (Preferred Reporting
Items for Systematic Reviews and Meta-Analyses) guidelines to ensure transparency and
reproducibility. The PRISMA flow diagram (Figure 1) provides a visual summary of the process,
from initial identification through screening, eligibility assessment, and final inclusion. The
limited number of studies included reflects the early stage of IoT-radon research rather than
the shortcoming of the search process. For each included study, data was extracted on sensor
type, embedded system design, communication protocols, calibration methods, deployment
context, and validation approaches. In parallel, related IoT systems (e.g., for air pollution,
industrial safety, hazard monitoring) were reviewed to provide comparative insights and
identify transferable solutions. This dual approach allowed for the review to synthesize both
the limited radon-specific evidence and relevant technical innovations from other IoT fields.
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Figure 1. PRISMA flow diagram of the study selection. Of over 500 initial records, most were
excluded because they did not incorporate IoT radon monitoring. Only five studies met the inclusion
criteria, reflecting the field’s early stage.
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3. Comparative Analysis of IoT-Integrated Radon Monitoring Studies:
Core and Emerging Systems

Five primary studies met the inclusion criteria, each demonstrating how IoT tech-
nologies are being applied to radon monitoring challenges. Table 1 summarizes their
technical characteristics, sensor types, calibration protocols, communication methods, and
concentration ranges, highlighting trade-offs in accuracy, scalability, and field reliability.
These studies provide valuable insights into the current and proposed uses of IoT systems
for real-time radon monitoring. This section compares their main characteristics, with
Table 1 consolidating details on sensor type, deployment setting, communication protocol,
calibration and validation methods, power configuration, key results, and reported limita-
tions. Each study contributes a distinctive perspective to the evidence base. For instance,
Yousefian et al. [17] implemented a network of low-cost metal oxide semiconductor (MOS)
radon sensors in 120 public schools in Tehran. Their system used NB-IoT connectivity and
was calibrated with RAD7 reference monitors. The study found that basement classrooms
consistently exceeded WHO safety thresholds (>100 Bq/m?), with sensor readings deviat-
ing by not more than £12% from RAD7 measurements under stable conditions. However,
they observed up to +20% variability in high-humidity environments (>70%), highlighting
a common calibration challenge with MOS sensors. In contrast, Dicu et al. [19], used active
detectors, likely based on PIN photodiodes, in a WiFi-enabled setup across 50 homes in
Alberta, Canada. The system showed a strong correlation (R? = 0.87) with HVAC telemetry
and seasonal radon trends, confirming its reliability in detecting winter radon spikes caused
by poor ventilation. The lack of standardized calibration limited comparisons between
different studies.

Table 1. Comparative summary of foundational IoT-Based radon monitoring studies.

Deployment .. Calibration & Power Config- o Reported
Study Sensor Type Context Connectivity Validation urations Key Findings Limitations
Persistent radon Calibration
. . Co-location with Battery- in basement . . .
Metal-oxide 120 public . . inconsistencies;
. RAD7; baseline operated with classrooms; . R
[17] Semiconductor schools NB-IoT . . variable device
(MOS) (Tehran) environmental low-power informed local ESDONSES ACKOSS
adjustment duty cycling remediation pon
. humidity levels.
policy
Cross-referenced -
50 residential with HVAC Grid- Radon peaks ~ Limited study
Active buildings - telemetry and connected . .
[19] Wi-Fi . winter heating (6 months); lack
detectors (Alberta, seasonal indoor .
Canad indoor-outd devi cycles and HVAC of standardized
anada) indoor-outdoor evices . librati
trends operations calibration
. Government . Enabled real-time Limited
Commercial - Trend comparison . . .
and Wi-Fi + . Mains power; spatial mapping deployment
Sensor array with reference
[13] . institutional Web-based . . no battery of radon levels; scale; dependent
with WebGIS instruments; visual
inteeration buildings GIS vali dati/o n autonomy facilitated risk on fixed power
& (Portugal) communication infrastructure
. Raised awareness; i
Open-source 30 school - Software-based Mains- improved air Sen_sor. dn.ft’
Wi-Fi and R e powered variation in
[18] consumer- classrooms calibration; citizen exchange
BLE . classroom . user-led setup
grade sensors (Boston, USA) science protocol units behaviors through and placement
feedback loops P
Demonstrated
Lolgzisetr?;gled Simulated lab Laboratory Solar-assisted eiizzrr:);r‘;ssllng Prototype status;
[15] rototvoe limited field LoRaWAN validation against batter detection: y no extensive field
P yp setting Alpha Guard Y ’ validation
(RnProbe) low-power
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Lopes et al. [13] developed a system that integrates commercial sensors with a WebGIS
dashboard to visualize radon levels in public buildings across Portugal in real time. Their
validation involved comparing trend data with reference instruments, though it did not
include comprehensive statistical calibration. The system successfully communicates risk
visually, but its reliance on grid power and fixed infrastructure restricts its scalability for
broader or remote use. Barros et al. [18] carried out a classroom monitoring project in Boston
using open-source, consumer-grade radon sensors equipped with Wi-Fi and Bluetooth.
Calibration was performed through software adjustments and user feedback, within a
citizen science framework. The project was successful in promoting student engagement
and enhanced ventilation practices by providing real-time feedback. Nonetheless, the
reliance on low-cost sensors led to calibration drift, while differences in how users deployed
the sensors resulted in inconsistent data quality. Finally, Pereira et al. [15] introduced an
innovative prototype system featuring a custom LoRaWAN-enabled sensor known as
RnProbe. This device incorporated edge computing capabilities for anomaly detection
and was validated in laboratory settings against AlphaGuard reference instruments under
controlled radon exposure. Powered by solar-assisted batteries, it showed promising
potential for autonomous, long-range radon monitoring in resource-limited environments.
The system remained at the prototype stage and had not yet been deployed at scale in
real-world conditions.

Several key patterns emerge across the five studies. Sensor choice reflected trade-offs
between cost, stability, and ease of integration. MOS sensors were often selected for afford-
ability and rapid response, though they were sensitive to environmental conditions. In
contrast, PIN-based detectors offered greater, better stability but required longer integration
times, and were less sensitive at lower concentrations. Deployment environments vary
widely, from educational institutions to private homes and simulated settings. Connectiv-
ity reflected practical constraints: Wi-Fi was common indoors with infrastructure, while
NB-IoT and LoRaWAN suited low-power or wide-area deployments. Calibration and
validation were inconsistent, with few following formal standards, limiting comparability.
Power setups strongly influenced system autonomy and only some studies tested energy
harvesting methods like solar power. Despite these challenges, each study reported impor-
tant results, from identifying hotspots to influencing ventilation strategies and public health
initiatives. Together, these systems demonstrate the potential of IoT for radon exposure
monitoring. Table 1 provides uniform comparison, helping to identify areas for improving
design and scalability.

Recent Advances in IoT-Integrated Radon Monitoring (2023-2025)

Along with the five core studies previously discussed, recent developments from
2020 to 2025 have significantly advanced the field of IoT-integrated radon monitoring.
These newer studies show the growing maturity of loT-radon systems and their increasing
importance not only for public health but also for environmental and geophysical uses.
A significant advancement in this field is the introduction of a telemonitoring system in
Manado, Indonesia. This system was created to measure radon emissions along an active
seismic fault line. It uses soil-based radon sensors with high resolution and advanced
signal processing techniques to filter interference from thoron and actinium. Researchers
analyzed the data using statistical anomaly detection models. This approach led to a
prediction sensitivity of around 84% and an average early warning lead time of 2.65 days
for seismic events with a magnitude of 4.5 or higher [25]. Although this study focused on
a different area, it highlights the potential benefits of IoT-enabled radon monitoring for
environmental hazard forecasting. A similar development is seen in the Autodigit-RAD
project in Switzerland, which demonstrates the use of radon sensors integrated into a smart
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building system [26]. This project shows the possibility of automated, real-time radon
monitoring with cloud connectivity, allowing continuous data collection and remote access
for researchers and occupants. The system includes self-calibrating routines and long-term
intelligence. Although tested in a single residential building, its design hints at the potential
to scale across a wider range of indoor environments.

Researchers in Republic of Korea created an IoT-integrated radon measurement sys-
tem designed for groundwater observatories in seismically active regions. They used
narrowband IoT (NB-IoT) for low-bandwidth, long-range, and power-efficient data trans-
mission [27]. This enables remote radon measurement collection and transmission from
geographically isolated locations with minimal maintenance. Although the system was not
designed for indoor use, its strong field performance under environmental stress provides
valuable insights for low-resource or rural public health deployments. Li et al. [28] further
expanded the physical reach of radon monitoring by introducing a new in situ underwater
radon detection system that can operate autonomously for up to two weeks. This system,
which functions without human intervention and maintains stable operation in submerged
conditions, offers a promising model for marine and subsurface groundwater studies.
Although primarily designed for environmental and geological research, the design inno-
vations, particularly in energy autonomy and long-term data acquisition, are relevant for
broader applications, including long-term indoor deployments in inaccessible or hazardous
locations. For a structured comparison of these newer studies, the following table (Table 2)
has been added. It complements Table 1 by summarizing key parameters, including sen-
sor types, deployment contexts, communication protocols, validation approaches, power
systems, and observed limitations.

Table 2. Summary of recent IoT-Integrated radon monitoring studies (2020-2025).

Sensor Deployment .. . Validation .1 o e .
Study Type/Modality Context Connectivity/Link Method Power/Autonomy Key Findings Limitations
. L ~84% Non-health
Soil radon Seismic rediction applications
detectors with QOutdoor, seismic Cellular IoT, cloud  correlation and Remove, p . p p 4
[25] . sensitivity, indoor
minute-level fault zone server anomaly solar-backed S
logging detection 2.65-day lead calibration not
2 time included
inI(rtllgeogrrj::gcclm Internal autlz:lilzted Deployment in
- Residential Cloud-linked with I Mains powered, o one building;
[26] sensors in 1 calibration monitoring L8
building web access . autonomous . generalizabil-
smart routines system with :
1 ity untested
buildings user alerts
Radon Remote radon Indoor use not
[27] sensors in Seismic/geological NB-IoT Time-series Low-power, monitoring studied;
groundwater zones validation battery-based feasible in long-term drift
stations harsh terrain unaddressed
Demonstrated Cost and
Underwater Marine and 15+ days of viability of c
. Local storage and Laboratory . sensitivity vs.
[28] radon-in-water groundwater 1 L autonomous remote aquatic .
d . o ater upload calibration . air systems not
etection monitoring operation radon
oo benchmarked
monitoring

Together, these studies show a clear progression in IoT systems from static, indoor-
focused platforms to more dynamic, autonomous, and environmentally resilient architec-
tures. They also highlight a shift in research priorities from simple detection to predictive
analytics, long-range telemetry, and low-maintenance operation. Notably, they show how
lessons learned from remote and harsh environment deployments can be applied to cre-
ate more robust and scalable solutions for assessing indoor radon risk, particularly in
underserved, resource-limited settings.
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4. IoT Radon Sensing Technologies: Principles, Components,
and Trade-Offs

Effective radon mitigation depends on timely and accurate environmental data, which
traditional radon monitoring systems rarely provide at scale. IoT technologies offer real-
time, distributed sensing with high spatial and temporal resolution [13,15]. Radon, being a
highly variable indoor air contaminant, requires continuous, high-resolution data capture
to allow meaningful risk mitigation. The design of IoT-based radon monitoring systems
encompasses several interconnected areas, including sensor selection, embedded hardware
setup, communication infrastructure, and data quality assurance. Each design decision
balances sensitivity, scalability, cost, and energy efficiency [20,29]. The following subsection
outlines the main technical components of IoT radon systems with reference to recent
developments and validated studies.

4.1. Radon Detection Methods for Embedded Systems

The sensing mechanism used in an IoT radon detector is key to its performance,
as it affects the device’s sensitivity, response time, energy consumption, and autonomy.
One of the most common technologies is the PIN photodiode sensor, which works by
collecting radon progeny electrostatically and detecting alpha particles through a solid-
state semiconductor [20]. These sensors are popular in low-power designs because of
their lower intrinsic sensitivity and vulnerability to environmental noise, which require
longer integration times and careful signal processing to ensure accurate data [30]. A
more advanced option is the use of silicon photomultipliers (SiPMs, Figure 2) combined
with scintillators. In this setup, alpha particles from radon decay events cause light
emissions within a scintillating medium, which are then amplified and measured by the
SiPM. This method offers a significant improvement in detection sensitivity and timing
accuracy [31]. SiPM-scintillator arrays have proven particularly useful in research appli-
cations and volcano monitoring, where both sensitivity and durability are essential [32].
However, their higher power consumption and need for analog signal processing cir-
cuits can make integration into long-lasting, battery-powered embedded systems more
challenging. Another category of radon sensors used in IoT platforms relies on metal-
oxide-semiconductor (MOS) technologies, such as those found in commercial devices
like RadonEye. These sensors operate by detecting changes in conductivity resulting
from radon-induced ionization in the surrounding air. While they are cost-effective
and provide immediate reading, they tend to experience calibration drift over time and
are sensitive to humidity, temperature, and other interfering gases [33]. Consequently,
deploying them in critical infrastructure requires ongoing recalibration or the use of
software-based drift correction models [34]. Recent innovations have explored the use of
microelectromechanical systems (MEMS) and nanomaterials, such as graphene-based
composites, to develop radon detectors that combine miniaturization with enhanced
sensitivity [35-37]. Although these technologies are still primarily in the experimental
stage, their potential to alter IoT radon sensing through ultra-low-power operation and
high spatial resolution is significant and warrants further research. The core hardware
structure of a typical IoT radon sensor node is illustrated in Figure 1, which depicts
the modular design, including sensing, environmental compensation, edge processing,
wireless communication, and power supply.
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Figure 2. Schematic of an IoT radon sensor node showing the key system components: radon
detection module (SiPM, PIN photodiode, or MOS sensor), environmental sensors (e.g., temperature,
humidity), microcontroller for edge computing, wireless communication module (e.g., LoRaWAN,
NB-IoT, Wi-Fi), and power supply. Data is processed locally and transmitted wirelessly, optionally
through a gateway, to remote cloud or edge analytics systems.

4.2. Embedded System Design

The hardware architecture of an IoT radon sensor is centered around its embedded
computing platform, which manages sensor interfacing, data processing, communica-
tion scheduling, and power regulation. The selection of a microcontroller is largely
dictated by the specific deployment environment and the connectivity requirements of
the application. For instance, the ESP32 platform is a popular option for indoor or local-
ized monitoring due to its dual-core processor and integrated Wi-Fi and Bluetooth Low
Energy (BLE) modules [38]. This enables smooth integration with home or institutional
networks and supports real-time data streaming at a relatively low cost [39]. In contrast,
for large-scale or infrastructure-poor environments, microcontrollers embedded with
LoRa transceivers such as STM32 paired with SX1276 chips are widely adopted [40].
These systems benefit from long-range, ultra-low-power communication and can operate
for months or even years on battery power alone. The embedded firmware in such sys-
tems often implements aggressive power-saving strategies, including deep sleep modes,
timed wake cycles, and event-driven interrupts to minimize energy consumption with-
out sacrificing measurement reliability [41]. Power autonomy is a key constraint. Most
systems use lithium-ion battery pack sized to match duty cycles, while some employ so-
lar or thermoelectric generators to extend operating life [42]. In some deployments, solar
panels or thermoelectric generators are used to recharge onboard batteries, significantly
extending the operational lifespan. Efficient voltage regulation, low-leakage circuits,
and hardware watchdog timers are additional techniques used to ensure uninterrupted
data collection over extended periods [43,44].

4.3. Connectivity Architectures

A key feature of IoT systems is their ability to transmit data wirelessly; the choice of
communication protocol significantly affects network scalability, energy efficiency, and
deployment costs [45]. Several wireless technologies are currently employed in modern
IoT networks, each offering distinct benefits and limitations, depending on the specific
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application. LoRaWAN is the most common protocol for long-range, low-power use
cases. It provides reliable connectivity over distances up to 15 km while consuming
minimal energy, making it ideal for rural deployments or dense sensor networks in
urban monitoring systems [46—-49]. Its effectiveness has been shown in various environ-
mental sensing scenarios, including volcanic radon monitoring and industrial safety
networks [50,51]. However, LoORaWAN's bandwidth limitations and duty-cycle regula-
tions restrict its use in scenarios requiring high frequency or large data volumes [52].
NB-IoT presents a strong alternative in urban areas with existing cellular infrastructure.
Operating on licensed LTE spectrum, it delivers excellent indoor coverage and reliable
communication even inside heavily obstructed buildings [53]. Although it consumes
more energy than LoRaWAN, its high-quality service and carrier-grade reliability make
it suitable for public infrastructure and smart city initiatives [14,54]. Other short-range
protocols, such as Wi-Fi and BLE, work well in localized settings where power resources
are less limited and network access is readily available. These technologies support
high-bandwidth data transmission and are compatible with consumer devices, enabling
real-time visualization and user interaction. However, their limited range and higher
energy consumption restrict their use to specific applications such as home monitoring
or educational installations. Table 3 offers a comparative overview of these technologies,
outlining their operating parameters and suitability for radon monitoring. Figure 3
summarizes the overall system architecture of a typical IoT-based radon monitoring
network, illustrating how data flows from sensor nodes through wireless transmission
to cloud platforms, where analytics and visualization occur.

Table 3. Wireless communication protocols for IoT-Embedded radon monitoring.

Protocol Range Power . Bandwidth Cost IndooT Sultablllty Of. Radon Source
Consumption Penetration Monitoring
Excellent for
large-scale
Up to 15 km
LoRaWAN (rural) ~2-5 km Very low Low (0.3-50 Low Moderate to battery-powered, [55-58]
kbps) good low-data deployments
(urban .
in remote or urban
schools
Suitable for urban
Low to Moderate (u radon networks with
NB-IoT Up to 10 km P Medium Excellent good penetration [59-62]
Moderate to 250 kbps)
through walls and
basements
Suitable for homes or
g <100 m (walls . High (10+ Moderate to Poor to labs with power; not 8
Wi-Fi reduce range) High Mbps) high Moderate practical for long-term [65-68]
remote monitoring.
Useful for indoor
Low to point sensing; often
BLE <50 m Very Low moderate (~1 Low Poor paired with LoRa or [69-73]
Mbps) Wi-Fi for upstream
data delivery
Too power-intensive
. for distributed
Cellular . Very high . S
(3G/4G/5G) 5-20 km High (Mbps-Gbps) High Excellent senfsmg, suitable only [72,74-76]
or gateways or
mobile monitoring.
Power-efficient but
Up to 40 km Very Low hrmlttreidtbinctftviﬂth
Sigfox (rural, ~10 km Very Low ey o Low Moderate esticts rea ¢ [72,74-78]
(urban) (~100 bps) alerts and

high-frequency
sampling.
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Figure 3. System-level architecture of an IoT-based radon monitoring system. Sensor nodes
measure radon levels and send data wirelessly to a central gateway, which then sends it to a
cloud platform. The edge analytics detect trends, trigger alerts, and remove false readings. Users
interact with the system through web or mobile interfaces that display real-time data, thresholds,
and alerts.

4.4. Calibration and Validation Requirements

Ensuring the accuracy and reliability of IoT radon sensors requires rigorous calibration
and validation methods that align with national and international standards. Calibration
involves establishing the link between sensor output and actual radon levels, usually
expressed in becquerels per cubic meter (Bq/m?). This is typically done through labora-
tory systems, where sensors are exposed to controlled radon atmospheres generated from
known radioactive sources, such as ?°Ra. Calibration facilities typically operate under the
traceability standards established by the National Institute of Standards and Technology
(NIST) in the United States or the Physikalisch-Technische Bundesanstalt (PTB) in Ger-
many [79,80]. Xu et al. [81] demonstrated a closed-loop air circulation system that achieved
calibration reproducibility of £2% using precisely characterized radon sources and cross-
comparison with commercial RAD? detectors. Such precision is essential for ensuring
consistency between devices in multi-node sensor networks. Complementing laboratory
calibration, field validation is carried out by collocating IoT sensors with regulatory-grade
monitors, such as AlphaGuard (Bertin Technologies, Aix-en-Provence, France) or RAD7
units, in real-world settings [82,83]. This process evaluates performance under environ-
mental stressors, such as temperature fluctuations, humidity, and atmospheric pressure,
which can impact sensor response. Emerging methods are tackling the logistical and safety
issues of traditional calibration. For example, Ren and Liu [24] developed a new approach
that eliminates the use of radioactive calibration sources by employing standard water
samples with known concentrations, thereby enabling safe and affordable sensor validation
in seismic observation systems. Ongoing accuracy maintenance is essential. Many modern
IoT radon devices include software-based drift compensation algorithms that adjust for
sensor aging and environmental interference using statistical or machine learning models.
This helps ensure that long-term monitoring data stays useful without needing frequent
physical recalibration, which is especially important in large-scale or hard-to-reach deploy-
ments. Among the five reviewed studies, only two provided detailed calibration outcomes.
Yousefian et al. [17] validated their prototype against AlphaGuard (Bertin Technologies,
Aix-en-Provence, France) in laboratory settings, demonstrating measurement consistency
within +8% of regulatory standards. The remaining studies either relied on trend val-
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idation [13] or user feedback [18], highlighting the need for more robust, standardized
calibration protocols.

4.5. In-Depth Exploration of Sensor Technology

The performance and reliability of IoT-based radon monitoring systems mainly
rely on their core sensing technology. While radon-specific detectors remain limited,
valuable insights can be gained from existing detection methods and innovations in the
wider IoT environmental sensing field. These combined approaches reveal trade-offs
among sensitivity, power use, durability, and cost, which impact the practicality of
large-scale radon monitoring. PIN photodiodes are among the most frequently used
devices in radon IoT systems because they detect alpha particles from radon progeny
via semiconductor junctions. Their popularity is due to their compact size, low power
consumption, and compatibility with embedded platforms. However, these benefits
come with reduced intrinsic sensitivity, which necessitates longer integration times and
careful signal processing to reduce environmental noise. Consequently, PIN photodi-
odes are well-suited for continuous, though somewhat coarse, monitoring—particularly
in residential or institutional environments where energy efficiency and cost are key
factors [30]. A more advanced category of detectors integrates scintillators with silicon
photomultipliers (5iPMs). In these setups, alpha particles hitting a scintillating material
generate light, which is then amplified and detected by SiPMs. This method provides
significantly greater sensitivity and faster response times compared to solid-state diodes,
making it particularly advantageous for research applications like monitoring volcanic
emissions or seismic activity, where short-term fluctuations are critical [31]. However,
the complexity of analog signal processing and increased power pose challenges for
sustained, battery-powered IoT deployments.

Commercial radon detectors and many prototype IoT platforms use metal oxide
semiconductor (MOS) sensors, which identify shifts in conductivity triggered by ionizing
radiation in the air. These sensors are affordable, deliver near-instant readings, and
are ideal for consumer devices. However, their accuracy can decline over time due
to baseline drift influenced by temperature, humidity, and interfering gases. While
recalibration can counteract this, it poses practical challenges for large-scale distributed
systems. Recent developments in environmental IoT aim to solve this by employing
software algorithms, often based on statistical or machine learning techniques, to correct
for drift and ensure long-term reliability without frequent manual recalibration [33,34].
Looking to the future, the use of microelectromechanical systems (MEMS) and nanoma-
terials presents an exciting opportunity. Researchers are exploring new composites like
graphene-based films and nanostructured metal oxides for their distinctive electrical
and chemical traits, which provide ultra-high sensitivity, quick response times, and low
power consumption [36]. While these technologies remain largely experimental, they
closely match the requirements of loT-enabled radon monitoring, such as miniaturiza-
tion, energy efficiency, and dense deployment capability. If these sensors can be scaled
successfully, they could enable ongoing radon monitoring in areas that now lack such
capabilities due to power limitations. Beyond the sensing materials themselves, wider
trends in IoT design also affect radon monitoring. Reviews of low-power environmental
sensors emphasize the move toward embedding computational capabilities within the
sensing node, enabling basic signal processing, noise filtering, and anomaly detection to
occur before data is transmitted [82]. This edge intelligence decreases communication
demands, prolongs battery life, and ensures only the most pertinent data reaches the
cloud. Likewise, advances in energy harvesting, such as piezoelectric and thermoelectric
generators, allow sensors to generate power from ambient vibrations, temperature differ-
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ences, or light. Recent research indicates that combining harvesters with IoT nodes can
increase their lifespan by up to nine times, which is highly relevant for radon systems
placed in remote or hard-to-access areas [84]. Current IoT radon systems mainly use PIN
photodiodes or MOS detectors, but further designs are likely to combine sensitivity of
scintillator-SiPM systems with the efficiency of MEMS and nanomaterials. Advances
in edge processing and energy harvesting may also reduce calibration drift and ex-
tend battery life. Viewing radon sensing within the larger development of IoT sensor
technology shows that innovations in air quality, industrial safety, and environmental
hazard detection can accelerate progress in radon IoT solutions, leading to more reliable,
affordable, and accessible exposure assessments.

4.6. Wider Uses of Environmental IoT Sensors-Similar Lessons

While research directly combining radon monitoring with IoT remains scarce, a
broader range of IoT-based environmental sensing studies offers valuable insights. Fields
like air quality, agriculture, industrial safety, and hazard monitoring encounter similar
challenges, such as calibration drift, sensor placement, power efficiency, data accuracy,
and deployment logistics. Studying these related areas helps extract lessons that can be
applied to develop better radon-specific IoT solutions more quickly. Indoor air quality
networks developed over the past decade provide useful models. Low-cost IoT devices,
including microcontrollers like the ESP32, have been effectively used to track carbon diox-
ide, particulate matter, and volatile organic compounds in real time in settings such as
schools, universities, and offices [85]. These systems generally combine multiple sensors
on a single unit, send data wirelessly to cloud servers, and present results via intuitive
dashboards. Although they do not measure radon directly, they show that continuous
indoor exposure monitoring is feasible at a scale and cost previously thought impossible.
The insights gained from designing these networks, especially regarding calibration, user
accessibility, and data visualization, offer a valuable blueprint for developing similar radon
monitoring systems in homes and educational facilities.

Agricultural and industrial IoT systems face similar challenges and offer relevant
comparisons. In precision farming, networks of soil moisture, temperature, and gas sensors
face similar challenges, such as intermittent connectivity, energy limitations, and the need
for durable enclosures to handle changing environments. In the mining and petrochemical
sectors, IoT methane and carbon monoxide monitors are designed with a focus on worker
safety, incorporating low-latency alerts, sensor redundancy, and autonomous battery sys-
tems. These design principles align with the needs of radon monitoring, particularly in
workplaces where quick detection of high radon levels is critical and reliable operation
in tough conditions is essential. Large-scale hazard monitoring highlights the versatility
of IoT technologies. A notable example is using distributed sensor networks for volcanic
gas monitoring, where LoRaWAN-enabled nodes have been placed on Mount Etna to
measure radon and carbon dioxide in difficult environments [86]. These networks are
built to operate in remote, low-power settings, transmitting data over long distances with
minimal infrastructure. The approaches used in volcanology—such as sensor robust encap-
sulation, duty cycling to save power, and adaptive data transmission—are highly relevant
for expanding radon IoT networks into rural or underserved regions.

The integration of artificial intelligence and machine learning into environmental
IoT towards more sophisticated radon monitoring systems. Recent reviews indicate that
Al-enhanced IoT architectures can better detect anomalies, forecast pollutant trends, and
adjust for sensor drift in real time, resulting in more reliable and actionable data [22].
These methods could be applied to radon detection, especially in cases where low-cost
sensors might otherwise be overlooked due to concerns about accuracy. By incorporating
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computational intelligence into IoT platforms, radon monitoring networks can deliver not
just raw concentration measurements but also predictive insights on exposure risks across
varying environmental conditions. Collectively these examples show that the technical
challenges in radon IoT research mirror those in other fields and can be addressed though
similar solutions. Technical challenges such as calibration, power management, and large-
scale deployment have been addressed in related fields, with solutions like hybrid sensor
arrays, energy harvesting, and Al-based correction models readily adaptable for radon.
Although this section emphasizes thematic and technological parallels across environmental
monitoring sectors, it is equally vital to consider specific real-world examples of how these
principles have been implemented.

5. Deployment Strategies: Indoor Mapping to Large-Scale Networks

Effective integrating IoT-based radon sensors into environmental health systems
requires deployment strategies tailored to the spatial, temporal, and social factors. Low-
cost, real-time monitoring is valuable, but its public health impact depends on practical
deployment. This section examines spatial mapping, temporal patterns, and deployment
scales, drawing on research and case studies.

5.1. Mapping the Spatial Distribution of Radon

Radon infiltration and buildup vary significantly across the vertical and horizontal
dimensions of built environments, mainly due to the interaction of geology, construction
methods, and ventilation design. Multi-node sensor arrays enable high-resolution spatial
mapping, which helps identifying anomalies linked to substructures and supporting tar-
geted mitigation. Radon levels are often highest in subgrade structures, such as basements
and crawl spaces, due to direct contact with soil gas and limited airflow [87]. In a Macedo-
nian study involving 76 schools and homes, basement radon concentrations were found to
be up to 15 times higher than those on the ground floor [88]. IoT systems using this zoning
approach can pinpoint microenvironments within a building that pose disproportionate
health risks, enabling targeted mitigation such as localized sub-slab depressurization or
room-specific ventilation updates. Building materials also affect radon variability. Gran-
ite and phosphate-based materials used in flooring and countertops tend to emit radon,
especially when combined with airtight building envelopes that restrict natural ventila-
tion [89,90]. Deploying sensors across different floor levels and material zones supports
building-specific risk models rather than reliance on general thresholds. Real-time mapping
integrated with WebGIS platforms (e.g., RnMonitor), improves detection, visualization and
accessibility, encouraging broader engagement in mitigation [13].

5.2. Temporal Dynamics and Environmental Drivers

Radon is a dynamic contaminant whose concentration fluctuates in response to
daily, seasonal, and weather-related factors. Capturing these fluctuations is essential
for accurate exposure assessment and the development of effective mitigation systems.
Unlike passive detectors, IoT systems provide continuous data, enabling detection of
transient peaks that may be hidden in average data. Recent research, utilizing 13 years
of data from 46 U.S. states, confirms that indoor radon levels exhibit strong seasonal
patterns, with peaks in January and February attributed to reduced ventilation and
thermal stacking effects [23]. Diurnal cycles cause nighttime elevations, driven by neg-
ative pressure differences that draw radon inside from the ground during times of
decreased HVAC activity [91]. Environmental triggers, such as storms, drops in baro-
metric pressure, and soil saturation from rainfall, are now systematically incorporated
into predictive analytics platforms, with radon sensors interfacing with external weather
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APIs [92]. Similarly, human behavior—especially HVAC use and window opening—has
been quantified in classrooms, where radon levels decreased by over 50% after behavioral
changes prompted by IoT alerts [18]. Statistical models and correction algorithms have
been developed to convert short-term IoT data into reliable estimates of long-term expo-
sure, accounting for seasonal biases and building-specific factors. New correction tools,
such as the coefficient of temporal variation K(t), are being proposed as standardized
measures for cross-study comparisons [19,93].

5.3. Real-World Deployment Scales

Deployment at scales ranging from single buildings to communities presents opportu-
nities and challenges for effectiveness of radon exposure assessment. These deployment
strategies must be tailored to the infrastructural, regulatory, and behavioral realities of
the specific context in which they are implemented. On the scale of individual buildings,
IoT radon sensors are increasingly used in smart homes, residences, schools, and work-
places. These systems often include embedded microcontrollers like the ESP32, which offer
Wi-Fi or Bluetooth Low Energy (BLE) connectivity to support real-time data transfer and
device control. In residential and institutional settings, where power and connectivity are
readily available, these systems enable continuous radon monitoring and quick responses.
For example, in educational environments, radon sensors have been deployed to trigger
ventilation adjustments during periods of exposure, leading to substantial reductions in
radon levels. The school AIR framework in Portugal, for instance, used low-cost sensors
in classrooms to monitor indoor air quality, enable real-time ventilation adjustments, and
raise awareness among students and staff [18].

On larger scales, community-wide networks have been set up to monitor radon
levels across multiple buildings in both urban and rural areas. These systems often use
long-range, low-power communication protocols such as LoRaWAN or NB-IoT, which
are essential for maintaining reliable connectivity in infrastructure-limited settings [16].
A notable example is Tehran, where an loT-based network of 120 radon sensors was
installed in public schools. This network identified persistent hotspots, especially in
basement classrooms that exceeded international safety standards, ultimately influencing
local policy actions and funding for remediation [17]. The use of geospatial platforms
like RnMonitor has further enhanced the effectiveness of these monitoring networks.
This WebGIS-based system allows hierarchical organization of sensor nodes across
rooms, buildings, and districts, providing a spatially aware view of radon exposure and
facilitating centralized risk analysis [13]. These systems are particularly valuable for
regional health agencies aiming to prioritize cleanup efforts in high-risk areas and ensure
compliance with national radon regulations. Citizen science projects using low-cost
radon kits show potential to enable public participation in environmental data collection
but face challenges with data integrity. These efforts have demonstrated the feasibility
of using distributed, non-expert networks to generate valuable databases while also
increasing public awareness and engagement. However, they face significant challenges
in ensuring data integrity. Issues such as sensor drift, improper placement, lack of
calibration, and inconsistent metadata can weaken the scientific usefulness of the data.
To address these challenges, studies have proposed quality control strategies including
periodic validation against regulatory-grade instruments and the use of automated
anomaly detection algorithms [19,94].

Table 4 summarizes major deployment case studies, highlighting insights and limita-
tions across different scales. In Alberta, Canada, a network of 50 nodes tracked HVAC-radon
dynamics during winter, while in Seoul, Republic of Korea, a year-long deployment in
200 buildings revealed how architecture and materials affect exposure levels. These case
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studies demonstrate the scalability and flexibility of IoT radon systems and emphasize
the need to customize deployment strategies based on the sociotechnical conditions of
each site.

Table 4. Case studies of major IoT deployments.

Location Nodes Duration Key Findings Limitations References
Seasonal radon spikes Short-duration
observed during winter; limited
Alberta, Canada 50 6 months HVAC cycles impacted longitudinal [19]
radon levels analysis
School basements .
showed concentrations ¥ncor}s1stent
Tehran, Iran 120 9 months above WHO action level; Cahbratlc?n across [17]
. devices
prompted policy changes
Identified radon hotspots LoRaWAN
Seoul, Republic in concrete-heavy connectivity issues
of Korea 200 12 months buildings; material in high-density [13]
choice mattered areas
Crowd-sourced sensors
successfully mapped Calibration drift
Boston, USA 30 3 months indoor air risks; public and user error in [18]
dashboards improved DIY setups

engagement

Deployment—whether in a single building or across an entire municipality—must
consider operational constraints, stakeholder involvement, data handling, and sustainabil-
ity. Integration into public health systems will require technical improvements, cross-sector
collaboration, and regulatory support. Linking sensing with participatory governance can
shift radon risk management from a reactive to proactive.

5.4. Lessons from Other [oT Domains Applied to Radon Monitoring

Real-world IoT deployments in other domains provide practical lessons from radon
monitoring. Case studies from volcanology, classroom air quality, and industrial gas
sensing illustrate solutions to challenges such as ruggedization, low-power operation,
remote connectivity, and real-time alerts. These examples inform the design of scalable,
reliable radon-specific IoT networks. A notable similarity exists in volcanic gas monitor-
ing, where radon is one of the key gases tracked in extreme conditions. For example, on
Mount Etna in 2019, a LoRaWAN sensor network was set up to monitor radon variations
linked to volcanic activity [86]. This system employed rugged housing, long-range
wireless protocols, and duty cycling to conserve power in challenging environments.
Although designed for volcanology, these apply to remote homes, rural schools, or un-
derground workplaces with limited infrastructure and high monitoring needs. In indoor
environments, the School AIR project in Portugal deployed low-cost CO; sensors in
classrooms to support ventilation decisions and improve air quality. This model is highly
transferable to radon, especially in schools and childcare settings. For example, Barros
et al. pilot radon monitoring initiative in Boston classrooms led to behavioral changes
that significantly reduce radon exposure, mirroring the impact seen with CO,-based
interventions. Industrial safety systems provide additional insights. In mining and oil
industries, IoT-based methane and carbon monoxide detectors support real-time alerts
and redundancy in high-risk zones. These priorities, low latency detection, minimal
false alarms, and offline functionality, closely align with radon monitoring requirements
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in occupational settings such as underground facilities or older public buildings. fa-
cilities or older public buildings. Applying these tested approaches can accelerate the
development of robust radon-specific IoT solutions, moving beyond prototypes and into
public health practice.

5.5. Examples of Real-World Deployments

Demonstrating that IoT-based radon monitoring works in real-world settings is
vital for understanding how these technologies can support large-scale mitigation efforts.
Several recent case studies have shown successful deployments in various environments,
including schools, homes, workplaces, and community health programs. One example
in public buildings is the RnMonitor platform, developed and piloted in Portugal. This
system combines commercially available radon detectors with a WebGIS interface and
a LoRaWAN communication backbone. By deploying it across municipal buildings
and schools, RnMonitor allows for real-time, room-level indoor radon monitoring [13].
Building on this research, a major study of radon levels in 533 schools across the UK
highlighted the need for detailed monitoring. The study showed that radon levels can
differ greatly within a single building, even from one room to another. These findings
emphasize the importance of using dense sensor networks that can provide localized
data. IoT systems are well-positioned to support this type of distributed sensing and
real-time data aggregation [95].

Residential environments are another key area for deployment. A 291 day study in
a domestic basement compared the Radon Eye with a laboratory-grade AlphaGUARD
detector and found that it consistently and reliably measured radon levels in real-
world settings, making it a cost-effective alternative for long-term home monitoring.
These results are especially important for public health campaigns targeting radon
exposure in underserved or rural communities, where affordability and ease of use are
crucial [96].

Public health programs have shown that distributed radon monitoring is scalable.
A nationwide project in Northamptonshire, United Kingdom, deployed over 1000
electret-based radon detectors in residential properties to evaluate exposure risks. The
initiative highlighted both cost-effectiveness and logistical feasibility, demonstrating
how large-scale monitoring can be implemented using low-maintenance technologies.
This campaign served as a model for incorporating radon risk assessment into broader
community health strategies [97]. Lastly, research on radon levels in homes and work-
places highlights the benefits of comprehensive monitoring approaches. A study in
Los Alamos County, New Mexico, installed passive track-etch detectors in both office
spaces and homes. The findings showed that residential radon exposure levels were,
on average, up to eight times higher than those in workplaces. This emphasizes the
need to include private residences in radon risk assessments and suggests the impor-
tance of integrated monitoring frameworks that cover both workplace and residential
environments [98]. Table 5 summarizes the key features of the case studies discussed,
including the technologies used, validation results, and broader implications for scal-
able radon monitoring. This comparison highlights how IoT-based systems can adapt
to various environmental, institutional, and community contexts.
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Table 5. Summary of Real-World IoT Radon Monitoring Deployments.

Setting

Project/Study Technology Key Takeaway

Public buildings /school

Scalable, municipal-level risk
mapping and dashboarding

RnMonitoring

(Portugal) [13] LoRaWAN, WebGIS

School indoor mapping

Demonstrates room-to-room
radon variation; supports dense
sensor placement

Statistical distribution

UK School Analysis [95] modeling

Residential settings

Affordable long-term

Consumer-grade continuous o
monitoring is viable for

RadonEye Evaluation [96] monitors

households
. Northamptonshire . . Mass-deployment potential in
Community health programs Campaign [97] Electret ion chamber (passive) public health settings

Home vs. workplace analysis

Home exposure dominates;
Los Alamos Study [98] Track-etch detectors justifies a holistic, cross-setting
monitoring strategy.

6. Data Lifecycle Management: Edge to Cloud to Insight

Maximizing public health value of IoT-enabled radon sensors requires converting raw
data into accurate, timely, and actionable insights. This requires a complete data lifecycle
that includes edge signal processing, cloud infrastructure, real-time visualization, and
epidemiology-relevant exposure metrics. Well-managed data flows support mitigation
strategies, guide long-term policy design, and reduce health risks.

6.1. Edge Processing and Compression

Edge computing reduces latency, conserves energy, and ensures that only relevant
data is transmitted [99]. Embedded radar sensors often use on-device averaging algorithms
to smooth out stochastic fluctuations, especially in environments with HVAC cycling or
human activity that create signal noise. Outlier rejection methods, such as moving z-score
or IQR filters, exclude false peaks caused by electromagnetic or mechanical interference.
Advanced platforms also apply Fast Fourier Transform (FFT) filtering to detect and sup-
press frequency-domain noise patterns. Spectral processing improves detection reliability
without heavy computational demands, an essential feature for battery-powered micro-
controllers like the STM32 or ESP32 [100]. Supporting this, RnProbe, a LoRa-enabled edge
device, uses local logic to decide when radon levels exceed thresholds, prompting higher
sampling rates or immediate data transmission [15]. Energy-efficient scheduling further
extends device lifespan. Studies show that edge filtering and batch transmission can reduce
cloud data loads by more than 50% and extend battery life by 130%, a critical advantage in
schools, remote homes and off-grid infrastructure [101]. These efficiencies are especially
critical in deployments across schools, remote homes, and essential infrastructure with
limited grid access.

6.2. Cloud Infrastructure and Storage

Once data is transmitted, the cloud serves as the central hub for long-term storage,
integration, and advanced analytics. Major platforms such as AWS IoT Core and Azure
IoT Hub provide managed pipelines that enable seamless device provisioning, secure
MQTT/HTTPS protocols, and scalable data lakes for processing. AWS supports integra-
tion with Amazon Timestream for real-time time-series analytics, while Azure excels in
Power BI dashboards and digital twin modeling of built environments. For open-access
or low-budget deployments, ThingsBoard offers a robust open-source alternative that
supports rule-based processing, device telemetry, and third-party integration without ven-
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dor lock-in [101]. From a storage perspective, InfluxDB, a high-throughput time-series
database, performs well in managing large volumes of sensor readings with millisecond
resolution and supports down sampling, retention, and continuous queries. This structure
supports detailed analysis of diurnal and seasonal trends. PostgreSQL and its spatial exten-
sion PostGIS offer greater flexibility for joining environmental radon data with building
metadata, GIS overlays, or health records, supporting spatial epidemiology and exposure
zoning [102].

6.3. Visualization, Alerts and User Interfaces

Visualization translates raw data into accessible risk information. Platforms like
Grafana and Ubidots provide customizable dashboards that allow stakeholders to monitor
radon levels in real-time, identify spatial hotspots, and analyze long-term exposure patterns.
Visual tools are essential not only for public engagement and operational responses in
schools, hospitals, and homes [103]. Alerts can be configured via SMS, email or mobile apps
when radon levels exceed 100 Bq/m? or other regulatory limits. Alerts can also be linked to
environmental triggers like low barometric pressure or specific times, such as during school
hours, enabling adaptive HVAC adjustments or ventilation responses. Recent systems
like RnMonitor have combined sensor data with WebGIS platforms to support spatial risk
communication, helping health officials prioritize interventions across cities, districts, or
vulnerable areas [15].

6.4. Exposure Metrics and Risk Modeling

Public Health interpretations require data to be translated into metrics and models.
The Time-Weighted Average (TWA) remains a standard measure, but newer models add
occupancy-adjusted exposure estimates, weighting radon levels by human presence, par-
ticularly in settings like schools and elder care centers. Combining environmental data
with epidemiological models can generate personalized or population-wide risk assess-
ments. For instance, models that incorporate indoor radon exposure along with factors
like age, smoking history, and building type have shown predictive value for lung cancer
risk [104-106]. Other studies suggest using multiple regression models to analyze how
environmental factors such as humidity, temperature, and pressure influence radon levels,
resulting in more accurate, site-specific exposure predictions [107]. Machine learning mod-
els are now integrated platforms using historical data to forecast peaks or detect sensor
drift. These tools improve anomaly detection and seasonal adjustment into long-term
exposure risk estimates.

7. Critical Challenges: Barriers to Real-World Impact

Despite advances in edge-to-cloud radon monitoring, their practical use is still limited
by environmental interference, calibration difficulties, and socio-political factors. Address-
ing these challenges is essential if IoT radon sensing is to deliver public health benefits.

7.1. The Validation Crisis

A central difficulty in deploying distributed IoT radon systems is achieving reliable
measurements in real-world conditions. While most sensors are calibrated in controlled
laboratory environments, actual field settings with fluctuations in humidity, temperature,
and pressure often lead to signal drift, non-linearity, and decreased accuracy. Emirhan [20]
found that even well-designed active detectors can give variable results when ambient
humidity and temperature change, highlighting the delicate connection between envi-
ronmental factors and sensor reliability. Standardization remains inadequate for modern
real-time devices. ISO 11665-9, designed for passive or manually operated devices, does
not account for the telemetry, sampling frequency, and on-device processing that are now
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common in smart radon monitors. Without updating validation protocols, maintaining
cross-comparability and regulatory compliance remain challenging [11]. Large scale calibra-
tion at scale is logistically difficult challenges. Achieving precision across varied locations
demands scalable approaches such as periodic reference checks, mobile calibration units,
or Al adjustments models [108].

7.2. Power and Connectivity Constraints

Edge-based monitoring depends on balancing with low energy use. Hourly measure-
ments can drain batteries quickly, and large-scale deployments can be required frequently,
which is often impractical in areas like crawl spaces or rural homes [109]. Connectivity is
another major constraint. Basement installations often suffer from weak signals due to thick
walls and underground placement. Although LoRaWAN provides long-range coverage
with low power use, it has limited data capacity and known vulnerabilities, making it less
effective for urgent alerts or large data loads [15]. The RuraTHINGS project showed that
even with hardware tuned for low power, backhaul connectivity issues and latency limit
real-time response [109].

7.3. Security, Privacy and Ethics

Deploying radon sensors in private homes raises ethical concerns, primarily regarding
privacy and legal implications. These sensors that track indoor conditions like air exchange,
occupancy, or room use can accidentally share private behavioral details. These concerns
are reflected in laws such as GDPR and CCPA, which mandate clear consent, limited
data collection, and strict purpose use. Despite the sensitivity of data, IoT communication
protocols like LoRa and MQTT are not always equipped with full-stack encryption or secure
identity management. Without strong authentication and encrypted storage, these systems
remain vulnerable to breaches, spoofing, or data manipulation [21]. Ethical frameworks for
consent and governance are still evolving. In shared or rented housing, the ownership of
data and access rights remains unclear reducing trust and limited adoption. This ambiguity
can erode public trust and hinder adoption [110].

7.4. Socio-Economic Equity and Accessibility

Smart radon sensing currently benefits mainly urban, digitally literate populations
while risks are concentrated among digitally literate, urban populations, leaving behind
rural, elderly, or low-income households that often face the highest exposure. IoT radon
monitors cost more than $50 per unit, well above charcoal kits, and often require mobile
connectivity and digital interfaces. Studies such as those by Khan et al. [111] show that
low-cost interventions are more acceptable in vulnerable populations who may lack both
financial resources and digital literacy to interpret sensor feedback effectively. Rural con-
nectivity efforts further widen the digital divide. Even where sensors are deployed, weak
backhaul infrastructure hinders real-time communication. Ladeira et al. [109] observed that
residents in such regions often could not act due to a lack of awareness, technical support,
or adequate mitigation infrastructure.

8. Future Directions

Radon remains a significant but preventable health risk. Advances in sensors, artificial
intelligence, and adaptive infrastructure create opportunities to shift monitoring from
a passive, fragmented practice into an active, intelligent, and equitable public health
tool. This section presents a future-oriented roadmap derived from the challenges and
opportunities highlighted in the review.
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8.1. Next-Generation Sensor Technologies

Recent progress in material science, sensor miniaturization, and low-power electronics
has expanded opportunities for scalable environmental monitoring. Technologies such
as MEMS-based detectors, graphene-coated transducers, and hybrid nanomaterials are
increasingly employed to detect gases, including carbon dioxide, methane, and volatile
organic compounds. These sensors provide enhanced sensitivity and reduced power
use, supporting distributed, wireless monitoring over long durations [112-114]. Radon
detection presents distinct challenges. Unlike gases measured via electrochemical or
infrared techniques, radon is a radioactive noble gas that needs detection of alpha particles
or its decay products. Common methods include alpha particle spectroscopy, scintillation,
or indirect detection with ionization chambers and MOS sensors. These techniques are more
susceptible to environmental factors such as humidity and temperature, which can influence
the stability and accuracy of measurements over time [115,116]. In practical deployments
like the Tehran school monitoring network, MOS sensors demonstrated potential for low-
cost deployment but were influenced by humidity-related drift. Automatic calibration
based on environmental conditions could improve long-term performance and reduce
maintenance needs [17]. This is especially key for networks in schools, homes, or rural
areas where regular maintenance might be limited. Miniaturized alpha detectors and
electrostatic collection systems are emerging, designed for wireless integration. They aim
to deliver precise and energy-efficient radon measurements in small formats, suitable for
large-scale IoT applications [117]. Future sensor deployments must address calibration
stability, environmental resilience, and energy efficiency to enable reliable large scale public
health monitoring.

8.2. Data Analytics and Predictive Monitoring

As radon monitoring networks grow, interpreting and responding to large data sets be-
comes ever more important. Besides providing real-time measurements, data analytics can
enhance system reliability, reveal patterns in radon exposure, and enable early interventions.
For instance, analyzing sensor data over time can help detect malfunctions, calibration
issues, or data gaps, as seen in pilot projects like the Boston classroom monitoring initia-
tive, where uncalibrated sensors led to gaps in long-term exposure assessment. Predictive
modeling is also useful for planning radon mitigation. In Tehran, continuous monitoring of
120 schools showed seasonal radon patterns, with peaks in winter when HVAC systems
were less active [17]. This data can help predict high-risk periods and inform ventilation
scheduling or specific mitigation efforts before levels surpass safe thresholds. Long-term
analytics can reveal high-risk buildings or rooms by analyzing exposure data over time,
beyond seasonal trends. This enables health authorities or school administrators to focus
mitigation efforts on areas with real exposure patterns, rather than relying on fixed building
characteristics. As radon sensing becomes more common, integrating essential analytical
features like alert thresholds, trend detection, or exposure tracking into the monitoring
system could greatly improve its effectiveness for public health, especially in areas with
limited professional oversight [118].

8.3. Mitigation Integration and Automation

Next-generation radon management systems are expected to integrate both moni-
toring and active mitigation. Closed-loop systems, connect sensors directly to building
infrastructure such as HVAC units, exhaust fans, or Energy Recovery Ventilator (ERV)
systems to adjust airflow based on real-time radon levels automatically [119-121]. These
systems provide continuous protection with minimal user intervention and are especially
valuable in institutional settings and healthcare facilities. Blockchain-based frameworks
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are being explored to improve the accuracy and traceability of mitigation records. By
logging radon levels and mitigation events in tamper-proof records, blockchain technology
can support regulatory audits, insurance compliance, and transparency between tenants
and landlords [122]. Additionally, this technology opens new opportunities for incentive
programs linked to verified environmental performance, such as tax credits or health
insurance benefits.

8.4. Policy, Standardization and Scalable Adoption

Regulatory frameworks must evolve to mandate continuous monitoring rather than
static, annual average monitoring. Continuous data streams offer superior temporal res-
olution and responsiveness, which are essential for modern risk modeling and real-time
mitigation. Yet current guidelines, such as the ISO 11665-9 standard, are ill-equipped to
validate dynamic, telemetry-driven systems [10]. Adoption can be accelerated through
open-source hardware and software platforms that support low-cost, customizable, and
transparent radon monitoring. Citizen science initiatives that leverage such platforms
have already shown their usefulness in data collection and public engagement. How-
ever, ensuring the scientific reliability of these systems will require built-in calibration
protocols, metadata standardization, and periodic validation checks [123]. Public—private
partnerships are essential for deploying these technologies in high-risk, under-resourced
communities. Government-backed subsidies for IoT sensors, in collaboration with tech-
nology firms and housing authorities, can enable equitable access to radon risk reduction.
These partnerships can also fund training programs to build local capacity for sensor
installation, data interpretation, and responsive mitigation.

9. Conclusions

This review has examined the emerging field of IoT-enabled radon monitoring, focus-
ing on sensor technologies, system designs, deployment strategies, and data workflows.
Despite an extensive search, only five key studies meet the inclusion criteria, highlighting
that this area is still in its infancy. Rather than indicating a limitation, this small evidence
base reflects the novelty of the research and underscores the urgent need for further in-
vestigation. By placing radon sensing within the wider context of environmental IoT
applications like air quality, industrial safety, and volcanic gas monitoring, this review
shows that many challenges, such as calibration drift, power autonomy, and scalability,
have already been addressed in related fields. Insights from these domains, along with ad-
vances in sensor development, energy harvesting, and Al analytics, provide clear paths for
creating robust, affordable, and scalable radon IoT solutions. By aggregating initial efforts
and linking them to broader technological trends, this review sets baseline references and
outlines a future research agenda. With ongoing innovation and interdisciplinary efforts,
IoT-based radon monitoring has the potential to shift management from static, reactive
assessments to proactive, real-time public health protection.
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