Frequency-Stable Low-Threshold SBS-OEO for Precision Temperature Sensing in Electromagnetically Harsh Environments
Abstract
Highlights
- Threshold Reduction and Environmental Robustness
- Introduced a Faraday rotation mirror (FRM) to enable dual-pass SBS interaction, reducing the SBS power threshold by 2.7 dB compared to conventional systems.
- The FRM’s polarization rotation inherently suppresses polarization-induced fluctuations and vibration noise, eliminating the need for active polarization control.
- Record-Breaking Performance
- Sensitivity: 1.0609 MHz/°C (R2 = 0.999) over a 67 °C range (30–97 °C).
- Stability: ±0.004 °C long-term precision, surpassing existing SBS-OEO schemes.
- Power Efficiency: Operates at 13.6 dBm pump power.
- For threshold reduction and environmental robustness: The dual-pass SBS interaction enabled by FRM provides a feasible technical path to lower the energy consumption of SBS-based systems, while the inherent suppression of polarization fluctuations and vibration noise simplifies the system structure (avoiding complex active polarization control modules), reducing the difficulty of system integration and maintenance costs.
- For record-breaking performance: The high sensitivity (1.0609 MHz/°C, R2 = 0.999) over a 67 °C range allows the system to achieve high-precision temperature sensing in scenarios requiring wide-temperature-range monitoring (e.g., industrial equipment thermal management, environmental temperature tracking). The ±0.004 °C long-term precision surpasses existing SBS-OEO schemes, making it suitable for high-stability application scenarios such as precision instrument calibration and quantum sensing auxiliary temperature control. Additionally, the low pump power (13.6 dBm) enhances the system’s portability and energy efficiency, laying a foundation for its practical application in field detection or battery-powered devices.
Abstract
1. Introduction
2. Operation Principle
3. Experimental Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lee, B.; Yoon, Y.; Lee, W.R. Advanced Materials for Precision Temperature Monitoring in Industrial and Ecological Systems. Prog. Mater. Sci. 2019, 105, 100576. [Google Scholar]
- Fernández, A.F.; Shlyagin, M.G.; Miridonov, S.V. Fiber-Optic Temperature Sensors for Harsh Environments: Industrial and Geophysical Applications. IEEE Sens. J. 2021, 21, 12589–12603. [Google Scholar]
- Wang, Y.; Yuan, L.; Li, Z. Recent Advances in Fiber Bragg Grating Sensors for Extreme Environments. Opt. Express 2020, 28, 6359–6378. [Google Scholar]
- Soto, M.A.; Bolognini, G.; Di Pasquale, F. Long-Range Raman Distributed Temperature Sensing: Performance Analysis and Optimization. IEEE Sens. J. 2017, 17, 7138–7147. [Google Scholar]
- Chen, X.; Sun, Q.; Yan, Z. High-Sensitivity Temperature Sensing Using Multi-Longitudinal-Mode Fiber Lasers with Vernier Effect. Opt. Lett. 2018, 43, 3682–3685. [Google Scholar]
- Mihailov, S.J. Fiber Optic Sensing Architectures: Emerging Trends and Applications (2017–2022). J. Light. Technol. 2021, 39, 3821–3834. [Google Scholar]
- Liu, Y.; Yu, Y.; Yuan, S.; Xu, X.; Zhang, X. Tunable megahertz bandwidth microwave photonic notch filter based on a silica microsphere cavity. Opt. Lett. 2016, 41, 5078. [Google Scholar] [CrossRef]
- Ren, L.; Yuan, S.; Zhu, S.; Shi, L.; Zhang, X. Tunable kilohertz microwave photonic bandpass filter based on backscattering in a microresonator. Opt. Lett. 2022, 47, 4572–4575. [Google Scholar] [CrossRef]
- Liu, Y.; Choudhary, A.; Marpaung, D.; Eggleton, B.J. Integrated Microwave Photonic Filters. Adv. Opt. Photonics 2020, 12, 485–555. [Google Scholar] [CrossRef]
- Ren, L.; Wang, W.; Xu, K.; Zhu, L.; Wang, J.; Shi, L.; Zhang, X. Stimulated Brillouin scattering in micro/nanophotonic waveguides and resonators. Nanophotonics 2025, 14, 1509–1535. [Google Scholar] [CrossRef]
- Hong, C.-Y.; Zhang, Y.-F.; Li, G.-W.; Zhang, M.-X.; Liu, Z.-X. Recent progress of using Brillouin distributed fiber optic sensors for geotechnical health monitoring. Sens. Actuators A. Phys. 2017, 258, 131–145. [Google Scholar] [CrossRef]
- Capmany, J.; Mora, J.; Pérez, D. Microwave Photonics: Current Challenges and Future Trends. J. Light. Technol. 2017, 35, 680–688. [Google Scholar]
- Marpaung, D.; Yao, J.; Capmany, J. Integrated Microwave Photonics for High-Speed Sensing Applications. Nat. Photon. 2019, 13, 80–90. [Google Scholar] [CrossRef]
- Tang, Z.; Pan, S.; Yao, J. A high resolution optical vector network analyzer based on a wideband and wavelength-tunable optical single-sideband modulator. Opt. Express 2012, 20, 6555–6560. [Google Scholar] [CrossRef]
- Yao, X.; Maleki, L.; Eliyahu, D. High-Precision Optoelectronic Oscillator Sensors: Transducing pm-Scale Wavelength Shifts to kHz Microwave Frequency Deviations. IEEE Trans. Microw. Theory Technol. 2021, 69, 3321–3332. [Google Scholar]
- Zhu, Y.; Jin, X.; Chi, H.; Zheng, S.; Zhang, X. High-sensitivity temperature sensor based on an optoelectronic oscillator. Appl. Opt. 2014, 53, 5084–5088. [Google Scholar] [CrossRef]
- Feng, D.; Kai, L.; Zhu, T.; Gao, Y.; Gao, L.; Zhang, J. High-precision strain-insensitive temperature sensor based on an optoelectronic oscillator. Opt. Express 2019, 27, 37532–37540. [Google Scholar] [CrossRef]
- Cheng, Y.; Wang, Y.; Song, Z.; Lei, J. High-sensitivity optical fiber temperature sensor based on a dual-loop optoelectronic oscillator with the vernier effect. Opt. Express 2020, 28, 35264–35271. [Google Scholar] [CrossRef]
- Wang, R.; Wang, W.; Hu, J.; Zhou, B.; Bai, X.; Ye, L.; Song, K. Highly sensitive optoelectronic oscillator-based FBG sensor via coarse sampling and vernier effect. IEEE Photon. Technol. Lett. 2024, 36, 4. [Google Scholar] [CrossRef]
- Horiguchi, T.; Kurashima, T.; Tateda, M. A technique to measure distributed strain in optical fibers. IEEE Photonics Technol. Lett. 1990, 2, 352–354. [Google Scholar] [CrossRef]
- Motil, A.; Bergman, A.; Tur, M. State of the art of Brillouin fiber-optic distributed sensing. Opt. Laser Technol. 2015, 78, 81–103. [Google Scholar] [CrossRef]
- ITU-T. G.652: Characteristics of a Single-Mode Optical Fibre and Cable; International Telecommunication Union: Geneva, Switzerland, 2005. [Google Scholar]
- Wang, Y.; Zhang, J.; Yao, J. An optoelectronic oscillator for high sensitivity temperature sensing. IEEE Photon. Technol. Lett. 2016, 28, 1458–1461. [Google Scholar] [CrossRef]
- Xu, L.; Hu, X.; Zhang, Y.; Yi, J.; Xiao, X.; Yu, Y. A highly sensitive and precise temperature sensor based on optoelectronic oscillator. Opt. Commun. 2021, 483, 126625. [Google Scholar] [CrossRef]
- Zhang, N.; Wu, B.; Wang, M.; Han, M.; Tang, Y.; Mu, H.; Liu, Y.; Fan, G.; Yan, F. High-sensitivity sensing for relative humidity and temperature based on an optoelectronic oscillator using a polyvinyl alcohol-fiber bragg grating-fabry perot filter. IEEE Access 2019, 7, 148756–148763. [Google Scholar] [CrossRef]
- Tang, Y.; Wang, M.; Zhang, J.; Zhang, N.; Ding, Q.; Wu, B.; Liu, Y.; Fan, G. Curvature and temperature sensing based on a dual-frequency OEO using cascaded TCFBG-FP and SMFBG-FP cavities. Opt. Laser Technol. 2020, 131, 106442. [Google Scholar] [CrossRef]
- Zeng, Z.; Peng, D.; Zhang, Z.; Zhang, S.; Ni, G.; Liu, Y. An SBS-based optoelectronic oscillator for high-speed and high-sensitivity temperature sensing. IEEE Photon. Technol. Lett. 2020, 32, 995–998. [Google Scholar] [CrossRef]
- Lin, J.; Chen, H.; Dai, W.; Alsalman, O.; Xie, T.; Shen, Q.; Zhu, C.; Chen, D. Fiber bragg grating sensing system for temperature measurements based on optically injected DFB-LD with an OEO loop. Opt. Express 2024, 32, 19388–19396. [Google Scholar] [CrossRef] [PubMed]
Component | Model/Specifications | Key Parameters/Set Value | Note/Vendor |
---|---|---|---|
Laser Diode (LD) | Wavelength: 1550.12 nm; Output Power: 13 dBm; Linewidth: 10 MHz | Main optical source | |
Phase Modulator (PM) | MPZ-LN-20 (iXblue) Saint Germain en Laye, France | Bandwidth: 20 GHz; Vπ: ~3.5 V | For sideband generation |
Erbium-Doped Fiber Amplifier (EDFA) | - | Small-Signal Gain: 27 dB; Noise Figure: 5.8 dB; Saturated Output Power: 19 dBm; Operating Point: 13.6–16.3 dBm | Provides SBS pump power |
Photodetector (PD) | BPRV2125AM (U2T) Berlin, Germany | Bandwidth: 31 GHz; Responsivity: 0.5 A/W | O/E conversion |
Single-Mode Fiber (SMF) | G.652.D | Length: 5 km; Attenuation: ~0.2 dB/km; Brillouin Frequency Shift: ~10.867 GHz @1550 nm, 30 °C | Sensing medium |
Faraday Rotation Mirror (FRM) | - | Polarization Rotation: 45°; Insertion Loss: <0.5 dB | Enables double-pass, suppresses polarization fading |
Low-Noise Amplifier (LNA) | - | Gain: 20 dB; Noise Figure: <3 dB | RF signal pre-amplification |
Microwave Amplifier (AMP) | - | Gain: 15 dB | Provides OEO loop gain |
Tunable Microwave Attenuator (TMA) | - | Attenuation Range: 0–30 dB | Finely tunes loop gain for stable oscillation |
Thermal Chamber | LC-HN-60BS (LiChen) Shaoxing, China | Control Range: 5–100 °C; Set Temperature: 30–97 °C; Stability: ±0.1 °C | Provides a temperature environment |
Electrical Spectrum Analyzer (ESA) | N9020B (Keysight) Santa Rosa, US | Analysis Bandwidth: 10 Hz–26.5 GHz; Resolution Bandwidth (RBW): 9.1 kHz | Monitors oscillation frequency |
Fundamental Principles | Technology Approach | Sensitivity | Freq. Stability | Meas. Time | SBS Threshold Power | Fiber Length | Precision | Range | Complexity |
---|---|---|---|---|---|---|---|---|---|
Fiber Property | Injection locking [16] | 43.91 kHz/°C | 5.4 kHz | 60 s | - | 8 m | 0.12 °C | 220 °C | High |
Mach-Zehnder interferometer [23] | 3.7 MHz/°C | 300 kHz | 1800 s | - | 3.6 km | 0.08 °C | 50 °C | Low | |
Vernier effect [18] | 210.25 kHz/°C | 10 kHz | 7200 s | - | 231 m | 0.048 °C | 80 °C | High | |
MRR [24] | 10.02 GHz/°C | 1.5 MHz | 360 s | - | 3 m | 1.73 × 10−4 °C | 1.2 °C | Medium | |
FBG | PVA-FBG-FP Filter [25] | 1.8118 GHz/°C | 180 kHz | 600 s | - | - | 0.2 °C | 1 °C | Medium |
Cascaded TCFBG-FP/SMFBG-FP [26] | 1.14 GHz/°C | 200 kHz | 1200 s | - | - | 1.75 × 10−4 °C | 1 °C | High | |
Coarse sampling and Vernier [19] | 222.84 kHz/°C | 66.9 kHz | 900 s | - | - | 0.3 °C | 70 °C | High | |
SBS | Single-passband MPF [17] | 1.00745 MHz/°C | 500 kHz | 3000 s | >18 dBm | 2.5 km | 0.5 °C | 340 °C | High |
Two fiber spools [27] | 1.364 MHz/°C | 400 kHz | 500 s | 12 dBm | 20.5 km | 0.3 °C | 19.8 °C | High | |
FRM (Our Solution) | 1.0609 MHz/°C | 4.4 kHz | 840 s | 13.6 dBm | 5 km | 0.004 °C | 67 °C | Low | |
DFB-LD | Optical injection [28] | 1.02 GHz/°C | 80 MHz | 600 s | - | 1 km | 0.08 °C | 8 °C | High |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teng, Y.; Yang, M.; Han, L.; Wang, J.; Liu, G. Frequency-Stable Low-Threshold SBS-OEO for Precision Temperature Sensing in Electromagnetically Harsh Environments. Sensors 2025, 25, 6166. https://doi.org/10.3390/s25196166
Teng Y, Yang M, Han L, Wang J, Liu G. Frequency-Stable Low-Threshold SBS-OEO for Precision Temperature Sensing in Electromagnetically Harsh Environments. Sensors. 2025; 25(19):6166. https://doi.org/10.3390/s25196166
Chicago/Turabian StyleTeng, Yichao, Mingyuan Yang, Li Han, Jixuan Wang, and Guanbo Liu. 2025. "Frequency-Stable Low-Threshold SBS-OEO for Precision Temperature Sensing in Electromagnetically Harsh Environments" Sensors 25, no. 19: 6166. https://doi.org/10.3390/s25196166
APA StyleTeng, Y., Yang, M., Han, L., Wang, J., & Liu, G. (2025). Frequency-Stable Low-Threshold SBS-OEO for Precision Temperature Sensing in Electromagnetically Harsh Environments. Sensors, 25(19), 6166. https://doi.org/10.3390/s25196166