Resonant Ultrasound Spectroscopy Detection Using a Non-Contact Ultrasound Microphone
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Spherical Ball Lenses
3.2. Splitting of Nominally Degenerate Modes Attributable to Residual Anisotropy of 1 mm N-BK7 Lens
3.3. Fused Silica Half-Ball Lens—Comparison of Noise Source and Frequency Sweep Techniques
4. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
RUS | Resonant Ultrasound Spectroscopy |
NEP | Noise equivalent pressure |
PSD | Power spectral density |
DSP | Digital signal processing |
References
- Maynard, J. Resonant ultrasound spectroscopy. Phys. Today 1996, 49, 26–31. [Google Scholar] [CrossRef]
- Leisure, R.G.; Willis, F.A. Resonant ultrasound spectroscopy. J. Phys. Condens. Matter 1997, 9, 6001–6029. [Google Scholar] [CrossRef]
- Migliori, A.; Maynard, J.D. Implementation of a modern resonant ultrasound spectroscopy system for the measurement of the elastic moduli of small solid specimens. Rev. Sci. Instrum. 2005, 76, 121301. [Google Scholar] [CrossRef]
- Balakirev, F.F.; Ennaceur, S.M.; Migliori, R.J.; Maiorov, B.; Migliori, A. Resonant ultrasound spectroscopy: The essential toolbox. Rev. Sci. Instrum. 2019, 90, 121401. [Google Scholar] [CrossRef]
- Torres, J.; Flores-Belancourt, A.; Hermann, R.P. RUScal: Software for the analysis of resonant ultrasound spectroscopy measurements. J. Acoust. Soc. Am. 2022, 151, 3547–3563. [Google Scholar] [CrossRef]
- Petit, S.; Duquennoy, M.; Ouaftouh, M.; Deneuville, F.; Ourak, M.; Desvaux, S. Non-destructive testing of ceramic balls using high frequency ultrasonic resonance spectroscopy. Ultrasonics 2005, 43, 802–810. [Google Scholar] [CrossRef] [PubMed]
- Bessas, D.; Bruck, E. A versatile lock-in digital amplifier (LIdA): The case of mechanical resonances. Eur. J. Phys. 2017, 38, 035502. [Google Scholar] [CrossRef]
- Fraser, D.B.; LeCraw, R.C. Novel method of measuring elastic and anelastic properties of solids. Rev. Sci. Instrum. 1964, 35, 1113–1115. [Google Scholar] [CrossRef]
- Johnson, W.L.; Norton, S.J.; Bendec, F.; Pless, R. Ultrasonic spectroscopy of metallic spheres using electromagnetic-acoustic transduction. J. Acoust. Soc. Am. 1992, 91, 2637–2642. [Google Scholar] [CrossRef]
- Hsieh, C.P.; Khuri-Yakub, B.T. One-point contact measurement of spherical resonances. Appl. Phys. Lett. 1993, 61, 3091–3093. [Google Scholar] [CrossRef]
- Yamanaka, K.; Saito, A.; Ishikawa, S.; Cho, H. Floating resonance method for precise evaluation of bearing balls. Jpn. J. Appl. Phys. 2002, 41, 3498–3500. [Google Scholar] [CrossRef]
- Solodov, I.; Dillenz, A.; Kreutzbruck, M. A new mode of acoustic NDT via resonant air-coupled emission. J. Appl. Phys. 2017, 121, 245101. [Google Scholar] [CrossRef]
- Hornig, G.J.; Scheuer, K.G.; Dew, E.B.; Zemp, R.; DeCorby, R.G. Ultrasound sensing at thermomechanical limits with optomechanical buckled-dome microcavities. Opt. Express 2022, 30, 33083–33096. [Google Scholar] [CrossRef] [PubMed]
- Scheuer, K.G.; DeCorby, R.G. Air-coupled ultrasound using broadband shock waves from piezoelectric spark igniters. Appl. Phys. Lett. 2024, 125, 082202. [Google Scholar] [CrossRef]
- Scheuer, K.G.; DeCorby, R.G. All-optical, air-coupled ultrasonic detection of low-pressure gas leaks and observation of jet tones in the MHz range. Sensors 2023, 23, 5665. [Google Scholar] [CrossRef]
- McGuigan, S.; Arguelles, A.P.; Obaton, A.-F.; Donmez, A.N.; Riviere, J.; Shokouhi, P. Resonant ultrasound spectroscopy for quality control of geometrically complex additively manufactured components. Addit. Manuf. 2021, 39, 101808. [Google Scholar] [CrossRef]
- Li, B.-B.; Ou, L.; Lei, Y.; Liu, Y.-C. Cavity optomechanical sensing. Nanophotonics 2021, 10, 2799–2832. [Google Scholar] [CrossRef]
- Takahashi, S. Properties and characteristics of P(VDF/TrFE) transducers manufactured by a solution casting method for use in the MHz-range ultrasound in air. Ultrasonics 2012, 52, 422–426. [Google Scholar] [CrossRef]
- Scheuer, K.G.; Romero, F.B.; Hornig, G.J.; DeCorby, R.G. Ultrasonic spectroscopy of sessile droplets coupled to optomechanical sensors. Lab Chip 2023, 23, 5131. [Google Scholar] [CrossRef]
- Available online: https://saviot.cnrs.fr/index.en.html (accessed on 27 June 2025).
- Tian, J. Vibration analysis of an isotropic elastic sphere contacting a semi-infinite cubic solid. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2010, 57, 942–950. [Google Scholar] [CrossRef]
- Yaoita, A.; Adachi, T.; Yamaji, A. Determination of elastic moduli for a spherical specimen by resonant ultrasound spectroscopy. NDTE Int. 2005, 38, 554–560. [Google Scholar] [CrossRef]
- Hsieh, C.P.; Khuri-Yakub, B.T. Surface defect inspection of spherical objects by the resonant sphere technique. Appl. Phys. Lett. 1992, 60, 1815–1817. [Google Scholar] [CrossRef]
- Available online: https://www.comsol.com (accessed on 6 July 2025).
- Wachtman, J.B., Jr.; Tefft, W.E.; Lam, D.G.; Stinchfield, R.P. Elastic constants of synthetic single crystal corundum at room temperature. J. Res. Natl. Inst. Stand. USA 1960, 64, 213–229. [Google Scholar] [CrossRef]
- Ma, R.; Schliesser, A.; Del’Haye, P.; Dabirian, A.; Anetsberger, G.; Kippenberg, T.J. Radiation-pressure-driven vibrational modes in ultrahigh-Q silica microspheres. Opt. Lett. 2007, 32, 2200–2202. [Google Scholar] [CrossRef]
- Available online: https://www.edmundoptics.com/p/20mm-diameter-sapphire-ball-lens/5174/ (accessed on 2 July 2025).
- Portales, H.; Goubet, N.; Saviot, L.; Adichtchev, S.; Murray, D.B.; Mermet, A.; Duval, E.; Pileni, M.-P. Probing atomic ordering and multiple twinning in metal nanocrystals through their vibrations. Proc. Natl. Acad. Sci. USA 2008, 105, 14784–14789. [Google Scholar] [CrossRef] [PubMed]
- Ganisetti, S.; Atila, A.; Guénolé, J.; Prakash, A.; Horbach, J.; Wondraczek, L.; Bitzek, E. The origin of deformation induced topological anisotropy in silica glass. Acta Mater. 2023, 257, 119108. [Google Scholar] [CrossRef]
- Hornig, G.J.; Scheuer, K.G.; DeCorby, R.G. Observation of thermal acoustic modes of a droplet coupled to an optomechanical sensor. Appl. Phys. Lett. 2023, 123, 042202. [Google Scholar] [CrossRef]
- Tayyib, M.; Svilainis, L. SNR equalization in non-contact resonant ultrasound spectroscopy measurements. NDTE Int. 2025, 154, 103386. [Google Scholar] [CrossRef]
- Scheuer, K.G.; Chen, A.; Teves, G.; DeCorby, R.G. Characterization of micro-scale gas leaks using an optomechanical ultrasound sensor. J. Acoust. Soc. Am. 2025, 158, 329–335. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pretula, J.; Shaw, N.; Chen, A.; Scheuer, K.G.; DeCorby, R.G. Resonant Ultrasound Spectroscopy Detection Using a Non-Contact Ultrasound Microphone. Sensors 2025, 25, 6154. https://doi.org/10.3390/s25196154
Pretula J, Shaw N, Chen A, Scheuer KG, DeCorby RG. Resonant Ultrasound Spectroscopy Detection Using a Non-Contact Ultrasound Microphone. Sensors. 2025; 25(19):6154. https://doi.org/10.3390/s25196154
Chicago/Turabian StylePretula, Jake, Nolan Shaw, Ayden Chen, Kyle G. Scheuer, and Ray G. DeCorby. 2025. "Resonant Ultrasound Spectroscopy Detection Using a Non-Contact Ultrasound Microphone" Sensors 25, no. 19: 6154. https://doi.org/10.3390/s25196154
APA StylePretula, J., Shaw, N., Chen, A., Scheuer, K. G., & DeCorby, R. G. (2025). Resonant Ultrasound Spectroscopy Detection Using a Non-Contact Ultrasound Microphone. Sensors, 25(19), 6154. https://doi.org/10.3390/s25196154