Enhanced Hyperspectral Image Classification Technique Using PCA-2D-CNN Algorithm and Null Spectrum Hyperpixel Features
Abstract
1. Introduction
2. Related Work
2.1. Traditional Machine Learning Approaches
2.2. CNN-Based and Deep Learning Methods
2.3. Transformer-Based and Hybrid Architectures
2.4. Research Gaps and Contributions
- A new superpixel segmentation approach leveraging null spectral information, enabling more robust and efficient feature representation.
- A unified PCA-2D-CNN framework that jointly extracts spectral and spatial features, improving classification accuracy and computational efficiency.
- Extensive validation across multiple benchmark datasets, demonstrating superior accuracy compared to traditional and deep learning baselines.
3. Methodology
3.1. Null Spectrum Hyperpixel Segmentation and Feature Extraction
3.2. Construction of KELM Classification Model
3.3. Fusion of Null Spectral Information Using PCA and 2D-CNN for HSI Classification
Algorithm 1. Proposed hyperspectral image classification algorithm |
Input H ∈ ℝ^(M × N × B) //Hyperspectral image (M × N pixels, B spectral bands) L_train //Labeled training pixels L_test //Test pixels Output C_map ∈ ℕ^(M × N)//Classified label map 1. PCA Dimensionality Reduction W_pca ← PCA(H[L_train]) //Fit PCA on training spectra H_pca ← H × W_pca //Project full image to d components 2. Superpixel Segmentation S ← AdaptiveSuperpixel(H_pca) //Segment into K superpixels μ_k ← CentroidSpectrum(S_k) //Compute mean spectrum for each superpixel 3. 2D-CNN Spatial Feature Extraction For each superpixel S_k: P_k ← ExtractPatch(H_pca, S_k) F_spat(k) ← CNN2D(P_k) 4. Spectral Feature Extraction F_spec(k) ← μ_k 5. Feature Fusion F_fused(k) ← Concatenate(F_spec(k), F_spat(k)) 6. ELM Classification Initialize random weights {m_i, n_i} for L hidden nodes H_hidden ← Activation(m_i, n_i, F_fused(k)) β ← Pseudoinverse(H_hidden) × T y_pred(k) ← H_hidden × β 7. Output Generation Assign y_pred(k) to all pixels in S_k C_map ← AssembleClassMap(S, y_pred) Return C_map |
4. Experimental Results
- Overall accuracy (OA): The proportion of correctly predicted samples out of all samples.
- Average accuracy (AA): The average accuracy across all categories.
- Cohen’s Kappa (Kappa) [37]: A metric for classifier performance ranging from [−1, 1], where 0 indicates no better agreement than random classification.
Component Contribution Analysis
- Superpixel segmentation: Groups spectrally similar and spatially adjacent pixels, effectively incorporating local spatial structure and reducing noise in boundary regions. This approach has been proven to enhance classification robustness by maintaining object shapes and spectral homogeneity [41,42].
- ELM classifier: Provides rapid classification with low training complexity, benefiting from the combined spectral–spatial feature set. Recent works highlight ELM’s suitability for fast yet competitive hyperspectral classification [45,46]. The integration of these components ensures both computational efficiency and improved classification performance, as evidenced by the high overall accuracy achieved.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Khonina, S.N.; Kazanskiy, N.L.; Oseledets, I.V.; Nikonorov, A.V.; Butt, M.A. Synergy between Artificial Intelligence and Hyperspectral Imagining—A Review. Technologies 2024, 12, 163. [Google Scholar] [CrossRef]
- Aburaed, N.; Alkhatib, M.Q.; Marshall, S.; Zabalza, J.; Al Ahmad, H. A Review of Spatial Enhancement of Hyperspectral Remote Sensing Imaging Techniques. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 2275–2300. [Google Scholar] [CrossRef]
- Sounchio, S.S.; Geneste, L.; Foguem, B.K. Combining expert-based beliefs and answer sets. Appl. Intell. 2023, 53, 2694–2705. [Google Scholar] [CrossRef]
- Aguado, F.; Cabalar, P.E.D.R.O.; Diéguez, M.; Pérez, G.; Schaub, T.; Schuhmann, A.; Vidal, C. Linear-Time Temporal Answer Set Programming. Theory Pract. Log. Program. 2021, 23, 2–56. [Google Scholar] [CrossRef]
- Carral, D.; Zalewski, J.; Hitzler, P. An efficient algorithm for reasoning over OWL EL ontologies with nominal schemas. J. Log. Comput. 2023, 33, 136–162. [Google Scholar] [CrossRef]
- Sharma, S.; Chaudhury, S.; Jayadeva. Block Sparse Variational Bayes Regression Using Matrix Variate Distributions with Application to SSVEP Detection. IEEE Trans. Neural Netw. Learn. Syst. 2022, 33, 351–365. [Google Scholar] [CrossRef]
- Flotyński, J. Visual aspect-oriented modeling of explorable extended reality environments. Virtual Real 2022, 26, 939–961. [Google Scholar] [CrossRef]
- Rajarajeswari, P. Hyperspectral Image Classification by Using K-Nearest Neighbor Algorithm. Int. J. Psychosoc. Rehabil. 2020, 24, 5068–5074. [Google Scholar] [CrossRef]
- Wang, K.; Cheng, L.; Yong, B. Spectral-similarity-based kernel of svm for hyperspectral image classification. Remote Sens. 2020, 12, 2154. [Google Scholar] [CrossRef]
- Jiao, S.; Han, X.; Xiong, F.; Yang, X.; Han, H.; He, L.; Kuang, L. Deep cross-modal discriminant adversarial learning for zero-shot sketch-based image retrieval. Neural Comput. Appl. 2022, 34, 13469–13483. [Google Scholar] [CrossRef]
- Xie, Y.; Gao, X. Topological reduction algorithm for relation systems. Soft Comput. 2022, 26, 11961–11971. [Google Scholar] [CrossRef]
- Li, H.; Cui, J.; Zhang, X.; Han, Y.; Cao, L. Dimensionality Reduction and Classification of Hyperspectral Remote Sensing Image Feature Extraction. Remote Sens. 2022, 14, 4579. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, B.; Yu, X.; Yu, A.; Gao, K.; Ding, L. From Video to Hyperspectral: Hyperspectral Image-Level Feature Extraction with Transfer Learning. Remote Sens. 2022, 14, 5118. [Google Scholar] [CrossRef]
- Lv, Z.; Zhang, M.; Sun, W.; Benediktsson, J.A.; Lei, T.; Falco, N. Spatial-Contextual Information Utilization Framework for Land Cover Change Detection With Hyperspectral Remote Sensed Images. IEEE Trans. Geosci. Remote Sens. 2023, 61, 4411911. [Google Scholar] [CrossRef]
- Vali, A.; Comai, S.; Matteucci, M. Deep learning for land use and land cover classification based on hyperspectral and multispectral earth observation data: A review. Remote Sens. 2020, 12, 2495. [Google Scholar] [CrossRef]
- Akbari, D.; Ashrafi, A.; Attarzadeh, R. A New Method for Object-Based Hyperspectral Image Classification. J. Indian Soc. Remote Sens. 2022, 50, 1761–1771. [Google Scholar] [CrossRef]
- Huang, S.; Lu, Y.; Wang, W.; Sun, K. Multi-scale guided feature extraction and classification algorithm for hyperspectral images. Sci. Rep. 2021, 11, 18396. [Google Scholar] [CrossRef]
- Anand, R.; Khan, B.; Nassa, V.K.; Pandey, D.; Dhabliya, D.; Pandey, B.K.; Dadheech, P. Hybrid convolutional neural network (CNN) for Kennedy Space Center hyperspectral image. Aerosp. Syst. 2023, 6, 71–78. [Google Scholar] [CrossRef]
- Niu, B.; Feng, Q.; Chen, B.; Ou, C.; Liu, Y.; Yang, J. HSI-TransUNet: A transformer based semantic segmentation model for crop mapping from UAV hyperspectral imagery. Comput. Electron. Agric. 2022, 201, 107297. [Google Scholar] [CrossRef]
- Huo, Y.; Gang, S.; Guan, C. FCIHMRT: Feature cross-layer interaction hybrid method based on Res2Net and transformer for remote sensing scene classification. Electronics 2023, 12, 4362. [Google Scholar] [CrossRef]
- Liu, H.; Li, W.; Xia, X.G.; Zhang, M.; Gao, C.-Z.; Tao, R. Central Attention Network for Hyperspectral Imagery Classification. IEEE Trans. Neural Netw. Learn. Syst. 2023, 34, 8989–9003. [Google Scholar] [CrossRef]
- Su, Y.; Gao, L.; Jiang, M.; Plaza, A.; Sun, X.; Zhang, B. NSCKL: Normalized Spectral Clustering With Kernel-Based Learning for Semisupervised Hyperspectral Image Classification. IEEE Trans. Cybern. 2023, 53, 6649–6662. [Google Scholar] [CrossRef]
- Aboneh, T.; Rorissa, A.; Srinivasagan, R. Stacking-Based Ensemble Learning Method for Multi-Spectral Image Classification. Technologies 2022, 10, 17. [Google Scholar] [CrossRef]
- Zhou, H.; Zhang, C.; Zhang, X.; Ma, Q. Image classification based on quaternion-valued capsule network. Appl. Intell. 2023, 53, 5587–5606. [Google Scholar] [CrossRef]
- Xiao, S.; Zhang, Y.; Chang, X.; Xu, J. Compressive sensing reconstruction of hyperspectral images based on codec space-spectrum joint dense residual network. IET Image Process. 2023, 17, 916–931. [Google Scholar] [CrossRef]
- Liu, H.; Wu, C.; Li, C.; Zuo, Y. Fast robust fuzzy clustering based on bipartite graph for hyper-spectral image classification. IET Image Process. 2022, 16, 3634–3647. [Google Scholar] [CrossRef]
- Sachs Olsen, C.; van Hulst, M. Reimagining Urban Living Labs: Enter the Urban Drama Lab. Urban Stud. 2024, 61, 991–1012. [Google Scholar] [CrossRef]
- Lopes, A.O.; Mengue, J.K. On Information Gain, Kullback-Leibler Divergence, Entropy Production and the Involution Kernel. Discret. Contin. Dyn. Syst. Ser. A 2022, 42, 3593–3627. [Google Scholar] [CrossRef]
- Sohn, Y.; Rebello, N.S. Supervised and unsupervised spectral angle classifiers. Photogramm. Eng. Remote Sens. 2002, 68, 1271–1282. [Google Scholar]
- Hasan, B.M.S.; Abdulazeez, A.M. A Review of Principal Component Analysis Algorithm for Dimensionality Reduction. J. Soft Comput. Data Min. 2021, 2, 20–30. [Google Scholar] [CrossRef]
- Zheng, J.; Wang, D.; Geng, Z. Real-Time Detection of Safety Hazards in Coal Mines Utilizing an Enhanced YOLOv3 Algorithm. Trait. Signal 2023, 40, 1565–1572. [Google Scholar] [CrossRef]
- Hong, Q.; Ze, Y.; Liang, W. Research on Medium and Long Term Generation Side Deviation Prediction of New Power Market Based on Multi-Layer LSTM. Recent Adv. Electr. Electron. Eng. (Formerly Recent Patents Electr. Electron. Eng.) 2023, 16, 644–653. [Google Scholar] [CrossRef]
- Fırat, H.; Asker, M.E.; Bayındır, M.İ.; Hanbay, D. Hybrid 3D/2D Complete Inception Module and Convolutional Neural Network for Hyperspectral Remote Sensing Image Classification. Neural Process. Lett. 2023, 55, 1087–1130. [Google Scholar] [CrossRef]
- Ahda, F.A.; Wibawa, A.P.; Prasetya, D.D.; Sulistyo, D.A. Comparison of Adam Optimization and RMSprop in Minangkabau-Indonesian Bidirectional Translation with Neural Machine Translation. Int. J. Inform. Vis. 2024, 8, 231–238. [Google Scholar] [CrossRef]
- Mulyono, I.U.W.; Kusumawati, Y.; Susanto, A.; Sari, C.A.; Islam, H.M.M.; Doheir, M. Hiragana Character Classification Using Convolutional Neural Networks Methods based on Adam, SGD, and RMSProps Optimizer. Sci. J. Inform. 2024, 11, 467–476. [Google Scholar] [CrossRef]
- Bhakta, S.; Nandi, U.; Si, T.; Ghosal, S.K.; Changdar, C.; Pal, R.K. DiffMoment: An adaptive optimization technique for convolutional neural network. Appl. Intell. 2023, 53, 16844–16858. [Google Scholar] [CrossRef]
- Ben-David, A. About the relationship between ROC curves and Cohen’s kappa. Eng. Appl. Artif. Intell. 2008, 21, 874–882. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiang, X.; Wang, X.; Cai, Z. Spectral-spatial hyperspectral image classification with superpixel pattern and extreme learning machine. Remote Sens. 2019, 11, 1983. [Google Scholar] [CrossRef]
- Luo, F.; Huang, H.; Duan, Y.; Liu, J.; Liao, Y. Local geometric structure feature for dimensionality reduction of hyperspectral imagery. Remote Sens. 2017, 9, 790. [Google Scholar] [CrossRef]
- Uddin, M.P.; Mamun MAl Afjal, M.I.; Hossain, M.A. Information-theoretic feature selection with segmentation-based folded principal component analysis (PCA) for hyperspectral image classification. Int. J. Remote Sens. 2021, 42, 286–321. [Google Scholar] [CrossRef]
- Li, D.; Kong, F.; Liu, J.; Wang, Q. Superpixel-based multiple statistical feature extraction method for classification of hyperspectral images. IEEE Trans. Geosci. Remote Sens. 2021, 59, 8738–8753. [Google Scholar] [CrossRef]
- Yang, W.; Zhang, Y.; Zhang, H.; Li, L. A Dynamic Adaptive Framework for Remote Sensing Imagery Superpixel Segmentation and Classification via Dual-Branch Feature Learning. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2025, 18, 19662–19677. [Google Scholar] [CrossRef]
- Gao, H.; Yang, Y.; Li, C.; Zhang, X.; Zhao, J.; Yao, D. Convolutional neural network for spectral–spatial classification of hyperspectral images. Neural Comput. Appl. 2019, 31, 8997–9012. [Google Scholar] [CrossRef]
- Hu, W.; Huang, Y.; Wei, L.; Zhang, F.; Li, H. Deep convolutional neural networks for hyperspectral image classification. J. Sens. 2015, 2015, 258619. [Google Scholar] [CrossRef]
- Huang, F.; Lu, J.; Tao, J.; Li, L.; Tan, X.; Liu, P. Research on optimization methods of ELM classification algorithm for hyperspectral remote sensing images. IEEE Access 2019, 7, 108070–108089. [Google Scholar] [CrossRef]
- Fang, X.; Cai, Y.; Cai, Z.; Jiang, X.; Chen, Z. Sparse feature learning of hyperspectral imagery via multiobjective-based extreme learning machine. Sensors 2020, 20, 1262. [Google Scholar] [CrossRef] [PubMed]
Parameter Name | Parameter Value |
---|---|
Equilibrium parameter (μ) | 0.6~0.9 |
Superpixel count (n) | 100~600 |
2D-number of CNN levels | 0~4 |
Training sample ratio | 0.1~3.0% |
Test sample ratio | 5~30% |
Density group ratio | 10~90% |
Number of principal component analysis | 0~40 |
2D-CNN number of iterations | 70 |
Learning rate | 0.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Bi, W.; Mughees, N. Enhanced Hyperspectral Image Classification Technique Using PCA-2D-CNN Algorithm and Null Spectrum Hyperpixel Features. Sensors 2025, 25, 5790. https://doi.org/10.3390/s25185790
Liu H, Bi W, Mughees N. Enhanced Hyperspectral Image Classification Technique Using PCA-2D-CNN Algorithm and Null Spectrum Hyperpixel Features. Sensors. 2025; 25(18):5790. https://doi.org/10.3390/s25185790
Chicago/Turabian StyleLiu, Haitao, Weihong Bi, and Neelam Mughees. 2025. "Enhanced Hyperspectral Image Classification Technique Using PCA-2D-CNN Algorithm and Null Spectrum Hyperpixel Features" Sensors 25, no. 18: 5790. https://doi.org/10.3390/s25185790
APA StyleLiu, H., Bi, W., & Mughees, N. (2025). Enhanced Hyperspectral Image Classification Technique Using PCA-2D-CNN Algorithm and Null Spectrum Hyperpixel Features. Sensors, 25(18), 5790. https://doi.org/10.3390/s25185790