AI-Enabled Microfluidics for Respiratory Pathogen Detection
Abstract
1. Introduction
2. Microfluidic Technologies in Respiratory Pathogen Detection
2.1. Microfluidic Pretreatment for Complex Samples
2.1.1. Saliva Sample Processing
2.1.2. Aerosol Sample Processing
2.2. Microfluidic Diagnostic Approaches for Respiratory Pathogen Detection
2.2.1. Nucleic Acid Amplification-Based Detection
2.2.2. Biosensor-Based Microfluidic Diagnostics
2.3. Integrated Microfluidic Platforms for High-Throughput Pathogen Detection
Technical Domain | Main Technology/System | Performance Indicators | Reference |
---|---|---|---|
Pretreatment—Saliva | Magnetic nanoparticle cartridge | 500 μL sample; nucleic-acid extraction in 10 min; LOD 50 IU/mL | [48] |
Electromagnetically actuated IMS | 50 μL sample; detection in 2 h; LOD 200 copies/mL | [49] | |
Biporous silica nanofilm enrichment | 100× enrichment over conventional methods; PCR-free detection enabled | [51] | |
Chelex-100 thermal lysis for viscous sputum | Improved nucleic-acid purity (OD260/OD280: 1.18→1.79; OD260/OD230: 0.77→2.17); 98% concordance with off-chip | [52] | |
Pretreatment—Aerosols | Helical pre-concentration microfluidics | LOD 10× lower than conventional methods; 1–1.5 mL samples robustly processed; | [53] |
RIAMs high-flow cyclone sampler | LOD 10 copies/mL; integrated with 400 L/min aerosol sampler achieving 0.83 copies/m3 resolution | [54] | |
Inertial–electrostatic bioaerosol sampler | Influenza A collection efficiency up to 95% | [55] | |
Y-shaped sheath-flow inertial separator | 95.99% separation for 2 μm particles at 115 mL/min | [56] | |
Nucleic Acid Amplification | Microfluidic PCR-array platform | LOD 1000 copies/mL; fully automated, contamination-free | [57] |
Centrifugal RT-ddPCR | LOD 0.1 copies/μL; 100% clinical accuracy | [58] | |
3D-printed RT-LAMP | LOD 100 GE/mL; detection in 60 min | [60] | |
mCARMEN (CRISPR-Cas12/13) | 192 × 24 reactions; LOD 500 copies/μL; 99.5% accuracy | [61] | |
MiND-DMF with RPA-CRISPR | Sensitivity 100 CFU/mL; 98–100% specificity | [62] | |
Centrifugal RT-LAMP disk | LOD 38 copies/reaction; detection in 48 min | [63] | |
Air-insulated centrifugal chip | LOD 10 copies/reaction; 99.56% concordance with clinical qPCR | [64] | |
Biosensing | 10-channel LAMP-hybridization chip | LOD 103–104 copies/mL; detection in 40 min | [66] |
Nano-immunoassay (serology) | Sensitivity 98%; specificity 100% | [67] | |
VIP-based six-channel sensor | LOD 9 TCID50/mL for H1N1; detection in 2 min | [47] | |
High-throughput Detection | 96-channel magnetic-bead chip | Nucleic-acid extraction in 10 min; downstream 21-pathogen panel | [71] |
High-throughput centrifugal RT-LAMP | 30 chambers; 150 parallel RT-LAMP; detection in 1.5 h; | [46] | |
Microbead-encoded multiplexing | Influenza subtypes (H1N1/H3N2/H7N3); LOD 2.2–3.4 ng/mL | [72] | |
MONITOR real-time PCR array | LOD 0.78–6.25 copies/µL for eight pathogens | [74] | |
DMF multiplexed PCR | 11-pathogen panel; LOD 200–628 copies/mL; accuracy 99.85%; specificity 100% | [76] | |
Nanoplasmonic enhanced isothermal amplification (NanoPEIA) | 96-sample throughput; LOD 23.3–28.3 copies/mL; sensitivity 100%; specificity 92% | [78] |
3. AI-Enhanced Microfluidic Detection Workflow
3.1. AI-Driven Chip Design and Performance Optimization
3.1.1. AI-Driven Sample Pretreatment Structure
3.1.2. AI-Driven Micro-Droplet Generation
3.1.3. AI-Driven Bubble Elimination
3.2. AI-Enabled Microfluidic Detection Methods
3.2.1. AI-Enabled Bioinformatics Database
3.2.2. AI-Enabled Result Interpretation
3.2.3. AI-Enabled High-Throughput Detection
3.3. AI-Empowered Integrated Portable Detection Device for Diagnostic Applications
3.3.1. AI-Empowered Image Analysis for Smartphone-Integrated Diagnostic
3.3.2. AI-Empowered Image Analysis for IoT-Based Diagnostic
Technical Domain | Core Innovation | AI Method | Performance | Advantages | Limitations | Reference |
---|---|---|---|---|---|---|
AI-Enabled Chip Design and Optimization | ||||||
Chip-design automation | DAFD workflow for flow-focusing droplet generators that predicts optimal channel geometry from user-defined specs | Feed-forward neural network trained on 998 data points | Diameter error ≤ 10 µm; frequency error ≤ 20 Hz | Rapid inverse design; reduces trial-and-error and prototyping cycles | Trained on limited datasets; transferability across materials/fabrication lots uncertain | [38] |
Bubble detection & control | Real-time identification of bubbles in single-channel chip | Random Forest classifier on video frames | Sensitivity 95.5%, AUC 0.97; smartphone AUC > 0.84 | Lightweight model deployable on phones; robust accuracy | Requires labeled videos; performance can degrade with lighting/optics changes | [43] |
Gradient-generator design | Inverse mapping of channel layout to arbitrary concentration gradients | Machine-learning regression + interpolation | 93.71% accuracy; 300× acceleration effect than conventional | Arbitrary gradient design; accelerates optimization of mixers/reactors | Needs retraining with geometry changes; interpolation fails at high Re | [103] |
Multiscale droplet optimization | Automated search for stable droplet regimes | Bayesian optimization + computer vision feedback | Converged in 60 iterations; 8× faster than manual tuning | Sample-efficient tuning; minimal experiments | Setup-specific; may require retuning when fluids or geometry change | [109] |
Acoustic field sculpting | Channel geometries that create user-specified standing-wave patterns | Deep neural network (DNN) inverse design | Programmable manipulation/assembly of particles & cells | Non-contact actuation; gentle handling of bio-samples | Sensitive to fabrication tolerances and acoustic hardware calibration; Requires specialized acousto-fluidics equipment | [110] |
Flow design and inverse optimization | Programmable microchannel architectures using hierarchically assembled obstacles (HAO) | CEyeNet with receptive-field augmentation | Expanded diversity of flow patterns; high accuracy between simulation and experiment; significantly reduced computational cost vs. FEM | Coupling physical design rules with AI enables efficient, accurate, and scalable chip optimization | Requires extensive training datasets; generalization to unseen geometries and conditions remains limited | [114] |
High-throughput synthesis | Two-step Gaussian-process BO + DNN for nano-particle microreactor | BO (global search) + DNN (local refinement) | Optimal silver-nanoparticle yield after 120 experiments | Efficient exploration of high-dimensional parameters; Demonstrates closed-loop optimization paradigm | Application-specific (nanoparticles)—indirect clinical relevance; Requires sufficient data/computation | [115] |
Bubble segmentation & flow metrology | High-speed YOLOv9 pipeline for bubble tracking | YOLOv9 deep learning object detector | Non-invasive mass-transfer coefficient estimation | Real-time quantification of bubble dynamics; supports process modeling | Needs high-speed imaging + compute; heavier deployment footprint | [123] |
Closed-loop fluid automation | Smartphone-operated immunoassay with on-chip pumps/valves | Lightweight CNN + fuzzy logic decision layer | cTnI LoD 0.98 pg/mL; 30–40% reduction in false signals | On-device QC and actuation reduce human error and artifacts; Demonstrates end-to-end sensing, decision, actuation | Adds actuator/firmware complexity; calibration required | [125] |
AI-Enhanced Pathogen Detection | ||||||
Single-cell image analysis | On-chip CNN segments & classifies captured cells | Convolutional neural network | 95% accuracy in cell-type identification | Label-free morphology-based analysis; integrates with microfluidics | Dataset/lab specific; generalization to new cell types limited | [33] |
Real-time intelligent cell sorting | iIACS dual-membrane push-pull microfluidic sorter | CNN image classifier | 2000 events s−1 with high purity | Real-time cytometry-like performance on-chip; Reduces manual gating | Specialized dual-membrane hardware; maintenance burden | [34] |
Label-free droplet LAMP quantification | Detects fractal precipitate patterns in sub-nL droplets | Random Forest on bright-field images | Digital, dye-free DNA quantification at sub-nL scale | Eliminates fluorescent dyes/optics; reduces reagent cost | Pattern morphology sensitive to imaging/chemistry variations; Requires robust image standardization/pre-processing | [41] |
Early amplification prediction | Forecasts PCR/LAMP endpoints from first 9 min of signal | Transformer with multi-attention | 78% reduction in assay time; 98.6% clinical accuracy | Shortens turnaround time; earlier triage | May over-predict in low-copy or inhibited samples; Needs continuous, high-quality time-series fluorescence | [59] |
Paper-based microfluidic nucleic acid testing | Early prediction of RT-LAMP results using real-time fluorescence on μPAD | Attention-based GRU network | Predicts 40-cycle results at 22 cycles with 98.1% accuracy | Low-cost paper platform with faster calls; Minimal hardware | Paper wicking variability can affect signals; Smartphone/ambient conditions add variance | [144] |
Variant-resilient CRISPR design | gRNA sets that keep coverage as genomes mutate | CNN activity predictor + sub-modular optimiser | >95% variant coverage (≤3 gRNAs); >40% gain vs. baseline | Compact, mutation-tolerant assays for evolving viruses; Cuts wet-lab screening burden | Depends on up-to-date genomes; off-target risks persist | [146] |
Simultaneous viral antigen/antibody assay | IGZO bio-FET array with on-chip microfluidics | Artificial neural network feature extractor | 1 pg/mL Ab LoD; 200 ng/mL Ag; 98.9%/93.2% classification accuracy | Multi-modal serology on-chip; electronic readout | Microfabrication complexity; calibration drift | [151] |
High-dimensional MALDI-TOF screening | AutoML selects key peaks for COVID-19 triage | DNN + Gradient-Boosting (MILO platform) | 98.3% accuracy (487 peaks); 96.6% (166 peaks) | Leverages widely available MS platforms; Automated feature selection reduces manual curation | Requires MS hardware + sample prep infrastructure; Domain shift across labs/instruments can reduce accuracy | [152] |
Smartphone-Integrated and IoT-Based Diagnostic Applications | ||||||
Smartphone imaging—cross-pathogen | SPyDERMAN adversarial DA converts bubble images to results | Domain-adaptation CNN | 100% accuracy with few SARS-CoV-2 labels | Data-efficient; robust to cross-domain differences | Adversarial training can be unstable; requires careful tuning | [154] |
Microfluidic Immunoassay | Platinum nanoparticle-catalyzed bubble signal readout + Ambient light adaptation algorithm | Adversarial Neural Network (SPyDERMAN) | Dual SARS-CoV-2/HCV detection: Clinical accuracy 93.3–95.45%; LOD:4000 copies/mL (SARS-CoV-2) LOD:2200 copies/mL (HCV) | Commodity cameras; resilient to ambient-light changes | LoD higher than PCR/CRISPR; relies on bubble kinetics | [155] |
Paper-based Capillary Flow | Peptide–particle interaction-induced flow velocity changes | SVM classification | Six-bacteria identification; detection time 2–6 s | Ultrafast, equipment-light; no fluorescence/labels | Semi-quantitative; sensitive to viscosity/temperature | [156] |
Competitive Binding Assay | LPS/peptidoglycan-bacteria competitive binding + “Mix-and-match” immobilization-free strategy | SVM multivariate analysis | Gram-negative/positive bacteria differentiation; mixed sample accuracy 75% | Reagent-sparse, rapid workflow; minimal immobilization | Moderate accuracy in mixtures; cross-reactivity possible | [157] |
Microsphere Encoding-Decoding | Polystyrene microsphere signal carriers + Cross-platform smartphone compatibility design | Mobile Multi-Sphere Net (YOLOv5 architecture) | Triplex (FLUA/FLUB/HPIV) in 30 min; LoD 0.14 pg/mL; cross-smartphone consistency | High multiplex scalability via bead codes; very low LoD | Requires precise bead fabrication and optical setup; Potential code collisions/bleed-through in larger panels | [158] |
Centrifugal Microfluidic-CRISPR | Bluetooth-controlled dual-temperature zones + Real-time CMOS fluorescence sensing | Machine learning classifier | Five influenza virus subtypes; sensitivity 10 copies/μL; 100%PPV/NPV; 50% time reduction | End-to-end task orchestration on phone; fewer steps | Requires custom electronics and power management; regulatory and cybersecurity considerations for connected devices | [159] |
IoT-linked POCT platform | Edge-AI Raspberry-Pi device drives RT-LAMP cartridge | Embedded ML and cloud sync | 3-virus panel in <70 min; >98% concordance | True sample-to-answer automation; remote QA and data aggregation | Depends on connectivity; privacy/security and device upkeep | [160] |
4. Conclusions and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Msemburi, W.; Karlinsky, A.; Knutson, V.; Aleshin-Guendel, S.; Chatterji, S.; Wakefield, J. The WHO estimates of excess mortality associated with the COVID-19 pandemic. Nature 2023, 613, 130–137. [Google Scholar] [CrossRef]
- Ahmad, F.B. COVID-19 mortality update—United States, 2022. MMWR Morb. Mortal. Wkly. Rep. 2023, 72, 493–496. [Google Scholar] [CrossRef]
- Lansbury, L.E.; Rodrigo, C.; Leonardi-Bee, J.; Nguyen-Van-Tam, J.; Shen Lim, W. Corticosteroids as Adjunctive Therapy in the Treatment of Influenza: An Updated Cochrane Systematic Review and Meta-analysis. Crit. Care Med. 2020, 48, e98–e106. [Google Scholar] [CrossRef]
- Brito, G.M.X.d.; Mafort, T.T.; Ribeiro-Alves, M.; Reis, L.V.T.d.; Leung, J.; Leão, R.S.; Rufino, R.; Rodrigues, L.S. Diagnostic performance of the Xpert MTB/RIF assay in BAL fluid samples from patients under clinical suspicion of pulmonary tuberculosis: A tertiary care experience in a high-tuberculosis-burden area. J. Bras. Pneumol. 2021, 47, e20200581. [Google Scholar]
- Jeong, Y.D.; Ejima, K.; Kim, K.S.; Joohyeon, W.; Iwanami, S.; Fujita, Y.; Jung, I.H.; Aihara, K.; Shibuya, K.; Iwami, S. Designing isolation guidelines for COVID-19 patients with rapid antigen tests. Nat. Commun. 2022, 13, 4910. [Google Scholar] [CrossRef]
- Lee, J.H.; Garg, T.; Lee, J.; McGrath, S.; Rosman, L.; Schumacher, S.G.; Benedetti, A.; Qin, Z.Z.; Gore, G.; Pai, M.; et al. Impact of molecular diagnostic tests on diagnostic and treatment delays in tuberculosis: A systematic review and meta-analysis. BMC Infect. Dis. 2022, 22, 940. [Google Scholar] [CrossRef] [PubMed]
- Rosenkötter, N.; Ziemann, A.; Riesgo, L.G.-C.; Gillet, J.B.; Vergeiner, G.; Krafft, T.; Brand, H. Validity and timeliness of syndromic influenza surveillance during the autumn/winter wave of A (H1N1) influenza 2009: Results of emergency medical dispatch, ambulance and emergency department data from three European regions. BMC Public Health 2013, 13, 905. [Google Scholar] [CrossRef]
- Almas, S.; Carpenter, R.E.; Singh, A.; Rowan, C.; Tamrakar, V.K.; Sharma, R. Deciphering microbiota of acute upper respiratory infections: A comparative analysis of PCR and mNGS methods for lower respiratory trafficking potential. Adv. Respir. Med. 2023, 91, 49–65. [Google Scholar] [CrossRef] [PubMed]
- Homayoonnia, S.; Lee, Y.; Andalib, D.; Rahman, M.S.; Shin, J.; Kim, K.; Kim, S. Micro/nanotechnology-inspired rapid diagnosis of respiratory infectious diseases. Biomed. Eng. Lett. 2021, 11, 335–365. [Google Scholar] [CrossRef]
- Chen, P.; Sun, W.; He, Y. Comparison of metagenomic next-generation sequencing technology, culture and GeneXpert MTB/RIF assay in the diagnosis of tuberculosis. J. Thorac. Dis. 2020, 12, 4014. [Google Scholar] [CrossRef] [PubMed]
- Chandler, D.P.; Bryant, L.; Griesemer, S.B.; Gu, R.; Knickerbocker, C.; Kukhtin, A.; Parker, J.; Zimmerman, C.; George, K.S.; Cooney, C.G. Integrated amplification microarrays for infectious disease diagnostics. Microarrays 2012, 1, 107–124. [Google Scholar] [CrossRef] [PubMed]
- Rais, Y.; Fu, Z.; Drabovich, A.P. Mass spectrometry-based proteomics in basic and translational research of SARS-CoV-2 coronavirus and its emerging mutants. Clin. Proteom. 2021, 18, 19. [Google Scholar] [CrossRef]
- Rajczewski, A.T.; Mehta, S.; Nguyen, D.D.A.; Grüning, B.; Johnson, J.E.; McGowan, T.; Griffin, T.J.; Jagtap, P.D. A rigorous evaluation of optimal peptide targets for MS-based clinical diagnostics of Coronavirus Disease 2019 (COVID-19). Clin. Proteom. 2021, 18, 15. [Google Scholar] [CrossRef]
- Lee, H.; Kim, S.I. Review of liquid chromatography-mass spectrometry-based proteomic analyses of body fluids to diagnose infectious diseases. Int. J. Mol. Sci. 2022, 23, 2187. [Google Scholar] [CrossRef]
- Van Puyvelde, B.; Dhaenens, M. Add mass spectrometry to the pandemic toolbox. eLife 2021, 10, e75471. [Google Scholar] [CrossRef]
- Ha, N.S.; de Raad, M.; Golini, A.; Petzold, C.J.; Northen, T.R. Faster, better, and cheaper: Harnessing microfluidics and mass spectrometry for biotechnology. RSC Chem. Biol. 2021, 2, 1331–1351. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, X.; Yang, L.; Chen, C.; Cheng, H.; Hu, H.; Liang, W.; Tong, Y.; Wang, M.; Wang, H. Application of high-throughput sequencing technology in the Pathogen Identification of Diverse Infectious diseases in Nephrology Departments. Diagnostics 2022, 12, 2128. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, J.; Chawla, D.S.; Gupta, V.; Singh, A.; Aggarwal, M. Diagnostic efficacy of new xpert ultra for extrapulmonary tuberculosis using culture and composite reference standard. Int. J. Appl. Basic Med. Res. 2023, 13, 224–229. [Google Scholar] [CrossRef] [PubMed]
- Van Houten, C.; Oved, K.; Eden, E.; Cohen, A.; Engelhard, D.; Boers, S.; Kraaij, R.; Karlsson, R.; Fernandez, D.; Gonzalez, E. Observational multi-centre, prospective study to characterize novel pathogen-and host-related factors in hospitalized patients with lower respiratory tract infections and/or sepsis-the “TAILORED-Treatment” study. BMC Infect. Dis. 2018, 18, 377. [Google Scholar] [CrossRef]
- Miao, Q.; Ma, Y.; Wang, Q.; Pan, J.; Zhang, Y.; Jin, W.; Yao, Y.; Su, Y.; Huang, Y.; Wang, M. Microbiological diagnostic performance of metagenomic next-generation sequencing when applied to clinical practice. Clin. Infect. Dis. 2018, 67 (Suppl. 2), S231–S240. [Google Scholar] [CrossRef]
- Li, L.D. Immunoassay Sensitivity and Kinetic Enhancement in Cell Culture Media Using Electrokinetic Preconcentration; Massachusetts Institute of Technology: Cambridge, MA, USA, 2009. [Google Scholar]
- Heuer, C.; Bahnemann, J.; Scheper, T.; Segal, E. Paving the way to overcome antifungal drug resistance: Current practices and novel developments for rapid and reliable antifungal susceptibility testing. Small Methods 2021, 5, 2100713. [Google Scholar] [CrossRef]
- Murphy, T.W.; Hsieh, Y.-P.; Zhu, B.; Naler, L.B.; Lu, C. Microfluidic platform for next-generation sequencing library preparation with low-input samples. Anal. Chem. 2020, 92, 2519–2526. [Google Scholar] [CrossRef]
- Sánchez Barea, J.; Lee, J.; Kang, D.-K. Recent advances in droplet-based microfluidic technologies for biochemistry and molecular biology. Micromachines 2019, 10, 412. [Google Scholar] [CrossRef]
- Liu, X.; Zheng, X. Microfluidic-based electrical operation and measurement methods in single-cell analysis. Sensors 2024, 24, 6359. [Google Scholar] [CrossRef] [PubMed]
- Xiang, N.; Ni, Z. Microfluidics for biomedical applications. Biosensors 2023, 13, 161. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Zhang, Y.; Hua, D. A review of research progress in microfluidic bioseparation and bioassay. Micromachines 2024, 15, 893. [Google Scholar] [CrossRef]
- Mark, D.; Haeberle, S.; Roth, G.; Von Stetten, F.; Zengerle, R. Microfluidic lab-on-a-chip platforms: Requirements, characteristics and applications. In Microfluidics Based Microsystems: Fundamentals and Applications; Spring: Berlin/Heidelberg, Germany, 2010; pp. 305–376. [Google Scholar]
- Song, Y.; Wang, L.; Xu, T.; Zhang, G.; Zhang, X. Emerging open-channel droplet arrays for biosensing. Natl. Sci. Rev. 2023, 10, nwad106. [Google Scholar] [CrossRef]
- Dawson, H.; Elias, J.; Etienne, P.; Calas-Etienne, S. The rise of the OM-LoC: Opto-microfluidic enabled lab-on-Chip. Micromachines 2021, 12, 1467. [Google Scholar] [CrossRef]
- Mariella, R., Jr. Sample preparation: The weak link in microfluidics-based biodetection. Biomed. Microdevices 2008, 10, 777–784. [Google Scholar] [CrossRef] [PubMed]
- Mielczarek, W.S.; Obaje, E.; Bachmann, T.; Kersaudy-Kerhoas, M. Microfluidic blood plasma separation for medical diagnostics: Is it worth it? Lab Chip 2016, 16, 3441–3448. [Google Scholar] [CrossRef]
- Gao, Z.; Li, Y. Enhancing single-cell biology through advanced AI-powered microfluidics. Biomicrofluidics 2023, 17, 051301. [Google Scholar] [CrossRef]
- Isozaki, A.; Mikami, H.; Tezuka, H.; Matsumura, H.; Huang, K.; Akamine, M.; Hiramatsu, K.; Iino, T.; Ito, T.; Karakawa, H.; et al. Intelligent image-activated cell sorting 2.0. Lab Chip 2020, 20, 2263–2273. [Google Scholar] [CrossRef] [PubMed]
- McIntyre, D.; Lashkaripour, A.; Fordyce, P.; Densmore, D. Machine learning for microfluidic design and control. Lab Chip 2022, 22, 2925–2937. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Chu, Z.; Doan, T.V.; Ni, S.; Yang, M.; Zhang, W. History, development, and principles of large language models: An introductory survey. AI Ethics 2024, 5, 1955–1971. [Google Scholar] [CrossRef]
- Thirunavukarasu, A.J.; Ting, D.S.J.; Elangovan, K.; Gutierrez, L.; Tan, T.F.; Ting, D.S.W. Large language models in medicine. Nat. Med. 2023, 29, 1930–1940. [Google Scholar] [CrossRef]
- Lashkaripour, A.; Rodriguez, C.; Mehdipour, N.; Mardian, R.; McIntyre, D.; Ortiz, L.; Campbell, J.; Densmore, D. Machine learning enables design automation of microfluidic flow-focusing droplet generation. Nat. Commun. 2021, 12, 25. [Google Scholar] [CrossRef]
- Khor, J.W.; Jean, N.; Luxenberg, E.S.; Ermon, S.; Tang, S.K. Using machine learning to discover shape descriptors for predicting emulsion stability in a microfluidic channel. Soft Matter 2019, 15, 1361–1372. [Google Scholar]
- Jiang, Y.; Lei, C.; Yasumoto, A.; Kobayashi, H.; Aisaka, Y.; Ito, T.; Guo, B.; Nitta, N.; Kutsuna, N.; Ozeki, Y.; et al. Label-free detection of aggregated platelets in blood by machine-learning-aided optofluidic time-stretch microscopy. Lab Chip 2017, 17, 2426–2434. [Google Scholar] [CrossRef] [PubMed]
- Muñoz, H.E.; Riche, C.T.; Kong, J.E.; van Zee, M.; Garner, O.B.; Ozcan, A.; Di Carlo, D. Fractal LAMP: Label-Free Analysis of Fractal Precipitate for Digital Loop-Mediated Isothermal Nucleic Acid Amplification. ACS Sens. 2020, 5, 385–394. [Google Scholar] [CrossRef]
- Xu, T.; Zhang, Y.; Li, S.; Dai, C.; Wei, H.; Chen, D.; Zhao, Y.; Liu, H.; Li, D.; Chen, P.; et al. Deep Learning-Enhanced Hand-Driven Microfluidic Chip for Multiplexed Nucleic Acid Detection Based on RPA/CRISPR. Adv. Sci. 2025, 12, e2414918. [Google Scholar] [CrossRef]
- Doganay, M.T.; Chakraborty, P.; Bommakanti, S.M.; Jammalamadaka, S.; Battalapalli, D.; Madabhushi, A.; Draz, M.S. Artificial intelligence performance in testing microfluidics for point-of-care. Lab Chip 2024, 24, 4998–5008. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.Y.; Zhang, D.; Zhang, X.F.; Zhang, X. Artificial intelligence applications in the diagnosis and treatment of bacterial infections. Front. Microbiol. 2024, 15, 13. [Google Scholar] [CrossRef] [PubMed]
- Asadian, E.; Bahramian, F.; Siavashy, S.; Movahedi, S.; Keçili, R.; Hussain, C.M.; Ghorbani-Bidkorpeh, F. A review on recent advances of AI-integrated microfluidics for analytical and bioanalytical applications. TrAC Trends Anal. Chem. 2024, 181, 118004. [Google Scholar] [CrossRef]
- Nguyen, H.V.; Phan, V.M.; Seo, T.S. High-throughput centrifugal microfluidic platform for multiplex respiratory virus diagnostics. Sens. Actuator B Chem. 2024, 399, 9. [Google Scholar] [CrossRef]
- Khan, R.R.; Ibrahim, H.; Rawal, G.; Zhang, J.; Lu, M.; Dong, L. Multichannel microfluidic virus sensor for rapid detection of respiratory viruses using virus-imprinted polymer for digital livestock farming. Sens. Actuators B Chem. 2023, 389, 133920. [Google Scholar] [CrossRef]
- Fang, Y.; Wang, Y.; Zhu, L.; Liu, H.; Su, X.; Liu, Y.; Chen, Z.; Chen, H.; He, N. A novel cartridge for nucleic acid extraction, amplification and detection of infectious disease pathogens with the help of magnetic nanoparticles. Chin. Chem. Lett. 2023, 34, 108092. [Google Scholar] [CrossRef]
- Chiu, C.-H.; Wang, C.-H.; Lin, Y.-J.; Tang, C.-C.; Peng, W.-J.; Huang, W.-Y.; Shan, Y.-S.; Tsai, H.-P.; Lee, G.-B. Simultaneous detection of SARS-CoV-2 and influenza A/B viruses on an electromagnetically-driven, integrated microfluidic system. Sens. Actuators B Chem. 2024, 410, 135647. [Google Scholar] [CrossRef]
- Ma, C.; Sun, Y.; Huang, Y.; Gao, Z.; Huang, Y.; Pandey, I.; Jia, C.; Feng, S.; Zhao, J. On-chip nucleic acid purification followed by ddPCR for SARS-CoV-2 detection. Biosensors 2023, 13, 517. [Google Scholar] [CrossRef]
- Jeon, E.; Koo, B.; Kim, S.; Kim, J.; Yu, Y.; Jang, H.; Lee, M.; Kim, S.-H.; Kang, T.; Kim, S.K. Biporous silica nanostructure-induced nanovortex in microfluidics for nucleic acid enrichment, isolation, and PCR-free detection. Nat. Commun. 2024, 15, 1366. [Google Scholar] [CrossRef]
- Xiang, X.; Ren, X.; Wen, Q.; Xing, G.; Liu, Y.; Xu, X.; Wei, Y.; Ji, Y.; Liu, T.; Song, H. Automatic Microfluidic Harmonized RAA-CRISPR Diagnostic System for Rapid and Accurate Identification of Bacterial Respiratory Tract Infections. Anal. Chem. 2024, 96, 6282–6291. [Google Scholar] [CrossRef]
- Koo, B.; Kim, M.G.; Lee, K.; Kim, J.Y.; Lee, S.; Kim, S.-H.; Shin, Y. Automated sample-to-answer system for rapid and accurate diagnosis of emerging infectious diseases. Sens. Actuators B Chem. 2023, 380, 133382. [Google Scholar] [CrossRef]
- Liu, P.; Li, B.; Lin, B.; Wang, Y.; Shi, Y.; Zeng, W.; Zhao, Y.; Gu, Y.; Gao, H.; Cheng, H. Multi-scenario surveillance of respiratory viruses in aerosols with a sub-single molecule spatial resolution. Nat. Commun. 2024, 15, 8770. [Google Scholar] [CrossRef]
- Lee, I.; Jeon, E.; Lee, J. On-site bioaerosol sampling and detection in microfluidic platforms. TrAC Trends Anal. Chem. 2023, 158, 116880. [Google Scholar] [CrossRef] [PubMed]
- Yang, N.; Song, W.; Xiao, Y.; Xia, M.; Xiao, L.; Li, T.; Zhang, Z.; Yu, N.; Zhang, X. Minimum minutes machine-learning microfluidic microbe monitoring method (M7). ACS Nano 2024, 18, 4862–4870. [Google Scholar] [CrossRef]
- Huang, E.Q.; Wang, Y.; Yang, N.; Shu, B.W.; Zhang, G.H.; Liu, D.Y. A fully automated microfluidic PCR-array system for rapid detection of multiple respiratory tract infection pathogens. Anal. Bioanal. Chem. 2021, 413, 1787–1798. [Google Scholar] [CrossRef]
- Malic, L.; Clime, L.; Moon, B.U.; Nassif, C.; Da Fonte, D.; Brassard, D.; Lukic, L.; Geissler, M.; Morton, K.; Charlebois, D.; et al. Sample-to-answer centrifugal microfluidic droplet PCR platform for quantitation of viral load. Lab Chip 2024, 24, 12. [Google Scholar] [CrossRef]
- Sun, H.; Jiang, Q.; Huang, Y.; Mo, J.; Xie, W.; Dong, H.; Jia, Y. Integrated smart analytics of nucleic acid amplification tests via paper microfluidics and deep learning in cloud computing. Biomed. Signal Process. Control 2023, 83, 104721. [Google Scholar] [CrossRef]
- Yin, K.; Ding, X.; Xu, Z.; Li, Z.; Wang, X.; Zhao, H.; Otis, C.; Li, B.; Liu, C. Multiplexed colorimetric detection of SARS-CoV-2 and other pathogens in wastewater on a 3D printed integrated microfluidic chip. Sens. Actuators B Chem. 2021, 344, 130242. [Google Scholar] [CrossRef]
- Welch, N.L.; Zhu, M.; Hua, C.; Weller, J.; Mirhashemi, M.E.; Nguyen, T.G.; Mantena, S.; Bauer, M.R.; Shaw, B.M.; Ackerman, C.M. Multiplexed CRISPR-based microfluidic platform for clinical testing of respiratory viruses and identification of SARS-CoV-2 variants. Nat. Med. 2022, 28, 1083–1094. [Google Scholar] [CrossRef]
- Xie, R.; Shen, J.; Zhou, L.; Lu, L.; Zhi, A.; Sun, D.; Pei, Y.; Yu, J.; Zeng, L.; Gu, G. Rapid Bacterial Identification through Multiplexed Nucleic Acid Detection on a Digital Microfluidic Platform for Enhanced Clinical Intervention against Infections. ACS Sens. 2025, 10, 2520–2530. [Google Scholar] [CrossRef] [PubMed]
- Suarez, G.D.; Tang, Y.Y.K.; Bayer, S.; Cheung, P.P.-H.; Nagl, S. Multiplexed detection of respiratory virus RNA using optical pH sensors and injection-molded centrifugal microfluidics. Microchim. Acta 2025, 192, 151. [Google Scholar] [CrossRef] [PubMed]
- Huang, G.; Huang, Q.; Xie, L.; Xiang, G.; Wang, L.; Xu, H.; Ma, L.; Luo, X.; Xin, J.; Zhou, X. A rapid, low-cost, and microfluidic chip-based system for parallel identification of multiple pathogens related to clinical pneumonia. Sci. Rep. 2017, 7, 6441. [Google Scholar] [CrossRef] [PubMed]
- Purohit, B.; Vernekar, P.R.; Shetti, N.P.; Chandra, P. Biosensor nanoengineering: Design, operation, and implementation for biomolecular analysis. Sens. Int. 2020, 1, 100040. [Google Scholar] [CrossRef]
- Liu, J.; Zeng, Z.; Li, F.; Jiang, B.; Nie, Y.; Zhang, G.; Pang, B.; Sun, L.; Hao, R. Portable and simultaneous detection of four respiratory pathogens through a microfluidic LAMP and real-time fluorescence assay. Analyst 2024, 149, 5091–5100. [Google Scholar] [CrossRef]
- Swank, Z.; Michielin, G.; Yip, H.M.; Cohen, P.; Andrey, D.O.; Vuilleumier, N.; Kaiser, L.; Eckerle, I.; Meyer, B.; Maerkl, S.J. A high-throughput microfluidic nano-immunoassay for detecting anti-SARS-CoV-2 antibodies in serum or ultra-low volume dried blood samples. Proc. Natl. Acad. Sci. USA 2021, 118, e2025289118. [Google Scholar] [CrossRef]
- Yuan, X.; Lv, J.; Lin, X.; Zhang, C.; Deng, J.; Wang, C.; Fan, X.; Wang, Y.; Xu, H.; Wu, S. Multiplex detection of six swine viruses on an integrated centrifugal disk using loop-mediated isothermal amplification. J. Vet. Diagn. Investig. 2019, 31, 415–425. [Google Scholar] [CrossRef]
- Zhou, Q.; Dong, K.Y.; Wei, M.; He, B.F.; Gao, B.B. Rolling Stone Gathers Moss: Rolling Microneedles Generate Meta Microfluidic Microneedles (MMM). Adv. Funct. Mater. 2024, 34, 10. [Google Scholar] [CrossRef]
- Gao, B.B.; Liao, J.L.; Guo, M.Z.; Liu, H.; He, B.F.; Gu, Z.Z. Biomimetic Meta-Structured Electro-Microfluidics. Adv. Funct. Mater. 2019, 29, 10. [Google Scholar] [CrossRef]
- Zhang, E.; Cao, J.; Cheng, J.; Cai, G.; Jiang, S.; Xie, W.; Jia, C.; Zhao, J.; Feng, S. Rapid multiplex pathogen detection using 96-channel microfluidic chip with magnetic bead method. Chin. Chem. Lett. 2025, 111109. [Google Scholar] [CrossRef]
- Hong, S.-L.; Wang, X.; Bao, Z.-H.; Zhang, M.-F.; Tang, M.; Zhang, N.; Liu, H.; Zhu, Z.-Y.; Liu, K.; Chen, Z.-L. Simultaneous detection of multiple influenza virus subtypes based on microbead-encoded microfluidic chip. Anal. Chim. Acta 2023, 1279, 341773. [Google Scholar] [CrossRef]
- Flores-Contreras, E.A.; González-González, R.B.; Rodríguez-Sánchez, I.P.; Yee-de León, J.F.; Iqbal, H.M.N.; González-González, E. Microfluidics-Based Biosensing Platforms: Emerging Frontiers in Point-of-Care Testing SARS-CoV-2 and Seroprevalence. Biosensors 2022, 12, 179. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Wang, C.; Shi, H.; Guo, X.; Liu, W.; Li, J.; Li, L.; Zhao, J.; Zhang, G.; Song, H. Multiplexed on-site sample-in-result-out test through microfluidic real-time PCR (MONITOR) for the detection of multiple pathogens causing influenza-like illness. Microbiol. Spectr. 2023, 11, e0232023. [Google Scholar] [CrossRef]
- Huang, H.; Huang, K.; Sun, Y.; Luo, D.; Wang, M.; Chen, T.; Li, M.; Duan, J.; Huang, L.; Dong, C. A digital microfluidic RT-qPCR platform for multiple detections of respiratory pathogens. Micromachines 2022, 13, 1650. [Google Scholar] [CrossRef]
- Bai, H.; Hu, J.; Liu, T.; Wan, L.; Dong, C.; Luo, D.; Li, F.; Yuan, Z.; Tang, Y.; Chen, T. A sample-to-answer digital microfluidic multiplexed PCR system for syndromic pathogen detection in respiratory tract infection. Lab Chip 2025, 25, 1552–1564. [Google Scholar] [CrossRef]
- Lai, X.; Lu, B.; Zhang, P.; Zhang, X.; Pu, Z.; Yu, H.; Li, D. Sticker microfluidics: A method for fabrication of customized monolithic microfluidics. ACS Biomater. Sci. Eng. 2019, 5, 6801–6810. [Google Scholar] [CrossRef]
- Liu, J.; Chen, P.; Hu, X.; Huang, L.; Geng, Z.; Xu, H.; Hu, W.; Wang, L.; Wu, P.; Liu, G.L. An ultra-sensitive and specific nanoplasmonic-enhanced isothermal amplification platform for the ultrafast point-of-care testing of SARS-CoV-2. Chem. Eng. J. 2023, 451, 138822. [Google Scholar] [CrossRef]
- Greenleaf, M.N.; Damhorst, G.L.; Ku, D.N.; Nehl, E.J.; Tyburski, E.A.; Brand, O.; Martin, G.S.; Lam, W.A. Designing for simplicity: Lessons from Mesa biotech for microfluidic entrepreneurs and early-stage companies. Lab Chip 2022, 22, 1469–1473. [Google Scholar] [CrossRef]
- McCarthy, J. The inversion of functions defined by Turing machines. Autom. Stud. 1956, 34, 177–181. [Google Scholar]
- Toosi, A.; Bottino, A.G.; Saboury, B.; Siegel, E.; Rahmim, A. A brief history of AI: How to prevent another winter (a critical review). PET Clin. 2021, 16, 449–469. [Google Scholar] [CrossRef] [PubMed]
- Samuel, A.L. Some studies in machine learning using the game of checkers. IBM J. Res. Dev. 1959, 3, 210–229. [Google Scholar] [CrossRef]
- Guidetti, A. Artificial Intelligence as General Purpose Technology: An Empirical and Applied Analysis of Its Perception. Master’s Thesis, University of the Valley of Aosta, Aosta, Italy, 2019. [Google Scholar]
- Shao, Z.; Zhao, R.; Yuan, S.; Ding, M.; Wang, Y. Tracing the evolution of AI in the past decade and forecasting the emerging trends. Expert Syst. Appl. 2022, 209, 118221. [Google Scholar] [CrossRef]
- Yashchenko, V. From McCulloch to GPT-4: Stages of development of artificial intelligence. Artif. Intell. 2024, 1, 31–44. [Google Scholar]
- Murphy, K.P. Machine Learning: A Probabilistic Perspective; MIT Press: Cambridge, MA, USA, 2012. [Google Scholar]
- Cunningham, P.; Cord, M.; Delany, S.J. Supervised learning. In Machine Learning Techniques for Multimedia: Case Studies on Organization and Retrieval; Springer: Berlin/Heidelberg, Germany, 2008; pp. 21–49. [Google Scholar]
- Barlow, H.B. Unsupervised learning. Neural Comput. 1989, 1, 295–311. [Google Scholar] [CrossRef]
- Quinto, B. Unsupervised Learning. In Next-Generation Machine Learning with Spark: Covers XGBoost, LightGBM, Spark NLP, Distributed Deep Learning with Keras, and More; Springer: Berlin/Heidelberg, Germany, 2020; pp. 189–244. [Google Scholar]
- Naeem, S.; Ali, A.; Anam, S.; Ahmed, M.M. An unsupervised machine learning algorithms: Comprehensive review. Int. J. Comput. Digit. Syst. 2023, 13, 911–921. [Google Scholar] [CrossRef] [PubMed]
- Goodfellow, I. Nips 2016 tutorial: Generative adversarial networks. arXiv 2016, arXiv:1701.00160. [Google Scholar]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Balasubramaniam, K.; Anitha, L.; Anandavalli, R.; Kumar, V.S. Role of Artificial Intelligence in the Medical Field. J. Artif. Intell. Capsul. Netw. 2023, 5, 346–461. [Google Scholar] [CrossRef]
- Shokrollahi, Y.; Yarmohammadtoosky, S.; Nikahd, M.M.; Dong, P.; Li, X.; Gu, L. A comprehensive review of generative AI in healthcare. arXiv 2023, arXiv:2310.00795. [Google Scholar] [CrossRef]
- Liang, Z.H.; Lu, H.J.; Zhou, R.J.; Yao, Y.D.; Zhu, W.J. CMFuse: Correlation-based multi-scale feature fusion network for the detection of COVID-19 from Chest X-ray images. Multimed. Tools Appl. 2023, 83, 49285–49300. [Google Scholar] [CrossRef]
- Wu, H.L.; Lu, H.J.; Ping, M.Z.; Zhu, W.J.; Li, Z. A Deep Learning Method for Pneumonia Detection Based on Fuzzy Non-Maximum Suppression. IEEE ACM Trans. Comput. Biol. Bioinform. 2024, 21, 902–911. [Google Scholar] [CrossRef]
- Zhou, Y.; Wu, J.; Yao, S.; Xu, Y.; Zhao, W.; Tong, Y.; Zhou, Z. DeepCIP: A multimodal deep learning method for the prediction of internal ribosome entry sites of circRNAs. Comput. Biol. Med. 2023, 164, 107288. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Cole, T.; Zhang, Y.; Bayinqiaoge; Yuan, D.; Tang, S.-Y. An automated and intelligent microfluidic platform for microalgae detection and monitoring. Lab Chip 2024, 24, 244–253. [Google Scholar] [CrossRef]
- Zhou, Y.; Zu, J.; Liu, J. Programmable intelligent liquid matter: Material, science and technology. J. Micromech. Microeng. 2022, 32, 103001. [Google Scholar] [CrossRef]
- Su, F.; Chakrabarty, K.; Fair, R.B. Microfluidics-Based Biochips: Technology Issues, Implementation Platforms, and Design-Automation Challenges. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2006, 25, 211–223. [Google Scholar] [CrossRef]
- Naderi, A.; Bhattacharjee, N.; Folch, A. Digital Manufacturing for Microfluidics. Annu. Rev. Biomed. Eng. 2019, 21, 325–364. [Google Scholar] [CrossRef]
- Tsai, H.F.; Podder, S.; Chen, P.Y. Microsystem Advances through Integration with Artificial Intelligence. Micromachines 2023, 14, 826. [Google Scholar] [CrossRef]
- Zhang, N.; Liu, Z.; Wang, J. Machine-Learning-Enabled Design and Manipulation of a Microfluidic Concentration Gradient Generator. Micromachines 2022, 13, 1810. [Google Scholar] [CrossRef]
- Hong, S.H.; Yang, H.; Wang, Y. Inverse design of microfluidic concentration gradient generator using deep learning and physics-based component model. Microfluid. Nanofluidics 2020, 24, 44. [Google Scholar] [CrossRef]
- Garstecki, P.; Fuerstman, M.J.; Stone, H.A.; Whitesides, G.M. Formation of droplets and bubbles in a microfluidic T-junction—Scaling and mechanism of break-up. Lab Chip 2006, 6, 437–446. [Google Scholar] [CrossRef] [PubMed]
- De Menech, M.; Garstecki, P.; Jousse, F.; Stone, H.A. Transition from squeezing to dripping in a microfluidic T-shaped junction. J. Fluid Mech. 2008, 595, 141–161. [Google Scholar] [CrossRef]
- Agnihotri, S.N.; Das, P.K.; Tolboom, F.; Werr, G.; Palierse, E.; Persson, C.; Tenje, M. Dynamics of non-Newtonian agarose gel droplet formation in two-phase microfluidic systems. Phys. Fluids 2025, 37, 13. [Google Scholar] [CrossRef]
- Xi, H.D.; Zheng, H.; Guo, W.; Ganan-Calvo, A.M.; Ai, Y.; Tsao, C.W.; Zhou, J.; Li, W.H.; Huang, Y.Y.; Nguyen, N.T.; et al. Active droplet sorting in microfluidics: A review. Lab Chip 2017, 17, 751–771. [Google Scholar] [CrossRef]
- Siemenn, A.E.; Shaulsky, E.; Beveridge, M.; Buonassisi, T.; Hashmi, S.M.; Drori, I. A Machine Learning and Computer Vision Approach to Rapidly Optimize Multiscale Droplet Generation. ACS Appl. Mater. Interfaces 2022, 14, 4668–4679. [Google Scholar] [CrossRef]
- Raymond, S.J.; Collins, D.J.; O’Rorke, R.; Tayebi, M.; Ai, Y.; Williams, J. A deep learning approach for designed diffraction-based acoustic patterning in microchannels. Sci. Rep. 2020, 10, 8745. [Google Scholar] [CrossRef]
- Mahdi, Y.; Daoud, K. Microdroplet size prediction in microfluidic systems via artificial neural network modeling for water-in-oil emulsion formulation. J. Dispers. Sci. Technol. 2017, 38, 1501–1508. [Google Scholar] [CrossRef]
- Amini, H.; Sollier, E.; Masaeli, M.; Xie, Y.; Ganapathysubramanian, B.; Stone, H.A.; Di Carlo, D. Engineering fluid flow using sequenced microstructures. Nat. Commun. 2013, 4, 1826. [Google Scholar] [CrossRef] [PubMed]
- Lee, X.Y.; Balu, A.; Stoecklein, D.; Ganapathysubramanian, B.; Sarkar, S. A Case Study of Deep Reinforcement Learning for Engineering Design: Application to Microfluidic Devices for Flow Sculpting. J. Mech. Des. 2019, 141, 111401. [Google Scholar] [CrossRef]
- Yang, Z.; Jiang, Z.; Lin, H.; Fan, X.; Wu, C.; Lam, E.Y.; So, H.K.H.; Shum, H.C. CeyeHao: AI-driven microfluidic flow programming with hierarchically assembled obstacles and receptive field-augmented neural network. Sci. Adv. 2025, 11, eadx2826. [Google Scholar] [CrossRef]
- Mekki-Berrada, F.; Ren, Z.; Huang, T.; Wong, W.K.; Zheng, F.; Xie, J.; Tian, I.P.S.; Jayavelu, S.; Mahfoud, Z.; Bash, D.; et al. Two-step machine learning enables optimized nanoparticle synthesis. npj Comput. Mater. 2021, 7, 55. [Google Scholar] [CrossRef]
- Li, Y.; Liu, X.; Huang, Q.; Ohta, A.T.; Arai, T. Bubbles in microfluidics: An all-purpose tool for micromanipulation. Lab Chip 2021, 21, 1016–1035. [Google Scholar] [CrossRef]
- Prakash, M.; Gershenfeld, N. Microfluidic bubble logic. Science 2007, 315, 832–835. [Google Scholar] [CrossRef]
- Stucki, J.D.; Guenat, O.T. A microfluidic bubble trap and oscillator. Lab Chip 2015, 15, 4393–4397. [Google Scholar] [CrossRef] [PubMed]
- Pereiro, I.; Khartchenko, A.F.; Petrini, L.; Kaigala, G.V. Nip the bubble in the bud: A guide to avoid gas nucleation in microfluidics. Lab Chip 2019, 19, 2296–2314. [Google Scholar] [CrossRef] [PubMed]
- Cortes, D.F.; Tang, T.-X.; Capelluto, D.G.; Lazar, I.M. Nanoflow valve for the removal of trapped air in microfluidic structures. Sens. Actuators B Chem. 2017, 243, 650–657. [Google Scholar] [CrossRef]
- Van Lintel, H.; Mernier, G.; Renaud, P. High-Throughput Micro-Debubblers for bubble removal with Sub-Microliter dead volume. Micromachines 2012, 3, 218–224. [Google Scholar] [CrossRef]
- Park, J.; Kim, Y.W.; Jeon, H.-J. Machine Learning-Driven Innovations in Microfluidics. Biosensors 2024, 14, 613. [Google Scholar] [CrossRef]
- Nizovtseva, I.; Mikushin, P.; Starodumov, I.; Makhaeva, K.; Kraev, S.; Chernushkin, D. Bubble Detection in Multiphase Flows Through Computer Vision and Deep Learning for Applied Modeling. Mathematics 2024, 12, 3864. [Google Scholar] [CrossRef]
- Xiao, J.; Luo, X.; Feng, Z.; Zhang, J. Using artificial intelligence to improve identification of nanofluid gas–liquid two-phase flow pattern in mini-channel. AIP Adv. 2018, 8, 15123. [Google Scholar] [CrossRef]
- Bhuiyan, N.H.; Hong, J.H.; Uddin, M.J.; Shim, J.S. Artificial intelligence-controlled microfluidic device for fluid automation and bubble removal of immunoassay operated by a smartphone. Anal. Chem. 2022, 94, 3872–3880. [Google Scholar] [CrossRef]
- Galan, E.A.; Zhao, H.R.; Wang, X.K.; Dai, Q.H.; Huck, W.T.S.; Ma, S.H. Intelligent Microfluidics: The Convergence of Machine Learning and Microfluidics in Materials Science and Biomedicine. Matter 2020, 3, 1893–1922. [Google Scholar] [CrossRef]
- Dressler, O.J.; Howes, P.D.; Choo, J.; deMello, A.J. Reinforcement Learning for Dynamic Microfluidic Control. ACS Omega 2018, 3, 10084–10091. [Google Scholar] [CrossRef] [PubMed]
- Hadikhani, P.; Borhani, N.; Hashemi, S.M.H.; Psaltis, D. Learning from droplet flows in microfluidic channels using deep neural networks. Sci. Rep. 2019, 9, 8114. [Google Scholar] [CrossRef]
- Huang, B.C.; Guo, L.; Yin, H.; Wu, Y.; Zeng, Z.H.; Xu, S.J.; Lou, Y.F.; Ai, Z.M.; Zhang, W.Q.; Kan, X.C.; et al. Deep learning enhancing guide RNA design for CRISPR/Cas12a-based diagnostics. iMeta 2024, 3, 15. [Google Scholar] [CrossRef]
- Durán-Vinet, B.; Stanton, J.A.L.; Jeunen, G.J.; von Ammon, U.; Treece, J.; Pochon, X.; Zaiko, A.; Gemmell, N.J. CRISPR-Based Environmental Biosurveillance Assisted via Artificial Intelligence Design of Guide-RNAs. Environ. DNA 2025, 7, 18. [Google Scholar] [CrossRef]
- Yao, Z.H.; Li, W.L.; He, K.Y.; Wang, H.M.; Xu, Y.; Wu, Q.; Wang, L.; Nie, Y. Facilitating crRNA Design by Integrating DNA Interaction Features of CRISPR-Cas12a System. Adv. Sci. 2025, 12, e2501269. [Google Scholar] [CrossRef]
- Li, N.; Dai, C.M.; Mao, Y.L.; Zhang, Y.M.; Yan, H.Y.; Wang, H.J.; Qin, Y.H.; Huang, B.C.; Wang, X.J.; Yao, L.G. Development of a rapid on-site detection method for largemouth bass virus based on RPA-CRISPR/Cas12a system. Front. Microbiol. 2025, 16, 11. [Google Scholar] [CrossRef]
- Wu, J.L.; Zheng, S.S.; Wang, L.; Xiang, X.; Li, F.; Lv, M.L.; Wu, Q.; Huang, Z.X.; Miao, H.B. CRISPR-Cas System-Mediated Genetic Modification in Bacillus spp.: Current Status and Future. J. Agric. Food Chem. 2025, 73, 14760–14775. [Google Scholar] [CrossRef] [PubMed]
- Chai, L.W.; Cui, X.G.; Liu, H.B.; Zhang, Y.K.; Pan, Y.W.; Li, C.X.; Le, T. CRISPR/Cas Toolbox: Unveiling the secret weapon for SNP detection. TrAC Trends Anal. Chem. 2025, 192, 25. [Google Scholar] [CrossRef]
- Benjakul, S.; Saetang, J. Development of Loop-Mediated Isothermal Amplification (LAMP) Assays for the Rapid Authentication of Three Swimming Crab Species. Foods 2022, 11, 2247. [Google Scholar] [CrossRef]
- Uysal, H.K.; Eryildiz, M.; Demirci, M. Fabrication of a Microfluidic Test Device with a 3D Printer and Its Combination with the Loop Mediated Isothermal Amplification Method to Detect Streptococcus pyogenes. Micromachines 2024, 15, 365. [Google Scholar] [CrossRef] [PubMed]
- Ang, Y.S.; Yung, L.Y.L. Protein-to-DNA Converter with High Signal Gain. ACS Nano 2024, 18, 10454–10463. [Google Scholar] [CrossRef] [PubMed]
- Zadeh, J.N.; Steenberg, C.D.; Bois, J.S.; Wolfe, B.R.; Pierce, M.B.; Khan, A.R.; Dirks, R.M.; Pierce, N.A. NUPACK: Analysis and Design of Nucleic Acid Systems. J. Comput. Chem. 2011, 32, 170–173. [Google Scholar] [CrossRef] [PubMed]
- Akarapipad, P.; Kaarj, K.; Breshears, L.E.; Sosnowski, K.; Baker, J.; Nguyen, B.T.; Eades, C.; Uhrlaub, J.L.; Quirk, G.; Nikolich-Žugich, J. Smartphone-based sensitive detection of SARS-CoV-2 from saline gargle samples via flow profile analysis on a paper microfluidic chip. Biosens. Bioelectron. 2022, 207, 114192. [Google Scholar] [CrossRef]
- Ghafari, M.; Clark, J.; Guo, H.-B.; Yu, R.; Sun, Y.; Dang, W.; Qin, H. Complementary performances of convolutional and capsule neural networks on classifying microfluidic images of dividing yeast cells. PLoS ONE 2021, 16, e0246988. [Google Scholar] [CrossRef]
- Gao, Z.; Song, Y.; Hsiao, T.Y.; He, J.; Wang, C.; Shen, J.; MacLachlan, A.; Dai, S.; Singer, B.H.; Kurabayashi, K. Machine-learning-assisted microfluidic nanoplasmonic digital immunoassay for cytokine storm profiling in COVID-19 patients. ACS Nano 2021, 15, 18023–18036. [Google Scholar] [CrossRef]
- Tran, B.M.; Larsson, J.; Grip, A.; Karempudi, P.; Elf, J. Phenotypic drug susceptibility testing for Mycobacterium tuberculosis variant bovis BCG in 12 hours. Nat. Commun. 2025, 16, 12. [Google Scholar] [CrossRef]
- Sun, H.; Xiong, L.; Huang, Y.; Chen, X.; Yu, Y.; Ye, S.; Dong, H.; Jia, Y.; Zhang, W. AI-aided on-chip nucleic acid assay for smart diagnosis of infectious disease. Fundam. Res. 2022, 2, 476–486. [Google Scholar] [CrossRef]
- Sun, H.; Xie, W.; Huang, Y.; Mo, J.; Dong, H.; Chen, X.; Zhang, Z.; Shang, J. Paper microfluidics with deep learning for portable intelligent nucleic acid amplification tests. Talanta 2023, 258, 124470. [Google Scholar] [CrossRef]
- Wang, B.; Li, Y.; Zhou, M.; Han, Y.; Zhang, M.; Gao, Z.; Liu, Z.; Chen, P.; Du, W.; Zhang, X.; et al. Smartphone-based platforms implementing microfluidic detection with image-based artificial intelligence. Nat. Commun. 2023, 14, 1341. [Google Scholar] [CrossRef]
- Metsky, H.C.; Welch, N.L.; Pillai, P.P.; Haradhvala, N.J.; Rumker, L.; Mantena, S.; Zhang, Y.B.; Yang, D.K.; Ackerman, C.M.; Weller, J. Designing sensitive viral diagnostics with machine learning. Nat. Biotechnol. 2022, 40, 1123–1131. [Google Scholar] [CrossRef] [PubMed]
- Baltekin, Ö.; Boucharin, A.; Tano, E.; Andersson, D.I.; Elf, J. Antibiotic susceptibility testing in less than 30 min using direct single-cell imaging. Proc. Natl. Acad. Sci. USA 2017, 114, 9170–9175. [Google Scholar] [CrossRef] [PubMed]
- Kandavalli, V.; Karempudi, P.; Larsson, J.; Elf, J. Rapid antibiotic susceptibility testing and species identification for mixed samples. Nat. Commun. 2022, 13, 8. [Google Scholar] [CrossRef]
- Agnihotri, S.N.; Fatsis-Kavalopoulos, N.; Windhager, J.; Tenje, M.; Andersson, D.I. Droplet microfluidics-based detection of rare antibiotic-resistant subpopulations in Escherichia coli from bloodstream infections. Sci. Adv. 2025, 11, 10. [Google Scholar] [CrossRef]
- Kaminski, T.S.; Scheler, O.; Garstecki, P. Droplet microfluidics for microbiology: Techniques, applications and challenges. Lab Chip 2016, 16, 2168–2187. [Google Scholar] [CrossRef]
- Bae, B.; Baek, Y.; Yang, J.; Lee, H.; Sonnadara, C.S.; Jung, S.; Park, M.; Lee, D.; Kim, S.; Giri, G. Near-sensor computing-assisted simultaneous viral antigen and antibody detection via integrated label-free biosensors with microfluidics. InfoMat 2023, 5, e12471. [Google Scholar] [CrossRef]
- Tran, N.K.; Howard, T.; Walsh, R.; Pepper, J.; Loegering, J.; Phinney, B.; Salemi, M.R.; Rashidi, H.H. Novel application of automated machine learning with MALDI-TOF-MS for rapid high-throughput screening of COVID-19: A proof of concept. Sci. Rep. 2021, 11, 8219. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, J.; Yang, Z.; Wang, X.; Zhang, Y.; Chen, M.; Ming, Z.; Zhang, K.; Zhang, D.; Zheng, L. Advances in Nucleic Acid Assays for Infectious Disease: The Role of Microfluidic Technology. Molecules 2024, 29, 2417. [Google Scholar] [CrossRef]
- Shokr, A.; Pacheco, L.G.; Thirumalaraju, P.; Kanakasabapathy, M.K.; Gandhi, J.; Kartik, D.; Silva, F.S.; Erdogmus, E.; Kandula, H.; Luo, S. Mobile health (mHealth) viral diagnostics enabled with adaptive adversarial learning. ACS Nano 2020, 15, 665–673. [Google Scholar] [CrossRef]
- Hardie, J.M.; Kim, S.; Yin, Z.; Chun, J.; Minahan, J.; Kim, J.; Ayanji, T.; Thirumalaraju, P.; Kanakasabapathy, M.K.; Alam, M. Automated, Deep Learning-Enabled Immunoassay Microfluidic Cartridge for Viral Pathogen Detection. Adv. Mater. Technol. 2025, 10, e00025. [Google Scholar] [CrossRef]
- Kim, S.; Lee, M.H.; Wiwasuku, T.; Day, A.S.; Youngme, S.; Hwang, D.S.; Yoon, J.-Y. Human sensor-inspired supervised machine learning of smartphone-based paper microfluidic analysis for bacterial species classification. Biosens. Bioelectron. 2021, 188, 113335. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Day, A.S.; Yoon, J.-Y. Machine learning classification of bacterial species using mix-and-match reagents on paper microfluidic chips and smartphone-based capillary flow analysis. Anal. Bioanal. Chem. 2022, 414, 3895–3904. [Google Scholar] [CrossRef]
- Lu, P.; Zhou, Y.; Niu, X.; Zhan, C.; Lang, P.; Zhao, Y.; Chen, Y. Deep-Learning-Assisted Microfluidic Immunoassay via Smartphone-Based Imaging Transcoding System for On-Site and Multiplexed Biosensing. Nano Lett. 2025, 25, 6803–6812. [Google Scholar] [CrossRef] [PubMed]
- Yin, X.; Wang, Z.; You, H.; Shu, T.; Hua, C.; Zhao, J.; Yang, K.; Deng, G.; Liu, Y.; Zhu, L. SEDphone: Spatial encoding of centrifugal microfluidic disc integrated smartphone-controlled platform via RT/LAMP-CRISPR/Cas12a system for influenza virus subtypes detection. Sens. Actuators B Chem. 2024, 417, 136196. [Google Scholar] [CrossRef]
- Nguyen, H.Q.; Nguyen, V.D.; Phan, V.M.; Seo, T.S. Development of a self-contained microfluidic chip and an internet-of-things-based point-of-care device for automated identification of respiratory viruses. Lab Chip 2024, 24, 2485–2496. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Feng, S.; Xu, H.; Yu, R.; Dai, B.; Guo, J.; Fang, M.; Cui, D.; Wang, K. A smartphone-integrated deep learning strategy-assisted rapid detection system for monitoring dual-modal immunochromatographic assay. Talanta 2025, 282, 127043. [Google Scholar] [CrossRef]
- Nguyen, H.Q.; Bui, H.K.; Phan, V.M.; Seo, T.S. An internet of things-based point-of-care device for direct reverse-transcription-loop mediated isothermal amplification to identify SARS-CoV-2. Biosens. Bioelectron. 2022, 195, 113655. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, D.; Lv, X.; Jiang, H.; Fan, Y.; Liu, K.; Wang, H.; Deng, Y. AI-Enabled Microfluidics for Respiratory Pathogen Detection. Sensors 2025, 25, 5791. https://doi.org/10.3390/s25185791
Zhang D, Lv X, Jiang H, Fan Y, Liu K, Wang H, Deng Y. AI-Enabled Microfluidics for Respiratory Pathogen Detection. Sensors. 2025; 25(18):5791. https://doi.org/10.3390/s25185791
Chicago/Turabian StyleZhang, Daoguangyao, Xuefei Lv, Hao Jiang, Yunlong Fan, Kexin Liu, Hao Wang, and Yulin Deng. 2025. "AI-Enabled Microfluidics for Respiratory Pathogen Detection" Sensors 25, no. 18: 5791. https://doi.org/10.3390/s25185791
APA StyleZhang, D., Lv, X., Jiang, H., Fan, Y., Liu, K., Wang, H., & Deng, Y. (2025). AI-Enabled Microfluidics for Respiratory Pathogen Detection. Sensors, 25(18), 5791. https://doi.org/10.3390/s25185791