Ultrasonic Localization of Transformer Patrol Robot Based on Wavelet Transform and Narrowband Beamforming
Abstract
1. Introduction
2. Positioning Principle of Transformer Patrol Robot
2.1. Ultrasonic Propagation and Attenuation in Transformer Oil
2.2. Narrowband Signal Model
2.3. Positioning Principle of Array Beamforming
2.4. Wavelet Packet Decomposition and Filtering
- The decomposition process involves selecting a wavelet to perform n-layer wavelet decomposition on a signal;
- The threshold process involves threshold denoising for the decomposed coefficients of each layer;
- In the reconstruction process, the denoised wavelet coefficients are reconstructed to obtain the denoised signal.
3. Simulation Study on Beam Imaging Localization of Patrol Robots
3.1. Effect of the Improved WFB Algorithm
3.2. Effect of Sensor Array Shape on Positioning
3.3. Effect of the Number of Sensors in the Ultrasonic Array
3.4. Effect of Sound Source Position on Positioning
3.5. Comparative Analysis of Different Localization Methods
4. Experimental Verification
4.1. Three-Dimensional Space Positioning Test Platform for Transformer Patrol Robots
4.2. Experiment and Data Acquisition Process
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
WFB | Weighted Filter-Beamforming |
GCC | Generalized Cross-Correlation |
LMS | Least Mean Square |
AR | Autoregressive |
ME | Maximum Entropy |
TDOA | Time Differences of Arrival |
SNR | Signal-to-Noise Ratio |
RMSE | Root-Mean-Square Error |
NCC | Normalized Correlation Coefficient |
References
- Fan, J.; Lu, Y.; Ding, J.; Meng, A.; Tang, Z.; Ye, J. SOFC detector with OCA approach to quantify trace gases dissolved in transformer oil. IEEE Sens. J. 2022, 20, 648–655. [Google Scholar] [CrossRef]
- Bakar, N.; Abu-Siada, A. A new method to detect dissolved gases in transformer oil using NIR-IR spectroscopy. IEEE Trans. Dielectr. Electr. Insul. 2017, 24, 409–419. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, H.; Xie, Z.; Wang, Z.; Chen, L.; Lin, X. Combined forecasting method of dissolved gases concentration and its application in condition-based maintenance. IEEE Trans. Power Delivery 2019, 34, 1269–1278. [Google Scholar] [CrossRef]
- TXplore™ Transformer Inspection Robot|Hitachi Energy. Available online: https://www.hitachienergy.com/products-and-solutions/transformers/transformer-service/assess-and-secure/txplore-transformer-inspection-robot (accessed on 15 January 2024).
- ABB’s TXplore Robot Redefines Transformer Inspection. Available online: https://new.abb.com/news/detail/7870/abbs-txplore-robot-redefines-transformer-inspection (accessed on 15 January 2024).
- Yue, C.; Guo, S.; Li, M.; Li, Y.; Hirata, H.; Ishihara, H. Mechatronic System and Experiments of a Spherical Underwater Robot: SUR-II. J. Intell. Robot. Syst. 2015, 80, 325–340. [Google Scholar] [CrossRef]
- Wei, L.; Xiang, G.; Ma, C.; Jiang, X.; Dian, S. Trajectory Tracking Control of Transformer Inspection Robot Using Distributed Model Predictive Control. Sensors 2023, 23, 9238. [Google Scholar] [CrossRef] [PubMed]
- Ji, H.; Cui, X.; Ren, W.; Liu, L.; Wang, W. Visual inspection for transformer insulation defects by a patrol robot fish based on deep learning. IET Sci. Meas. Technol. 2021, 15, 606–618. [Google Scholar] [CrossRef]
- Qin, H.L.; Meng, Z.H.; Meng, W.; Chen, X.D.; Sun, H.; Lin, F.; Ang, M.H. Autonomous Exploration and Mapping System Using Heterogeneous UAVs and UGVs in GPS-Denied Environments. IEEE Trans. Veh. Technol. 2019, 68, 1339–1350. [Google Scholar] [CrossRef]
- Ko, M.H.; Ryuh, B.S.; Kim, K.C.; Suprem, A.; Mahalik, N.P. Autonomous Greenhouse Mobile Robot Driving Strategies from System Integration Perspective: Review and Application. IEEE/ASME Trans. Mechatron. 2015, 20, 1705–1716. [Google Scholar] [CrossRef]
- Yu, J.R.; Xiang, Z.Z.; Su, J.B. Hierarchical Multi-Level Information Fusion for Robust and Consistent Visual SLAM. IEEE Trans. Veh. Technol. 2022, 71, 250–259. [Google Scholar] [CrossRef]
- Hwang, C.L.; Chou, Y.J.; Lan, C.W. Comparisons Between Two Visual Navigation Strategies for Kicking to Virtual Target Point of Humanoid Robots. IEEE Trans. Instrum. Meas. 2013, 62, 3050–3063. [Google Scholar] [CrossRef]
- Aparicio, J.; Aguilera, T.; Álvarez, F.J. Robust Airborne Ultrasonic Positioning of Moving Targets in Weak Signal Coverage Areas. IEEE Sens. J. 2020, 20, 13119–13130. [Google Scholar] [CrossRef]
- Ji, H.; Liu, X.; Zhang, J.; Liu, L. Spatial Localization of a Transformer Robot Based on Ultrasonic Signal Wavelet Decomposition and PHAT-β-γ Generalized Cross Correlation. Sensors 2024, 24, 1440. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Liu, Y.; Ma, Y.; Chang, X.; Yang, J. Application of the differentiation process into the correlation-based leak detection in urban pipeline networks. Mech. Syst. Signal Process. 2018, 112, 251–264. [Google Scholar] [CrossRef]
- Ollivier, B.; Pepperell, A.; Halstead, Z.; Hioka, Y. Noise robust bird call localisation using the generalised cross-correlation with phase transform in the wavelet domain. J. Acoust. Soc. Am. 2019, 146, 4650–4663. [Google Scholar] [CrossRef] [PubMed]
- Fereidoony, F.; Jishi, A.; Hedayati, M.; Wang, Y.E. Magnitude-delay least mean squares equalization for accurate estimation of time of arrival. IEEE Sens. J. 2021, 21, 18075–18084. [Google Scholar] [CrossRef]
- Sun, Y.; Ho, K.C.; Wan, Q. Solution and Analysis of TDOA Localization of a Near or Distant Source in Closed Form. IEEE Trans. Signal Process. 2019, 67, 320–335. [Google Scholar] [CrossRef]
- Zheng, Q.; Luo, L.; Song, H.; Sheng, G.; Jiang, X. A RSSI-AOA-based UHF partial discharge localization method using MUSIC algorithm. IEEE Trans. Instrum. Meas. 2021, 70, 9002309. [Google Scholar] [CrossRef]
- Cremer, M.; Dettmar, U.; Hudasch, C.; Kronberger, R.; Lerche, R.; Pervez, A. Localization of Passive UHF RFID Tags Using the AoAct Transmitter Beamforming Technique. IEEE Sens. J. 2016, 16, 1762–1771. [Google Scholar] [CrossRef]
- Guo, L.; Deng, H.; Himed, B.; Ma, T.; Geng, Z. Waveform Optimization for Transmit Beamforming with MIMO Radar Antenna Arrays. IEEE Trans. Antennas Propag. 2015, 63, 543–552. [Google Scholar] [CrossRef]
Threshold Function | SNR/dB | RMSE | NCC |
---|---|---|---|
Original signal with noise | 0 | 0.315 | 0.562 |
Denoising with hard threshold function | 6.982 | 0.114 | 0.743 |
Denoising with soft threshold function | 9.717 | 0.092 | 0.803 |
Denoising with semi-soft threshold function | 11.206 | 0.047 | 0.928 |
Position 1 (mm) | Localization Results (mm) | Absolute Localization Error (mm) | Relative Localization Error |
---|---|---|---|
(230, 50, 730) | (238, 54, 746) | (8, 4, 16) | 2.39% |
(230, 50, 730) | (242, 58, 740) | (12, 8, 10) | 2.29% |
(230, 50, 730) | (236, 54, 736) | (6, 4, 6) | 1.22% |
(230, 50, 730) | (234, 52, 720) | (4, 2, 10) | 1.43% |
(230, 50, 730) | (228, 52, 710) | (2, 2, 20) | 2.63% |
(230, 50, 730) | (244, 46, 738) | (14, 4, 8) | 2.17% |
(230, 50, 730) | (218, 58, 712) | (2, 8, 18) | 3.01% |
(230, 50, 730) | (234, 54, 704) | (4, 4, 26) | 3.47% |
(230, 50, 730) | (240, 42, 726) | (10, 8, 4) | 1.75% |
(230, 50, 730) | (244, 54, 732) | (14, 4, 2) | 1.92% |
(230, 50, 730) | (234, 52, 726) | (4, 2, 4) | 0.78% |
(230, 50, 730) | (238, 54, 730) | (8, 4, 0) | 1.17% |
(230, 50, 730) | (218, 56, 742) | (12, 6, 12) | 2.35% |
(230, 50, 730) | (228, 50, 704) | (2, 0, 26) | 3.40% |
Position 2 (mm) | Localization Results (mm) | Absolute Localization Error (mm) | Relative Localization Error |
---|---|---|---|
(−290, 90, 570) | (−290, 92, 570) | (0, 2, 0) | 0.31% |
(−290, 90, 570) | (−294, 94, 578) | (4, 4, 8) | 1.52% |
(−290, 90, 570) | (−294, 96, 578) | (4, 6, 8) | 1.67% |
(−290, 90, 570) | (−296, 96, 584) | (6, 6, 4) | 1.45% |
(−290, 90, 570) | (−290, 96, 578) | (0, 6, 8) | 1.55% |
(−290, 90, 570) | (−296, 92, 584) | (6, 2, 14) | 2.38% |
(−290, 90, 570) | (−294, 94, 578) | (4, 4, 8) | 1.52% |
(−290, 90, 570) | (−290, 92, 570) | (0, 2, 0) | 0.10% |
(−290, 90, 570) | (−298, 94, 582) | (8, 4, 12) | 2.32% |
(−290, 90, 570) | (−296, 92, 584) | (6, 2, 14) | 2.38% |
(−290, 90, 570) | (−286, 88, 558) | (4, 2, 12) | 1.98% |
(−290, 90, 570) | (−298, 94, 574) | (8, 4, 4) | 1.52% |
(−290, 90, 570) | (−296, 96, 584) | (6, 6, 14) | 2.53% |
(−290, 90, 570) | (−294, 96, 584) | (4, 6, 14) | 2.44% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, H.; Tang, Z.; Li, J.; Zheng, C.; Liu, X.; Liu, L. Ultrasonic Localization of Transformer Patrol Robot Based on Wavelet Transform and Narrowband Beamforming. Sensors 2025, 25, 5723. https://doi.org/10.3390/s25185723
Ji H, Tang Z, Li J, Zheng C, Liu X, Liu L. Ultrasonic Localization of Transformer Patrol Robot Based on Wavelet Transform and Narrowband Beamforming. Sensors. 2025; 25(18):5723. https://doi.org/10.3390/s25185723
Chicago/Turabian StyleJi, Hongxin, Zijian Tang, Jiaqi Li, Chao Zheng, Xinghua Liu, and Liqing Liu. 2025. "Ultrasonic Localization of Transformer Patrol Robot Based on Wavelet Transform and Narrowband Beamforming" Sensors 25, no. 18: 5723. https://doi.org/10.3390/s25185723
APA StyleJi, H., Tang, Z., Li, J., Zheng, C., Liu, X., & Liu, L. (2025). Ultrasonic Localization of Transformer Patrol Robot Based on Wavelet Transform and Narrowband Beamforming. Sensors, 25(18), 5723. https://doi.org/10.3390/s25185723