DG-TTA: Out-of-Domain Medical Image Segmentation Through Augmentation, Descriptor-Driven Domain Generalization, and Test-Time Adaptation
Abstract
Highlights
- Combining domain-generalized pre-training with test-time adaptation substantially enhances segmentation accuracy for medical images in out-of-domain scenarios.
- Generalizing image descriptors and intensity augmentation during training and adaptation outperformed complex existing methods in several scenarios.
- We provide a powerful tool to achieve high segmentation accuracy out-of-domain, even without access to source data.
- Our efficient method is applicable to many top public 2D and 3D segmentation models trained on large, private datasets.
Abstract
1. Introduction
Contributions
- We propose combining DG pre-training and TTA to achieve optimal performance with minimum data requirements (DG-TTA).
- We introduce the use of the SSC feature descriptor, previously applied in image registration tasks for DG pre-training and TTA, and we demonstrate its superiority on small-scale datasets.
- We perform TTA with a lean self-supervision scheme to avoid auxiliary optimization tasks or the need for prior assumptions, as opposed to related TTA methods.
- The proposed methodological contributions are evaluated in several out-of-domain CT-to-MR segmentation scenarios.
2. Materials and Methods
2.1. Study Design and Patients
2.2. Datasets
2.2.1. BTCV: Multi-Atlas Labeling Beyond the Cranial Vault
2.2.2. AMOS: A Large-Scale Abdominal Multi-Organ Benchmark for Versatile Medical Image Segmentation
2.2.3. MMWHS: Multi-Modality Whole Heart Segmentation
2.2.4. SPINE: MyoSegmenTUM Spine
2.2.5. TS: TotalSegmentator, 104 Labels
2.2.6. Pre-/Postprocessing
2.3. Related Work
2.3.1. Domain Generalization
2.3.2. Test-Time Adaptation
2.4. Proposed Method
2.5. Domain-Generalized Pre-Training on Source Data
2.6. Target Domain TTA
Optimization Strategy
2.7. Statistical Methods
3. Results
3.1. Experiment I: Abdominal CT/MR Cross-Domain Segmentation
Runtime
3.2. Experiment II: Multi-Scenario CT/MR Cross-Domain Segmentation with DG-TTA
3.3. Experiment III: TTA Ablation Experiments
4. Discussion
4.1. Pertinent Findings in This Study
4.2. Differences with Regard to Existing Literature
4.3. Limitations of the Technical Method
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
+A | adapted |
AOR | aorta |
BS | base |
CT | computed tomography |
DG | domain generalization |
ESO | esophagus |
GAL | gallbladder |
GT | ground truth |
HD | Hausdorff distance |
IVC | inferior vena cava |
LIV | liver |
LKN | left kidney |
MRI | magnetic resonance imaging |
PAN | pancreas |
RKN | right kidney |
SPL | spleen |
STO | stomach |
TTA | test-time adaptation |
Appendix A
Dataset | BTCV | AMOS | Total Segmentator Training Dataset | MyoSegmenTUM Spine | MMWHS |
---|---|---|---|---|---|
Variable: | |||||
Date range | ≤2015 | 2022 | 2012–2020 | ≤2018 | ≤2017 |
Modalities | CT | CT/MR | CT | MR | CT/MR |
CT scans | 50 | 500 | 1204 | 0 | 60 |
MRI scans | 0 | 100 | 0 | 54 | 60 |
Patients | 50 | 600 | 1204 | 54 | 60 |
Sites | N/A | 1 | 8 | 1 | 3 |
Scanners | N/A | 8 | 16 | 1 | 4 |
Sex: | |||||
Male | N/A | 314 | ∼700 | 15 | N/A |
Female | N/A | 186 | ∼500 | 39 | N/A |
Not reported | 50 | 0 | N/A | 0 | N/A |
Age (y) | |||||
Min | N/A | 22 | 18 | 21 | N/A |
Max | N/A | 85 | 100 | 78 | N/A |
Median | N/A | 50 | ∼70 | 40 | N/A |
Mean | N/A | 48.7 | ∼70.0 | 51.6 | N/A |
Labeled structures | Spleen, right kidney, left kidney, gallbladder, esophagus, liver, stomach, aorta, inferior vena cava, portal vein and splenic vein, pancreas, right adrenal gland, left adrenal gland | Spleen, right kidney, left kidney gallbladder, esophagus, liver, stomach, aorta, inferior vena cava, pancreas, right adrenal gland, left adrenal gland, duodenum, bladder, prostate/uterus | Cardiac, abdominal organ and lumbar spine labels (a subset of the 27 organs, 59 bones, 10 muscles, and 8 vessels labeled) | Vertebral bodies L1 to L5 | Myocardium of left ventricle, left ventricle, right ventricle, left atrium, right atrium, aortic trunk, pulmonary artery trunk |
Key clinical characteristics | Patients were randomly selected from a combination of an ongoing colorectal cancer chemotherapy trial and a retrospective ventral hernia study | Patients were be diagnosed with abdominal tumors and abnormalities | Patients with no signs of abnormality (404), patients with different types of abnormality (645), including tumor, vascular, trauma, inflammation, bleeding, and other | Healthy volunteers | Patients with pathologies involving cardiac diseases, myocardium infarction, atrial fibrillation, tricuspid regurgitation, aortic valve stenosis, Alagille syndrome, Williams syndrome, dilated cardiomyopathy, aortic coarctation and Tetralogy of Fallot. |
Appendix B
References
- Karani, N.; Chaitanya, K.; Baumgartner, C.; Konukoglu, E. A lifelong learning approach to brain MR segmentation across scanners and protocols. In Proceedings of the Medical Image Computing and Computer Assisted Intervention–MICCAI 2018: 21st International Conference, Granada, Spain, 16–20 September 2018; Proceedings, Part I. Springer: Cham, Switzerland, 2018; pp. 476–484. [Google Scholar]
- Pooch, E.H.; Ballester, P.; Barros, R.C. Can we trust deep learning based diagnosis? the impact of domain shift in chest radiograph classification. In Proceedings of the Thoracic Image Analysis: Second International Workshop, TIA 2020, Held in Conjunction with MICCAI 2020, Lima, Peru, 8 October 2020; Proceedings 2. Springer: Cham, Switzerland, 2020; pp. 74–83. [Google Scholar]
- Usman, M.; Zia, T.; Tariq, A. Analyzing transfer learning of vision transformers for interpreting chest radiography. J. Digit. Imaging 2022, 35, 1445–1462. [Google Scholar] [CrossRef] [PubMed]
- Luna Lozoya, R.S.; Ochoa Domínguez, H.d.J.; Sossa Azuela, J.H.; Cruz Sánchez, V.G.; Vergara Villegas, O.O.; Núñez Barragán, K. Cross-Domain Transfer Learning Architecture for Microcalcification Cluster Detection Using the MEXBreast Multiresolution Mammography Dataset. Mathematics 2025, 13, 2422. [Google Scholar] [CrossRef]
- Zhu, J.Y.; Park, T.; Isola, P.; Efros, A.A. Unpaired image-to-image translation using cycle-consistent adversarial networks. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2223–2232. [Google Scholar]
- Varsavsky, T.; Orbes-Arteaga, M.; Sudre, C.H.; Graham, M.S.; Nachev, P.; Cardoso, M.J. Test-time unsupervised domain adaptation. In Proceedings of the Medical Image Computing and Computer Assisted Intervention–MICCAI 2020: 23rd International Conference, Lima, Peru, 4–8 October 2020; Proceedings, Part I 23. Springer: Cham, Switzerland, 2020; pp. 428–436. [Google Scholar]
- Chen, C.; Liu, Q.; Jin, Y.; Dou, Q.; Heng, P.A. Source-free domain adaptive fundus image segmentation with denoised pseudo-labeling. In Proceedings of the Medical Image Computing and Computer Assisted Intervention–MICCAI 2021: 24th International Conference, Strasbourg, France, 27 September–1 October 2021; Proceedings, Part V 24. Springer: Cham, Switzerland, 2021; pp. 225–235. [Google Scholar]
- Wen, Z.; Zhang, X.; Ye, C. Source-Free Domain Adaptation for Medical Image Segmentation via Selectively Updated Mean Teacher. In Proceedings of the International Conference on Information Processing in Medical Imaging, San Carlos de Bariloche, Argentina, 18–23 June 2023; Springer: Cham, Switzerland, 2023; pp. 225–236. [Google Scholar]
- Tobin, J.; Fong, R.; Ray, A.; Schneider, J.; Zaremba, W.; Abbeel, P. Domain randomization for transferring deep neural networks from simulation to the real world. In Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada, 24–28 September 2017; IEEE: Vancouver, BC, Canada, 2017; pp. 23–30. [Google Scholar]
- Bucci, S.; D’Innocente, A.; Liao, Y.; Carlucci, F.M.; Caputo, B.; Tommasi, T. Self-supervised learning across domains. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 44, 5516–5528. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Liu, D.; Yang, J.; Raffel, C.; Niethammer, M. Robust and generalizable visual representation learning via random convolutions. arXiv 2020, arXiv:2007.13003. [Google Scholar]
- He, K.; Chen, X.; Xie, S.; Li, Y.; Dollár, P.; Girshick, R. Masked autoencoders are scalable vision learners. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Orleans, LA, USA, 18–24 June 2022; pp. 16000–16009. [Google Scholar]
- Hoyer, L.; Dai, D.; Wang, H.; Van Gool, L. MIC: Masked image consistency for context-enhanced domain adaptation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17–24 June 2023; pp. 11721–11732. [Google Scholar]
- Zhou, Z.; Sodha, V.; Pang, J.; Gotway, M.B.; Liang, J. Models genesis. Med. Image Anal. 2021, 67, 101840. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, C.; Chen, C.; Li, S.; Li, Z.; Qin, C.; Bai, W.; Rueckert, D. Causality-inspired single-source domain generalization for medical image segmentation. IEEE Trans. Med. Imaging 2022, 42, 1095–1106. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.; Liao, Z.; Zhang, J.; Xia, Y. Domain and Content Adaptive Convolution Based Multi-Source Domain Generalization for Medical Image Segmentation. IEEE Trans. Med. Imaging 2022, 42, 233–244. [Google Scholar] [CrossRef] [PubMed]
- Billot, B.; Greve, D.N.; Puonti, O.; Thielscher, A.; Van Leemput, K.; Fischl, B.; Dalca, A.V.; Iglesias, J.E. SynthSeg: Segmentation of brain MRI scans of any contrast and resolution without retraining. Med. Image Anal. 2023, 86, 102789. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zhang, Y.; Chen, J.N.; Xiao, J.; Lu, Y.; Landman, B.A.; Yuan, Y.; Yuille, A.; Tang, Y.; Zhou, Z. CLIP-Driven Universal Model for Organ Segmentation and Tumor Detection. arXiv 2023, arXiv:2301.00785. [Google Scholar] [CrossRef]
- Wang, D.; Shelhamer, E.; Liu, S.; Olshausen, B.; Darrell, T. Tent: Fully test-time adaptation by entropy minimization. arXiv 2020, arXiv:2006.10726. [Google Scholar]
- Sun, Y.; Wang, X.; Liu, Z.; Miller, J.; Efros, A.; Hardt, M. Test-time training with self-supervision for generalization under distribution shifts. In Proceedings of the International Conference on Machine Learning, PMLR, Online, 13–18 July 2020; pp. 9229–9248. [Google Scholar]
- Bateson, M.; Kervadec, H.; Dolz, J.; Lombaert, H.; Ben Ayed, I. Source-relaxed domain adaptation for image segmentation. In Proceedings of the Medical Image Computing and Computer Assisted Intervention–MICCAI 2020: 23rd International Conference, Lima, Peru, 4–8 October2020; Proceedings, Part I 23. Springer: Cham, Switzerland, 2020; pp. 490–499. [Google Scholar]
- Huang, Y.; Yang, X.; Huang, X.; Liang, J.; Zhou, X.; Chen, C.; Dou, H.; Hu, X.; Cao, Y.; Ni, D. Online Reflective Learning for Robust Medical Image Segmentation. In Proceedings of the Medical Image Computing and Computer Assisted Intervention–MICCAI 2022: 25th International Conference, Singapore, 18–22 September 2022; Proceedings, Part VIII. Springer: Cham, Switzerland, 2022; pp. 652–662. [Google Scholar]
- Karani, N.; Erdil, E.; Chaitanya, K.; Konukoglu, E. Test-time adaptable neural networks for robust medical image segmentation. Med. Image Anal. 2021, 68, 101907. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Carass, A.; Zuo, L.; Dewey, B.E.; Prince, J.L. Self domain adapted network. In Proceedings of the Medical Image Computing and Computer Assisted Intervention–MICCAI 2020: 23rd International Conference, Lima, Peru, 4–8 October 2020; Proceedings, Part I 23. Springer: Cham, Switzerland, 2020; pp. 437–446. [Google Scholar]
- He, Y.; Carass, A.; Zuo, L.; Dewey, B.E.; Prince, J.L. Autoencoder based self-supervised test-time adaptation for medical image analysis. Med. Image Anal. 2021, 72, 102136. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Chen, C.; Dou, Q.; Heng, P.A. Single-domain generalization in medical image segmentation via test-time adaptation from shape dictionary. In Proceedings of the AAAI Conference on Artificial Intelligence, Virtually, 22 February–1 March 2022; Volume 36, pp. 1756–1764. [Google Scholar]
- Li, H.; Liu, H.; Hu, D.; Wang, J.; Johnson, H.; Sherbini, O.; Gavazzi, F.; D’Aiello, R.; Vanderver, A.; Long, J.; et al. Self-supervised Test-Time Adaptation for Medical Image Segmentation. In Machine Learning in Clinical Neuroimaging; Abdulkadir, A., Bathula, D.R., Dvornek, N.C., Habes, M., Kia, S.M., Kumar, V., Wolfers, T., Eds.; Springer: Cham, Switzerland, 2022; pp. 32–41. [Google Scholar]
- Zeng, H.; Zou, K.; Chen, Z.; Zheng, R.; Fu, H. Reliable source approximation: Source-free unsupervised domain adaptation for vestibular schwannoma MRI segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Marrakesh, Morocco, 6–10 October 2024; Springer: Cham, Switzerland, 2024; pp. 622–632. [Google Scholar]
- Isensee, F.; Jaeger, P.F.; Kohl, S.A.; Petersen, J.; Maier-Hein, K.H. nnU-Net: A self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 2021, 18, 203–211. [Google Scholar] [CrossRef] [PubMed]
- Landman, B.; Xu, Z.; Igelsias, J.; Styner, M.; Langerak, T.; Klein, A. Miccai multi-atlas labeling beyond the cranial vault–workshop and challenge. In Proceedings of the MICCAI Multi-Atlas Labeling Beyond Cranial Vault—Workshop Challenge, Munich, Germany, 5–9 October 2015; Volume 5, p. 12. [Google Scholar]
- Ji, Y.; Bai, H.; Ge, C.; Yang, J.; Zhu, Y.; Zhang, R.; Li, Z.; Zhang, L.; Ma, W.; Wan, X.; et al. AMOS: A large-scale abdominal multi-organ benchmark for versatile medical image segmentation. In Proceedings of the 36th International Conference on Neural Information Processing Systems, NIPS ’22, Red Hook, NY, USA, 28 November–9 December 2022. [Google Scholar]
- Zhuang, X.; Li, L.; Payer, C.; Štern, D.; Urschler, M.; Heinrich, M.P.; Oster, J.; Wang, C.; Smedby, Ö.; Bian, C.; et al. Evaluation of algorithms for Multi-Modality Whole Heart Segmentation: An open-access grand challenge. Med. Image Anal. 2019, 58, 101537. [Google Scholar] [CrossRef] [PubMed]
- Burian, E.; Rohrmeier, A.; Schlaeger, S.; Dieckmeyer, M.; Diefenbach, M.N.; Syväri, J.; Klupp, E.; Weidlich, D.; Zimmer, C.; Rummeny, E.J.; et al. Lumbar muscle and vertebral bodies segmentation of chemical shift encoding-based water-fat MRI: The reference database MyoSegmenTUM spine. BMC Musculoskelet. Disord. 2019, 20, 152. [Google Scholar] [CrossRef] [PubMed]
- Wasserthal, J.; Breit, H.C.; Meyer, M.T.; Pradella, M.; Hinck, D.; Sauter, A.W.; Heye, T.; Boll, D.T.; Cyriac, J.; Yang, S.; et al. TotalSegmentator: Robust Segmentation of 104 Anatomic Structures in CT Images. Artif. Intell. 2023, 5, e230024. [Google Scholar] [CrossRef] [PubMed]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October 2015; Springer: Cham, Switzerland, 2015; pp. 234–241. [Google Scholar]
- Perone, C.S.; Ballester, P.; Barros, R.C.; Cohen-Adad, J. Unsupervised domain adaptation for medical imaging segmentation with self-ensembling. NeuroImage 2019, 194, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Heinrich, M.P.; Jenkinson, M.; Papież, B.W.; Brady, S.M.; Schnabel, J.A. Towards realtime multimodal fusion for image-guided interventions using self-similarities. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention–MICCAI 2013: 16th International Conference, Nagoya, Japan, 22–26 September 2013; Proceedings, Part I 16. Springer: Cham, Switzerland, 2013; pp. 187–194. [Google Scholar]
- Wilcoxon, F. Individual comparisons by ranking methods. In Breakthroughs in Statistics: Methodology and Distribution; Springer: New York, NY, USA, 1992; pp. 196–202. [Google Scholar]
- Wasserthal, J. Dataset with Segmentations of 117 Important Anatomical Structures in 1228 CT Images. 2023. Available online: https://zenodo.org/records/10047292 (accessed on 31 August 2025).
Method | Stage | SPL | RKN | LKN | GAL | ESO | LIV | STO | AOR | IVC | PAN | Dice | Gain | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
NNUNET | BS | Reference | 40.2 | 21.9 | 15.9 | 24.9 | 22.9 | 76.0 | 34.3 | 26.4 | 21.8 | 35.3 | 32.0 ± 16.3 | |
+A | ours | 76.0 | 70.0 | 74.4 | 42.5 | 42.0 | 79.8 | 52.0 | 65.2 | 46.7 | 60.8 | 60.9 ± 13.6 | +28.9 | |
Tent | BS | 0.0 | 0.0 | 0.0 | 0.0 | 0.3 | 43.7 | 0.0 | 2.3 | 0.5 | 1.5 | 4.8 ± 13.0 | −27.2 | |
+A | 68.7 | 68.4 | 80.3 | 30.2 | 25.3 | 50.3 | 52.4 | 47.0 | 30.3 | 43.0 | 49.6 ± 17.5 | +17.6 | ||
TTA-RMI | BS | 3.2 | 10.8 | 23.3 | 3.3 | 11.6 | 38.9 | 15.2 | 3.1 | 8.7 | 11.2 | 12.9 ± 10.5 | −19.1 | |
+A | 65.8 | 48.0 | 55.7 | 9.3 | 25.1 | 66.7 | 37.0 | 36.0 | 25.6 | 28.5 | 39.8 ± 17.9 | +7.8 | ||
RSA | BS | 5.5 | 4.5 | 4.3 | 0.0 | 0.0 | 4.4 | 7.3 | 1.2 | 0.0 | 0.3 | 2.7 ± 2.6 | −29.2 | |
+A | 12.5 | 14.1 | 18.6 | 0.9 | 2.4 | 24.5 | 5.3 | 10.0 | 15.8 | 2.9 | 10.7 ± 7.4 | −21.3 | ||
AdaMI | BS | 40.2 | 21.9 | 15.9 | 24.9 | 22.9 | 76.0 | 34.3 | 26.4 | 21.8 | 35.3 | 32.0 ± 16.3 | ||
+A | 75.0 | 77.7 | 83.1 | 37.1 | 37.9 | 83.8 | 56.5 | 68.1 | 48.2 | 61.1 | 62.8 ± 16.7 | +30.9 | ||
NNUNET BN | BS | 0.0 | 0.0 | 0.0 | 0.0 | 0.3 | 43.7 | 0.0 | 2.3 | 0.5 | 1.5 | 4.8 ± 13.0 | −27.2 | |
+A-nor | ours | 62.8 | 79.2 | 80.1 | 32.8 | 26.5 | 74.0 | 67.6 | 52.5 | 34.5 | 56.3 | 56.6 ± 18.7 | +24.6 | |
+A-enc | ours | 80.1 | 87.1 | 88.4 | 34.6 | 30.9 | 83.1 | 73.9 | 68.8 | 43.8 | 64.8 | 65.5 ± 20.5 | +33.6 | |
+A | ours | 81.6 | 87.2 | 89.2 | 40.1 | 35.9 | 84.7 | 73.4 | 75.1 | 54.1 | 66.8 | 68.8 ± 18.3 | +36.8 | |
GIN | BS | 81.9 | 90.4 | 91.9 | 63.7 | 47.8 | 92.7 | 73.2 | 80.9 | 72.1 | 68.1 | 76.3 ± 13.5 | +44.3 | |
+A | ours | 81.6 | 90.5 | 92.1 | 72.3 | 48.9 | 93.3 | 74.7 | 79.2 | 70.9 | 70.6 | 77.4 ± 12.6 | +45.4 | |
SSC | BS | ours | 83.6 | 92.9 | 93.0 | 60.5 | 39.1 | 93.1 | 74.6 | 81.1 | 69.5 | 73.2 | 76.1 ± 16.1 | +44.1 |
+A | ours | 83.4 | 91.2 | 92.9 | 68.1 | 48.6 | 91.4 | 74.4 | 83.3 | 71.3 | 72.2 | 77.7 ± 13.0 | +45.7 | |
GIN+SSC | BS | ours | 83.0 | 93.3 | 93.3 | 65.9 | 50.3 | 94.1 | 76.5 | 83.9 | 73.7 | 71.9 | 78.6 ± 13.3 | +46.6 |
+A | ours | 82.2 | 92.7 | 92.7 | 68.4 | 47.1 | 93.4 | 74.5 | 84.8 | 73.5 | 72.5 | 78.2 ± 13.6 | +46.2 | |
(NNUNET) | (Target training) | 86.5 | 94.6 | 95.0 | 70.9 | 59.9 | 97.3 | 81.4 | 91.2 | 85.4 | 83.2 | 84.5 ± 11.1 | +52.6 |
Method | Stage | SPL | RKN | LKN | GAL | ESO | LIV | STO | AOR | IVC | PAN | HD95 | Reduction | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
NNUNET | BS | Reference | 96.2 | 60.2 | 105.0 | 66.0 | 68.8 | 151.3 | 181.1 | 127.7 | 115.2 | 72.6 | 104.4 ± 38.1 | |
+A | ours | 70.9 | 36.5 | 58.2 | 93.8 | 51.5 | 158.1 | 191.4 | 126.3 | 116.5 | 72.8 | 97.6 ± 47.3 | −6.8 | |
Tent | BS | — | 90.1 | 102.7 | 32.7 | 141.5 | 46.0 | 93.5 | 182.5 | 123.0 | 76.3 | 98.7 ± 43.7 | −5.7 | |
+A | 186.7 | 215.1 | 181.7 | 130.9 | 180.3 | 239.3 | 228.3 | 171.4 | 162.8 | 182.9 | 187.9 ± 30.5 | +83.5 | ||
TTA-RMI | BS | 105.9 | 101.0 | 92.6 | 69.4 | 149.9 | 114.3 | 163.3 | 101.9 | 109.6 | 96.8 | 110.5 ± 26.0 | +6.1 | |
+A | 67.9 | 47.6 | 84.8 | 65.9 | 122.0 | 93.5 | 103.4 | 99.7 | 112.9 | 76.9 | 87.4 ± 22.0 | −17.0 | ||
RSA | BS | 116.8 | 88.9 | 60.2 | 77.7 | 129.7 | 206.9 | 115.7 | 146.1 | 154.1 | 101.3 | 119.7 ± 40.2 | +15.3 | |
+A | 80.2 | 119.9 | 102.8 | 97.7 | 116.1 | 83.9 | 100.2 | 43.4 | 36.6 | 86.6 | 86.7 ± 26.4 | −17.7 | ||
AdaMI | BS | 96.2 | 60.2 | 105.0 | 66.0 | 68.8 | 151.3 | 181.1 | 127.7 | 115.2 | 72.6 | 104.4 ± 38.1 | ||
+A | 39.3 | 46.1 | 44.7 | 85.5 | 40.9 | 174.4 | 196.1 | 106.2 | 97.1 | 56.2 | 88.7 ± 53.7 | −15.8 | ||
NNUNET BN | BS | — | 90.1 | 102.7 | 32.7 | 141.5 | 46.0 | 93.5 | 182.5 | 123.0 | 76.3 | 98.7 ± 43.7 | −5.7 | |
+A-nor | ours | 50.9 | 26.5 | 37.7 | 52.4 | 71.2 | 180.7 | 87.9 | 110.5 | 50.3 | 35.2 | 70.3 ± 44.1 | −34.1 | |
+A-enc | ours | 27.4 | 11.8 | 9.6 | 43.5 | 68.5 | 157.5 | 56.4 | 57.7 | 37.3 | 17.4 | 48.7 ± 41.1 | −55.7 | |
+A | ours | 38.1 | 54.0 | 42.6 | 50.4 | 33.0 | 134.6 | 70.2 | 82.9 | 31.6 | 20.2 | 55.8 ± 31.7 | −48.6 | |
GIN | BS | 9.5 | 4.8 | 4.5 | 10.5 | 43.2 | 59.8 | 30.1 | 52.9 | 35.8 | 28.0 | 27.9 ± 19.1 | −76.5 | |
+A | ours | 18.1 | 9.8 | 4.7 | 8.5 | 50.6 | 57.9 | 47.4 | 77.7 | 33.0 | 63.1 | 37.1 ± 24.6 | −67.3 | |
SSC | BS | ours | 19.5 | 3.7 | 4.3 | 9.5 | 19.0 | 20.5 | 26.5 | 55.3 | 38.3 | 37.5 | 23.4 ± 15.6 | −81.0 |
+A | ours | 33.9 | 54.8 | 4.1 | 7.9 | 41.8 | 43.7 | 41.4 | 48.5 | 41.4 | 22.3 | 34.0 ± 16.2 | −70.4 | |
GIN+SSC | BS | ours | 24.5 | 3.5 | 3.9 | 8.5 | 10.7 | 21.4 | 20.0 | 55.7 | 19.6 | 11.5 | 17.9 ± 14.4 | −86.5 |
+A | ours | 42.3 | 3.8 | 4.1 | 7.5 | 11.2 | 23.8 | 23.7 | 27.5 | 17.4 | 10.9 | 17.2 ± 11.6 | −87.2 | |
(NNUNET) | (Target training) | 2.9 | 6.2 | 7.7 | 6.2 | 7.0 | 18.8 | 19.2 | 6.3 | 5.3 | 8.4 | 8.8 ± 5.3 | −95.6 |
Method | Stage | TS > AMOS Dice | TS > AMOS HD95 | TS > SPINE Dice | TS >SPINE HD95 | TS > MMWHS MR Dice | TS > MMWHS MR HD95 | |
---|---|---|---|---|---|---|---|---|
NNUNET | BS | Reference | 51.4 | 68.2 | 0.8 | 59.2 | 67.6 | 34.8 |
GIN | BS | 81.2 (2) | 11.8 (1) | 73.2 (2) | 11.7 (3) | 81.4 (5) | 11.1 (6) | |
+A | ours | 81.4 (1) | 14.2 (3) | 72.8 (3) | 9.7 (2) | 82.6 (1) | 10.2 (5) | |
SSC | BS | ours | 77.7 (5) | 16.7 (5) | 35.6 (6) | 22.8 (6) | 81.3 (6) | 8.9 (2) |
+A | ours | 79.0 (4) | 22.6 (6) | 69.1 (4) | 13.3 (4) | 82.0 (2) | 8.5 (1) | |
GIN+SSC | BS | ours | 75.7 (6) | 14.8 (4) | 57.9 (5) | 15.3 (5) | 81.8 (4) | 10.1 (4) |
+A | ours | 79.6 (3) | 12.1 (2) | 73.7 (1) | 9.4 (1) | 81.8 (4) | 9.4 (3) | |
Method | Stage | BTCV > AMOS Dice | BTCV > AMOS HD95 | MMWHS CT > MR Dice | MMWHS CT > MR HD95 | COMBINED SCORE RANK | ||
NNUNET | BS | Reference | 32.0 | 104.4 | 15.8 | 147.8 | ||
GIN | BS | 76.3 (5) | 27.9 (4) | 36.8 (6) | 85.6 (6) | 4.0 | ||
+A | ours | 77.4 (4) | 37.1 (6) | 49.7 (5) | 77.5 (5) | 3.5 | ||
SSC | BS | ours | 76.1 (6) | 23.4 (3) | 58.8 (4) | 53.0 (4) | 4.7 | |
+A | ours | 77.7 (3) | 34.0 (5) | 70.5 (2) | 25.4 (2) | 3.3 | ||
GIN+SSC | BS | ours | 78.6 (1) | 17.9 (2) | 59.9 (3) | 47.9 (3) | 3.7 | |
+A | ours | 78.2 (2) | 17.2 (1) | 71.5 (1) | 17.8 (1) | 1.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weihsbach, C.; Kruse, C.N.; Bigalke, A.; Heinrich, M.P. DG-TTA: Out-of-Domain Medical Image Segmentation Through Augmentation, Descriptor-Driven Domain Generalization, and Test-Time Adaptation. Sensors 2025, 25, 5603. https://doi.org/10.3390/s25175603
Weihsbach C, Kruse CN, Bigalke A, Heinrich MP. DG-TTA: Out-of-Domain Medical Image Segmentation Through Augmentation, Descriptor-Driven Domain Generalization, and Test-Time Adaptation. Sensors. 2025; 25(17):5603. https://doi.org/10.3390/s25175603
Chicago/Turabian StyleWeihsbach, Christian, Christian N. Kruse, Alexander Bigalke, and Mattias P. Heinrich. 2025. "DG-TTA: Out-of-Domain Medical Image Segmentation Through Augmentation, Descriptor-Driven Domain Generalization, and Test-Time Adaptation" Sensors 25, no. 17: 5603. https://doi.org/10.3390/s25175603
APA StyleWeihsbach, C., Kruse, C. N., Bigalke, A., & Heinrich, M. P. (2025). DG-TTA: Out-of-Domain Medical Image Segmentation Through Augmentation, Descriptor-Driven Domain Generalization, and Test-Time Adaptation. Sensors, 25(17), 5603. https://doi.org/10.3390/s25175603