Adsorptive Cathodic Stripping Analysis of Xylazine Within Fouling-Resistant and Nanomaterial-Enhanced Modified Electrode Sensors
Abstract
1. Introduction and Background
2. Experimental Details
2.1. Materials and Instrumentation
2.2. Solutions and Materials Preparation
2.3. Sensor Fabrication
2.4. Sensor Operation
3. Results and Discussion
3.1. Electrochemical Behavior of XYL at GCEs
3.2. Electrochemical Effects of the PU Capping Layer
3.3. Cathodic Reduction of XYL Oxidation Product—Potential Dependence
3.4. Adsorptive Nature of the Modified Electrode System—Time Dependence
3.5. Adsorptive Cathodic Stripping Quantitative Analysis of XYL
3.6. Application of the Sensor to Real Samples
3.7. Potential Mechanism of XYL Redox Chemistry
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Han, Y.; Yan, W.; Zheng, Y.B.; Khan, M.Z.; Yuan, K.; Lu, L. The rising crisis of illicit fentanyl use, overdose, and potential therapeutic strategies. Transl. Psychiat. 2019, 9, 282. [Google Scholar] [CrossRef]
- Iacopetta, D.; Catalano, A.; Aiello, F.; Andreu, I.; Sinicropi, M.S.; Lentini, G. Xylazine, a Drug Adulterant Whose Use Is Spreading in the Human Population from the U.S. to the U.K. and All Europe: An Updated Review. Appl. Sci. 2025, 15, 3410. [Google Scholar] [CrossRef]
- Patocka, J.; Wu, W.D.; Oleksak, P.; Jelinkova, R.; Nepovimova, E.; Spicanova, L.; Springerova, P.; Alomar, S.; Long, M.; Kuca, K. Fentanyl and its derivatives: Pain-killers or man-killers? Heliyon 2024, 10, e28795. [Google Scholar] [CrossRef]
- Oh, S.; Cano, M. Self-Reported Illicitly Manufactured Fentanyl Use and Associated Health and Substance Use Risks in the United States, 2022. Subst. Use Misuse 2025, 60, 137–141. [Google Scholar] [CrossRef]
- Niles, J.K.; Gudin, J.; Radcliff, J.; Kaufman, H.W. The Opioid Epidemic Within the COVID-19 Pandemic: Drug Testing in 2020. Popul. Health Manag. 2021, 24, S43–S51. [Google Scholar] [CrossRef]
- Palau, C.B.; Akikuni, M.; Latsky-Campbell, B.; Wagner, J. The Drug Overdose Epidemic in the US-Mexico Border Region: Shifts, Progression, and Community Characteristics. Subst. Use Misuse 2024, 59, 184–192. [Google Scholar] [CrossRef]
- Malode, S.J.; Alshehri, M.A.; Shetti, N.P. Nanomaterial-Based Electrochemical Sensors for the Detection of Pharmaceutical Drugs. Chemosensors 2024, 12, 234. [Google Scholar] [CrossRef]
- Rosendo, L.M.; Antunes, M.; Simao, A.Y.; Brinca, A.T.; Catarro, G.; Pelixo, R.; Martinho, J.; Pires, B.; Soares, S.; Cascalheira, J.F.; et al. Sensors in the Detection of Abused Substances in Forensic Contexts: A Comprehensive Review. Micromachines 2023, 14, 2249. [Google Scholar] [CrossRef]
- Alonzo, M.; Fu, S. Sensors for the detection of new psychoactive substances (NPS). In Comprehensive Analytical Chemistry; Elsevier: Amsterdam, The Netherlands, 2025. [Google Scholar]
- Cozens, A.E.; Johnson, S.D.; Lee, T.-C. A systematic review of sensors to combat crime and routes to further sensor development. Front. Chem. 2025, 13, 1568867. [Google Scholar] [CrossRef]
- Fakayode, S.O.; Lisse, C.; Medawala, W.; Brady, P.N.; Bwambok, D.K.; Anum, D.; Alonge, T.; Taylor, M.E.; Baker, G.A.; Mehari, T.F.; et al. Fluorescent chemical sensors: Applications in analytical, environmental, forensic, pharmaceutical, biological, and biomedical sample measurement, and clinical diagnosis. Appl. Spectrosc. Rev. 2024, 59, 1–89. [Google Scholar] [CrossRef]
- Fakayode, S.O.; Brady, P.N.; Grant, C.; Fernand Narcisse, V.; Rosado Flores, P.; Lisse, C.H.; Bwambok, D.K. Electrochemical Sensors, Biosensors, and Optical Sensors for the Detection of Opioids and Their Analogs: Pharmaceutical, Clinical, and Forensic Applications. Chemosensors 2024, 12, 58. [Google Scholar] [CrossRef]
- Ferrari, A.G.; Crapnell, R.D.; Banks, C.E. Electroanalytical Overview: Electrochemical Sensing Platforms for Food and Drink Safety. Biosensors 2021, 11, 291. [Google Scholar] [CrossRef]
- Zanfrognini, B.; Pigani, L.; Zanardi, C. Recent advances in the direct electrochemical detection of drugs of abuse. J. Solid State Electrochem. 2020, 24, 2603–2616. [Google Scholar] [CrossRef]
- Smith, C.D.; Giordano, B.C.; Collins, G.E. Assessment of opioid surrogates for colorimetric testing (Part I). Forensic Chem. 2022, 27, 100398. [Google Scholar] [CrossRef]
- Conrado, T.T.; Pedao, E.R.; Ferreira, V.S.; Motta, K.; Silva, A.C.A.; da Silva, R.A.B.; Petroni, J.M.; Lucca, B.G. Sensitive, Integrated, Mass-produced, Portable and Low-cost Electrochemical 3D-printed Sensing Set (SIMPLE-3D-SenS): A promising analytical tool for forensic applications. Sensor Actuat B-Chem. 2025, 427, 137215. [Google Scholar] [CrossRef]
- Mishra, R.K.; Goud, K.Y.; Li, Z.; Moonla, C.; Mohamed, M.A.; Tehrani, F.; Teymourian, H.; Wang, J. Continuous Opioid Monitoring along with Nerve Agents on a Wearable Microneedle Sensor Array. J. Am. Chem. Soc. 2020, 142, 5991–5995. [Google Scholar] [CrossRef]
- Barfidokht, A.; Mishra, R.K.; Seenivasan, R.; Liu, S.; Hubble, L.J.; Wang, J.; Hall, D.A. Wearable electrochemical glove-based sensor for rapid and on-site detection of fentanyl. Sens. Actuators B Chem. 2019, 296, 126422. [Google Scholar] [CrossRef]
- Sohouli, E.; Keihan, A.H.; Shahdost-fard, F.; Naghian, E.; Plonska-Brzezinska, M.E.; Rahimi-Nasrabadi, M.; Ahmadi, F. A glassy carbon electrode modified with carbon nanoonions for electrochemical determination of fentanyl. Mat. Sci. Eng. C-Mater. 2020, 110, 110684. [Google Scholar] [CrossRef]
- Glasscott, M.W.; Vannoy, K.J.; Fernando, P.U.A.I.; Kosgei, G.K.; Moores, L.C.; Dick, J.E. Electrochemical sensors for the detection of fentanyl and its analogs: Foundations and recent advances. Trac-Trend Anal. Chem. 2020, 132, 116037. [Google Scholar] [CrossRef]
- Kumar, V.; Kumar, P.; Pournara, A.; Vellingiri, K.; Kim, K.-H. Nanomaterials for the sensing of narcotics: Challenges and opportunities. TrAC Trends Anal. Chem. 2018, 106, 84–115. [Google Scholar] [CrossRef]
- Razlansari, M.; Ulucan-Karnak, F.; Kahrizi, M.; Mirinejad, S.; Sargazi, S.; Mishra, S.; Rahdar, A.; Díez-Pascual, A.M. Nanobiosensors for detection of opioids: A review of latest advancements. Eur. J. Pharm. Biopharm. 2022, 179, 79–94. [Google Scholar] [CrossRef]
- Canoura, J.; Liu, Y.Z.; Perry, J.; Willis, C.; Xiao, Y. Suite of Aptamer-Based Sensors for the Detection of Fentanyl and Its Analogues. Acs Sens. 2023, 8, 1901–1911. [Google Scholar] [CrossRef]
- Sherard, M.M.; Dang, Q.M.; Reiff, S.C.; Simpson, J.H.; Leopold, M.C. On-Site Detection of Neonicotinoid Pesticides Using Functionalized Gold Nanoparticles and Halogen Bonding. ACS Appl. Nano Mater. 2023, 6, 8367–8381. [Google Scholar] [CrossRef]
- Zhu, D.T.; Friedman, J.; Bourgois, P.; Montero, F.; Tamang, S. The emerging fentanyl-xylazine syndemic in the USA: Challenges and future directions. Lancet 2023, 402, 1949–1952. [Google Scholar] [CrossRef]
- Friedman, J.; Montero, F.; Bourgois, P.; Wahbi, R.; Dye, D.; Goodman-Meza, D.; Shover, C. Xylazine spreads across the US: A growing component of the increasingly synthetic and polysubstance overdose crisis. Drug Alcohol Depend. 2022, 233, 109380. [Google Scholar] [CrossRef]
- Quijano, T.; Crowell, J.; Eggert, K.; Clark, K.; Alexander, M.; Grau, L.; Heimer, R. Xylazine in the drug supply: Emerging threats and lessons learned in areas with high levels of adulteration. Int. J. Drug Policy 2023, 120, 104154. [Google Scholar] [CrossRef]
- Cano, M.; Daniulaityte, R.; Marsiglia, F. Xylazine in Overdose Deaths and Forensic Drug Reports in the United States, 2019–2022. JAMA Netw. Open 2024, 7, e2350630. [Google Scholar] [CrossRef]
- Wu, P.E.; Austin, E. Xylazine in the illicit opioid supply. Can. Med. Assoc. J. 2024, 196, E133. [Google Scholar] [CrossRef]
- Levine, M.; Culbreth, R.; Buchanan, J.; Schwarz, E.; Aldy, K.; Campleman, S.; Krotulski, A.; Brent, J.; Wax, P.; Manini, A.; et al. Xylazine trends over time. Clin. Toxicol. 2023, 61, 28. [Google Scholar]
- Bonanni, A.; Alberti, G.; Stefano, P.; Franceschini, T.; Merli, D. New psychoactive drugs: A comprehensive electrochemical characterization and differential pulse voltammetric analysis of xylazine. Talanta 2025, 288, 127710. [Google Scholar] [CrossRef]
- United States Department of Justice, Drug Enforcement Administration. The Growing Threat of Xylazine and Its Mixtures with Illicit Drugs; DEA Joint Intelligence Report; United States Department of Justice, Drug Enforcement Administration: Arlington County, VA, USA, 2022.
- United States Department of Justice, Drug Enforcement Administration. DEA Reports Widespred Threat of Fentanyl Mixed with Xylazine; United States Department of Justice, Drug Enforcement Administration: Arlington County, VA, USA, 2023.
- Silva-Torres, L.A.; Mozayani, A. Xylazine abuse, the growing risk: A review of its effects, upsurge use and associated fatalities in the USA and Puerto Rico. J. Forensic Leg. Med. 2024, 108, 102780. [Google Scholar] [CrossRef]
- Warp, P.V.; Hauschild, M.; Serota, D.P.; Ciraldo, K.; Cruz, I.; Bartholomew, T.S.; Tookes, H.E. A confirmed case of xylazine-induced skin ulcers in a person who injects drugs in Miami, Florida, USA. Harm Reduct. J. 2024, 21, 64. [Google Scholar] [CrossRef]
- Tosti, R.; Hozack, B.A.; Tulipan, J.E.; Criner-Woozley, K.T.; Ilyas, A.M. Xylazine-Associated Wounds of the Upper Extremity: Evaluation and Algorithmic Surgical Strategy. J. Hand Surg. Glob. Online 2024, 6, 605–609. [Google Scholar] [CrossRef]
- Plumb, D.C. Veterninary Drug Handbook, 4th ed.; Blackwell Publishing Professional: Ames, Iowa, 2002. [Google Scholar]
- Ayub, S.; Parnia, S.; Poddar, K.; Bachu, A.K.; Sullivan, A.; Khan, A.M.; Ahmed, S.; Jain, L. Xylazine in the Opioid Epidemic: A Systematic Review of Case Reports and Clinical Implications. Cureus J. Med. Sci 2023, 15, e36864. [Google Scholar] [CrossRef]
- Balamurugan, T.S.T.; Kwaczynski, K.; Rizwan, M.; Poltorak, L. Current trends in rapid electroanalytical screening of date rape drugs in beverages. Trac-Trend Anal. Chem. 2024, 175, 117712. [Google Scholar] [CrossRef]
- Marroquin-Garcia, R.; van Wissen, G.; Cleij, T.J.; Eersels, K.; van Grinsven, B.; Diliën, H. Single-use dye displacement colorimetry assay based on molecularly imprinted polymers: Towards fast and on-site detection of xylazine in alcoholic beverages. Food Control 2024, 161, 110403. [Google Scholar] [CrossRef]
- de Lima, L.F.; de Araujo, W.R. Laser-scribed graphene on polyetherimide substrate: An electrochemical sensor platform for forensic determination of xylazine in urine and beverage samples. Microchim. Acta 2022, 189, 465. [Google Scholar] [CrossRef] [PubMed]
- Saisahas, K.; Soleh, A.; Promsuwan, K.; Saichanapan, J.; Phonchai, A.; Sadiq, N.S.M.; Teoh, W.K.; Chang, K.H.; Abdullah, A.F.L.; Limbut, W. Nanocoral-like Polyaniline-Modified Graphene-Based Electrochemical Paper-Based Analytical Device for a Portable Electrochemical Sensor for Xylazine Detection. Acs Omega 2022, 7, 13913–13924. [Google Scholar] [CrossRef]
- Saisahas, K.; Soleh, A.; Promsuwan, K.; Phonchai, A.; Sadiq, N.S.M.; Teoh, W.K.; Chang, K.H.; Abdullah, A.F.L.; Limbut, W. A portable electrochemical sensor for detection of the veterinary drug xylazine in beverage samples. J. Pharm. Biomed. Anal. 2021, 198, 113958. [Google Scholar] [CrossRef]
- Gopakumar, G.M.; Saraswathyamma, B. Advances in Electrochemical Sensing: Detecting Xylazine Hydrochloride for Forensic, Veterinary and Other Applications. In Forensic Electrochemistry: The Voltammetry for Sensing and Analysis; American Chemical Society: Washington, DC, USA, 2024; Volume 1481, pp. 187–201. [Google Scholar]
- El-Shal, M.A.; Hendawy, H.A.M. Highly Sensitive Voltammetric Sensor Using Carbon Nanotube and an Ionic Liquid Composite Electrode for Xylazine Hydrochloride. Anal. Sci. 2019, 35, 189–194. [Google Scholar] [CrossRef]
- Vinnikov, A.; Sheppard, C.W.; Wemple, A.H.; Stern, J.E.; Leopold, M.C. An Amperometric Sensor with Anti-Fouling Properties for Indicating Xylazine Adulterant in Beverages. Micromachines 2024, 15, 1340. [Google Scholar] [CrossRef]
- Stern, J.E.; Wemple, A.H.; Sheppard, C.W.; Vinnikov, A.; Leopold, M.C. Fouling-Resistant Voltammetric Xylazine Sensors for Detection of the Street Drug “Tranq”. Toxics 2024, 12, 791. [Google Scholar] [CrossRef]
- Mendes, L.F.; Silva, A.R.S.E.; Bacil, R.P.; Serrano, S.H.P.; Angnes, L.; Paixao, T.R.L.C.; de Araujo, W.R. Forensic electrochemistry: Electrochemical study and quantification of xylazine in pharmaceutical and urine samples. Electrochim. Acta 2019, 295, 726–734. [Google Scholar] [CrossRef]
- Wygant, B.R.; Lambert, T.N. Thin Film Electrodes for Anodic Stripping Voltammetry: A Mini-Review. Front. Chem. 2022, 9, 809535. [Google Scholar] [CrossRef]
- Borrill, A.J.; Reily, N.E.; Macpherson, J.V. Addressing the practicalities of anodic stripping voltammetry for heavy metal detection: A tutorial review. Analyst 2019, 144, 6834–6849. [Google Scholar] [CrossRef]
- Wemple, A.H.; Kaplan, J.S.; Leopold, M.C. Mechanistic Elucidation of Nanomaterial-Enhanced First-Generation Biosensors Using Probe Voltammetry of an Enzymatic Reaction. Biosensors 2023, 13, 798. [Google Scholar] [CrossRef]
- Wayu, M.B.; Schwarzmann, M.A.; Gillespie, S.D.; Leopold, M.C. Enzyme-free uric acid electrochemical sensors using beta-cyclodextrin-modified carboxylic acid-functionalized carbon nanotubes. J. Mater. Sci. 2017, 52, 6050–6062. [Google Scholar] [CrossRef]
- Wayu, M.B.; DiPasquale, L.T.; Schwarzmann, M.A.; Gillespie, S.D.; Leopold, M.C. Electropolymerization of beta-cyclodextrin onto multi-walled carbon nanotube composite films for enhanced selective detection of uric acid. J. Electroanal. Chem. 2016, 783, 192–200. [Google Scholar] [CrossRef]
- Conway, G.E.; Lambertson, R.H.; Schwarzmann, M.A.; Pannell, M.J.; Kerins, H.W.; Rubenstein, K.J.; Dattelbaum, J.D.; Leopold, M.C. Layer-by-layer design and optimization of xerogel-based amperometric first generation biosensors for uric acid. J. Electroanal. Chem. 2016, 775, 135–145. [Google Scholar] [CrossRef]
- Ali, S.M.; Muzaffar, S.; Imtiaz, S. Comparative study of complexation between cyclodextrins and xylazine using 1H NMR and molecular modelling methods. J. Mol. Struct. 2019, 1197, 56–64. [Google Scholar] [CrossRef]
- Ali, S.M.; Fatma, K.; Dhokale, S. Structure elucidation of beta-cyclodextrin-xylazine complex by a combination of quantitative H-1-H-1 ROESY and molecular dynamics studies. Beilstein J. Org. Chem. 2013, 9, 1917–1924. [Google Scholar] [CrossRef]
- RoyChoudhury, S.; Umasankar, Y.; Hutcheson, J.D.; Lev-Tov, H.A.; Kirsner, R.S.; Bhansali, S. Uricase Based Enzymatic Biosensor for Non-invasive Detection of Uric Acid by Entrapment in PVA-SbQ Polymer Matrix. Electroanal 2018, 30, 2374–2385. [Google Scholar] [CrossRef]
- Finklea, H.O. Electrochemistry of organized monolayers of thiols and related molecules on electrodes. In Electroanalytical Chemistry: A Series of Advances; Bard, A.J., Zoski, C.G., Eds.; Marcel Dekker, Inc.: New York, NY, USA, 1996; Volume 19, pp. 109–335. [Google Scholar]
- Li, A.J.; Chu, Q.Q.; Zhou, H.F.; Yang, Z.P.; Liu, B.; Zhang, J.W. Effective nitenpyram detection in a dual-walled nitrogen-rich In(III)/Tb(III)-organic framework. Inorg. Chem. Front. 2021, 8, 2341–2348. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, H.; Zhai, X.C.; Yang, X.; Zhao, H.T.; Wang, J.; Dong, A.J.; Wang, Z.Y. Application of beta-cyclodextrin-reduced graphene oxide nanosheets for enhanced electrochemical sensing of the nitenpyram residue in real samples. New J. Chem. 2017, 41, 2169–2177. [Google Scholar] [CrossRef]
- Öksüz, M.; Cittan, M.; Dost, K. Simultaneous Electrochemical Determination of Sildenafil Citrate and Tadalafil Using a Multi Walled Carbon Nanotubes Modified Glassy Carbon Electrode by Adsorptive Stripping Linear Sweep Voltammetry. Electroanal 2025, 37, e202400224. [Google Scholar] [CrossRef]
- Hasso, M.; Kekeláková, A.; Hanko, M.; Svorc, L. Powerful Analytical Platform for Diazepam Determination in Pharmaceuticals and Alcoholic Drinks Based on Batch Injection Analysis Coupled with Adsorptive Stripping Voltammetry. J. Electrochem. Soc. 2024, 171, e202400224. [Google Scholar] [CrossRef]
- Xu, Y.W.; Zhang, W.; Huang, X.W.; Shi, J.Y.; Zou, X.B.; Li, Z.H.; Cui, X.P. Adsorptive stripping voltammetry determination of hexavalent chromium by a pyridine functionalized gold nanoparticles/three-dimensional graphene electrode. Microchem. J. 2019, 149, 104022. [Google Scholar] [CrossRef]
- Alberich, A.; Serrano, N.; Díaz-Cruz, J.M.; Ariño, C.; Esteban, M. Substitution of Mercury Electrodes by Bismuth-Coated Screen-Printed Electrodes in the Determination of Quinine in Tonic Water. J. Chem. Educ. 2013, 90, 1681–1684. [Google Scholar] [CrossRef]
- Izhar, F.; Imran, M.; Izhar, H.; Latif, S.; Hussain, N.; Iqbal, H.M.N.; Bilal, M. Recent advances in metal-based nanoporous materials for sensing environmentally-related biomolecules. Chemosphere 2022, 307, 135999. [Google Scholar] [CrossRef]
- de Lima, L.F.; Maciel, C.C.; Ferreira, A.L.; de Almeida, J.C.; Ferreira, M. Nickel (II) phthalocyanine-tetrasulfonic-Au nanoparticles nanocomposite film for tartrazine electrochemical sensing. Mater. Lett. 2020, 262, 127186. [Google Scholar] [CrossRef]
Sample | PU Layer | Volume Sampled (µL) | Dilution in 150 mM PBS (mL) | Spike [XYL] (µM) | Trials (n) | Avg % Recovery |
---|---|---|---|---|---|---|
PBS (150 mM) | HPU–TPU | 62.5 | 25.06 | 125 | 4 | 103 (±7) |
PBS (150 mM) | TPU | 62.5 | 25.06 | 125 | 4 | 100 (±13) |
Synthetic Urine | HPU–TPU | 500 | 25.5 | 127 | 7 | 105 (±7) |
Synthetic Urine | TPU | 500 | 25.5 | 127 | 4 | 130 (±11) |
Whiskey | HPU–TPU | 500 | 25.5 | 127 | 4 | 76 (±12) |
Whiskey | TPU | 500 | 25.5 | 127 | 3 | 69 (±6) |
Hard Seltzer (Peach) | HPU–TPU | 500 | 25.5 | 127 | 3 | 107 (±24) |
Hard Seltzer (Peach) | TPU | 500 | 25.5 | 127 | 4 | 104 (±10) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leopold, M.C.; Sheppard, C.W.; Stern, J.E.; Vinnikov, A.; Wemple, A.H.; Edelman, B.H. Adsorptive Cathodic Stripping Analysis of Xylazine Within Fouling-Resistant and Nanomaterial-Enhanced Modified Electrode Sensors. Sensors 2025, 25, 5312. https://doi.org/10.3390/s25175312
Leopold MC, Sheppard CW, Stern JE, Vinnikov A, Wemple AH, Edelman BH. Adsorptive Cathodic Stripping Analysis of Xylazine Within Fouling-Resistant and Nanomaterial-Enhanced Modified Electrode Sensors. Sensors. 2025; 25(17):5312. https://doi.org/10.3390/s25175312
Chicago/Turabian StyleLeopold, Michael C., Charles W. Sheppard, Joyce E. Stern, Arielle Vinnikov, Ann H. Wemple, and Ben H. Edelman. 2025. "Adsorptive Cathodic Stripping Analysis of Xylazine Within Fouling-Resistant and Nanomaterial-Enhanced Modified Electrode Sensors" Sensors 25, no. 17: 5312. https://doi.org/10.3390/s25175312
APA StyleLeopold, M. C., Sheppard, C. W., Stern, J. E., Vinnikov, A., Wemple, A. H., & Edelman, B. H. (2025). Adsorptive Cathodic Stripping Analysis of Xylazine Within Fouling-Resistant and Nanomaterial-Enhanced Modified Electrode Sensors. Sensors, 25(17), 5312. https://doi.org/10.3390/s25175312