Spatio-Temporal Heterogeneity-Oriented Graph Convolutional Network for Urban Traffic Flow Prediction
Abstract
1. Introduction
- The traffic flow in cities tends to follow a radial pattern along the road network, which is typically non-linear, implying the correlation of traffic flows between non-adjacent roads, but not between adjacent ones, e.g., between street C and D in Figure 1. Therefore, how to describe such uncertain correlations with the graph-based topology poses challenges.
- The correlation between air quality and traffic flow manifests in both spatial and temporal dimensions. A bidirectional interaction exists where vehicle emissions directly affect pollutant concentrations, while air quality changes (e.g., visibility) reciprocally influence traffic flow—particularly during rush hours. More importantly, different air pollution components (e.g., particulate matter [PM], oxides, and sulfides) exhibit strong regional characteristics. The superposition of these temporal, spatial, and compositional correlations intuitively leads to more complex and unstable predictions.
- The SHGCN is designed to capture dynamics and intricate relationships among versatile factors in the urban traffic flow by exploring the spatial–temporal heterogeneity between domains for the cross-mode traffic flow prediction, in which the correlations and dynamics among factors (e.g., urban road networks, air quality, and traffic data) are captured.
- Involving the space heterogeneity, a temporal encoder using temporal convolutions and gating mechanisms is devised, and an enhanced graph convolutional network is designed to explore the hierarchical correlations between traffic patterns and road topology, where the similarity clusters of heterogeneity degrees are deduced via the Bernoulli distribution.
- A K-means-based strategy is established to analyze the relationships between traffic flow and air composition by integrating the traffic with air quality features in order to enhance the stability of the hybrid prediction model which combines the gated recurrent unit (GRU) with the convolutional neural network (GCN).
- Extensive experiments are conducted with two real-world datasets, and numerous results are provided to demonstrate the performance improvement in the SHGCN over eight existing baseline methods, in terms of the root mean square error (RMSE), mean absolute error (MAE), and accuracy metrics.
2. Related Works
2.1. Traffic Flow Prediction on Spatio-Temporal Features
2.2. External Features-Assisted Traffic Flow Prediction
3. Problem Definition and Methodology
3.1. Problem Definition
3.1.1. Road Topology
3.1.2. Traffic Feature Matrix
3.1.3. External Feature Matrix
3.2. Framework of SHGCN
3.3. Spatial Heterogeneity
3.3.1. Heterogeneity Detection
3.3.2. Topology Enhancement
Traffic Flow Enhancement
Graph Enhancement
3.4. External Factors
3.4.1. Incorporating External Features
3.4.2. Filtering Air Components Correlated with Traffic Flow
3.5. Spatio-Temporal GCN
4. Experiments and Results
4.1. Datasets
- Traffic flow data in Aarhus, Denmark—the traffic flow data records the average traffic speed every 5 min. For missing values, we employed interpolation methods to ensure data completeness. Data from 100 road segments were selected from 2 August 2014 to 17 August 2014. The connections between urban roads are modeled by a adjacency matrix, which indexes rows by road segments and columns by timestamps. The air pollution data in Aarhus, Denmark—recorded at 5 min intervals synchronized with traffic measurements—consists of pre-computed Air Quality Index (AQI) values generated by the original dataset authors, integrating PM2.5 and PM10 concentrations with other pollutants (ozone, carbon monoxide, sulfur oxides, and nitrogen oxides). By adopting K-means clustering of these standardized AQI levels, we identify pollution-traffic correlations. Since the dataset contains no AQI scores exceeding 300, we classify air quality into five AQI classification levels: 0–50 (Good), 51–100 (Moderate), 101–150 (Unhealthy for Sensitive Groups), 151–200 (Unhealthy), and 201–300 (Very Unhealthy). Then, the categorized data is structured into a dynamic attribute matrix for spatio-temporal analysis.
- Traffic flow data in Newcastle upon Tyne, UK—the traffic flow data records vehicle counts at 5 min intervals. For missing values, we employed interpolation methods to ensure data completeness. Data from 136 road segments were selected from 20–30 June 2025. The connections between urban roads are modeled by a adjacency matrix, which indexes rows by road segments and columns by timestamps. The air pollution data in Newcastle upon Tyne, UK—recorded at 5 min intervals and synchronized with traffic flow measurement timestamps—consists of air pollutant concentrations from which we calculated the Air Quality Index (AQI). Our analysis incorporates concentrations of carbon monoxide, ozone, PM2.5, and nitrogen dioxide. For road segments without direct air quality monitoring, we adopted data from the nearest available monitoring locations. The preprocessing methodology for air quality data aligns with that applied to the Aarhus dataset. The categorized data is structured into a dynamic attribute matrix for spatio-temporal analysis.
4.2. Evaluation Metrics
- Root mean square error (RMSE), i.e.,
- Mean absolute error (MAE), i.e.,
- Accuracy, i.e.,
4.3. Parameter Settings
4.4. Baselines
4.5. Experiment Results
4.5.1. Clustering Results of Air Pollutants and Traffic Flow
4.5.2. Comparison Baselines
4.5.3. Ablation Experiments
4.6. Interpretation of SHGCN
4.6.1. Long-Term and Short-Term Forecasting
4.6.2. Importance of Incorporating Topology Enhancement and Air Quality Factors
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xie, P.; Li, T.; Liu, J.; Du, S.; Yang, X.; Zhang, J. Urban Flow Prediction from Spatiotemporal Data Using Machine Learning: A Survey. Inform. Fusion 2020, 59, 1–12. [Google Scholar] [CrossRef]
- Gu, X.; Wu, Q.; Fan, P.; Cheng, N.; Chen, W.; Letaief, K.B. DRL-Based Federated Self-Supervised Learning for Task Offloading and Resource Allocation in ISAC-Enabled Vehicle Edge Computing. Digit. Commun. Netw. 2024. [Google Scholar] [CrossRef]
- Ye, J.; Sun, L.; Du, B.; Fu, Y.; Xiong, H. Coupled Layer-wise Graph Convolution for Transportation Demand Prediction. Proc. AAAI Conf. Artif. Intell. 2021, 35, 4617–4625. [Google Scholar] [CrossRef]
- Taslimasa, H.; Dadkhah, S.; Neto, E.C.P.; Xiong, P.; Ray, S.; Ghorbani, A.A. Security issues in Internet of Vehicles (IoV): A comprehensive survey. Internet Things 2023, 22, 100809. [Google Scholar] [CrossRef]
- Narsimhulu, P.; Chithaluru, P.; Al-Turjman, F.; Guda, V.; Inturi, S.; Stephan, T.; Kumar, M. An intelligent fl-based vehicle route optimization protocol for green and sustainable iot connected iov. Internet Things 2024, 27, 101240. [Google Scholar] [CrossRef]
- Xie, Y.; Wu, Q.; Fan, P.; Cheng, N.; Chen, W.; Wang, J.; Letaief, K.B. Resource Allocation for Twin Maintenance and Task Processing in Vehicular Edge Computing Network. IEEE Internet Things J. 2025, 12, 32008–32021. [Google Scholar] [CrossRef]
- Wang, X.; Zhu, H.; Ning, Z.; Guo, L.; Zhang, Y. Blockchain intelligence for internet of vehicles: Challenges and solutions. IEEE Commun. Surv. Tutor. 2023, 25, 2325–2355. [Google Scholar] [CrossRef]
- Dong, Y.; Zhang, H.; Li, C.; Guo, S.; Leung, V.; Hu, X. Fine-tuning and deploying large language models over edges: Issues and approaches. arXiv 2024, arXiv:2408.10691. [Google Scholar] [CrossRef]
- Zhang, Z.; Wu, Q.; Fan, P.; Cheng, N.; Chen, W.; Letaief, K.B. DRL-Based Optimization for AoI and Energy Consumption in C-V2X Enabled IoV. IEEE Trans. Green Commun. Netw. 2025. [Google Scholar] [CrossRef]
- LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 2002, 86, 2278–2324. [Google Scholar] [CrossRef]
- Van Lint, J.; Hoogendoorn, S.P.; van Zuylen, H.J. Freeway Travel Time Prediction with State-Space Neural Networks: Modeling State-Space Dynamics with Recurrent Neural Networks. Transport. Res. Rec. 2002, 1811, 30–39. [Google Scholar] [CrossRef]
- Dong, Y.; Wang, L.; Wang, J.; Hu, X.; Zhang, H.; Yu, F.R.; Leung, V.C.M. Accelerating Wireless Federated Learning via Nesterov’s Momentum and Distributed Principal Component Analysis. IEEE Trans. Wirel. Commun. 2024, 23, 5938–5952. [Google Scholar] [CrossRef]
- Wang, P.; Zhang, T.; Zheng, Y.; Hu, T. A Multi-View Bidirectional Spatiotemporal Graph Network for Urban Traffic Flow Imputation. Int. J. Geogr. Inf. Sci. 2022, 36, 1231–1257. [Google Scholar] [CrossRef]
- Zhong, R.; Hu, B.; Wang, F.; Feng, Y.; Li, Z.; Song, X.; Wang, Y.; Lou, S.; Tan, J. Multi-factor embedding GNN-based traffic flow prediction considering intersection similarity. Neurocomputing 2025, 620, 129193. [Google Scholar] [CrossRef]
- Ali, A.; Zhu, Y.; Zakarya, M. Exploiting Dynamic Spatio-temporal Graph Convolutional Neural Networks for Citywide Traffic Flows Prediction. Neural Netw. 2022, 145, 233–247. [Google Scholar] [CrossRef]
- Zhao, L.; Song, Y.; Zhang, C.; Liu, Y.; Wang, P.; Lin, T.; Deng, M.; Li, H. T-GCN: A Temporal Graph Convolutional Network for Traffic Prediction. IEEE Trans. Intell. Transp. Syst. 2019, 21, 3848–3858. [Google Scholar] [CrossRef]
- Ma, H.; Qin, X.; Jia, Y.; Zhou, J. Dynamic spatio-temporal graph fusion convolutional network for urban traffic prediction. Appl. Sci. 2023, 13, 9304. [Google Scholar] [CrossRef]
- Cui, Z.; Zhang, J.; Noh, G.; Park, H.J. Adstgcn: A dynamic adaptive deeper spatio-temporal graph convolutional network for multi-step traffic forecasting. Sensors 2023, 23, 6950. [Google Scholar] [CrossRef]
- Cai, Z.; Tan, C.; Zhang, J.; Zhu, L.; Feng, Y. DBSTGNN-Att: Dual Branch Spatio-Temporal Graph Neural Network with an Attention Mechanism for Cellular Network Traffic Prediction. Appl. Sci. 2024, 14, 2173. [Google Scholar] [CrossRef]
- Hsieh, H.P.; Lin, S.D.; Zheng, Y. Inferring Air Quality for Station Location Recommendation Based on Urban Big Data. In Proceedings of the ACM SIGKDD, Sydney, NSW, Australia, 10–13 August 2015; pp. 437–446. [Google Scholar]
- Williams, B.M.; Hoel, L.A. Modeling and Forecasting Vehicular Traffic Flow as a Seasonal ARIMA Process: Theoretical Basis and Empirical Results. J. Transp. Eng 2003, 129, 664–672. [Google Scholar] [CrossRef]
- Xie, Y.; Zhang, Y.; Ye, Z. Short-Term Traffic Volume Forecasting Using Kalman Filter with Discrete Wavelet Decomposition. Comput.-Aided Civ. Infrastruct. Eng. 2007, 22, 326–334. [Google Scholar] [CrossRef]
- Fu, H.; Ma, H.; Liu, Y.; Lu, D. A Vehicle Classification System Based on Hierarchical Multi-SVMs in Crowded Traffic Scenes. Neurocomputing 2016, 211, 182–190. [Google Scholar] [CrossRef]
- Lopez-Martin, M.; Carro, B.; Sanchez-Esguevillas, A. Neural network architecture based on gradient boosting for IoT traffic prediction. Future Gener. Comput. Syst. 2019, 100, 656–673. [Google Scholar] [CrossRef]
- Djenouri, Y.; Michalak, T.P.; Lin, J.C.W. Federated deep learning for smart city edge-based applications. Future Gener. Comput. Syst. 2023, 147, 350–359. [Google Scholar] [CrossRef]
- Huang, W.; Song, G.; Hong, H.; Xie, K. Deep Architecture for Traffic Flow Prediction: Deep Belief Networks with Multitask Learning. IEEE Trans. Intell. Transp. Syst. 2014, 15, 2191–2201. [Google Scholar] [CrossRef]
- Lv, Y.; Duan, Y.; Kang, W.; Li, Z.; Wang, F.Y. Traffic Flow Prediction with Big Data: A Deep Learning Approach. IEEE Trans. Intell. Transp. Syst. 2014, 16, 865–873. [Google Scholar] [CrossRef]
- Ma, X.; Tao, Z.; Wang, Y.; Yu, H.; Wang, Y. Long Short-Term Memory Neural Network for Traffic Speed Prediction using Remote Microwave Sensor Data. Transp. Res. Part C Emerg. Technol. 2015, 54, 187–197. [Google Scholar] [CrossRef]
- Chung, J.; Gulcehre, C.; Cho, K.; Bengio, Y. Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling. arXiv 2014, arXiv:1412.3555. [Google Scholar] [CrossRef]
- Singh, V.; Sahana, S.K.; Bhattacharjee, V. Integrated spatio-temporal graph neural network for traffic forecasting. Appl. Sci. 2024, 14, 11477. [Google Scholar] [CrossRef]
- Li, W.; Zhan, X.; Liu, X.; Zhang, L.; Pan, Y.; Pan, Z. SASTGCN: A self-adaptive spatio-temporal graph convolutional network for traffic prediction. ISPRS Int. J. Geo-Inf. 2023, 12, 346. [Google Scholar] [CrossRef]
- Zhang, J.; Zheng, Y.; Qi, D. Deep Spatio-Temporal Residual Networks for Citywide Crowd Flows Prediction. In Proceedings of the AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017; Volume 31. [Google Scholar]
- Kipf, T.N.; Welling, M. Semi-Supervised Classification with Graph Convolutional Networks. arXiv 2016, arXiv:1609.02907. [Google Scholar]
- Wu, Y.; Tan, H. Short-Term Traffic Flow Forecasting with Spatial-Temporal Correlation in a Hybrid Deep Learning Framework. arXiv 2016, arXiv:1612.01022. [Google Scholar]
- Yu, H.; Wu, Z.; Wang, S.; Wang, Y.; Ma, X. Spatiotemporal Recurrent Convolutional Networks for Traffic Prediction in Transportation Networks. Sensors 2017, 17, 1501. [Google Scholar] [CrossRef] [PubMed]
- Peng, H.; Bobade, S.U.; Cotterell, M.E.; Miller, J.A. Forecasting traffic flow: Short term, long term, and when it rains. In Proceedings of the International Conference on Big Data, Seattle, WA, USA, 25–30 June 2018; pp. 57–71. [Google Scholar]
- Dunne, S.; Ghosh, B. Weather Adaptive Traffic Prediction Using Neurowavelet Models. IEEE Trans. Intell. Transp. Syst. 2013, 14, 370–379. [Google Scholar] [CrossRef]
- Zhang, D.; Kabuka, M.R. Combining Weather Condition Data to Predict Traffic Flow: A GRU Based Deep Learning Approach. IET Intel. Transport. Syst. 2018, 12, 578–585. [Google Scholar] [CrossRef]
- Hou, Y.; Deng, Z.; Cui, H. Short-Term Traffic Flow Prediction with Weather Conditions: Based on Deep Learning Algorithms and Data Fusion. Complexity 2021, 2021, 6662959. [Google Scholar] [CrossRef]
- Blagoiev, M.; Gruicin, I.; Ionascu, M.E.; Marcu, M. A Study on correlation between air pollution and traffic. In Proceedings of the 2018 26th Telecommunications Forum (TELFOR), Belgrade, Serbia, 20–21 November 2018; pp. 420–425. [Google Scholar]
- Alruwaili, O.; Kostanic, I.; Al-Sabbagh, A.; Almohamedh, H. IoT based: Air quality index and traffic volume correlation. In Proceedings of the 2020 11th IEEE Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON), New York, NY, USA, 28–31 October 2020; pp. 0143–0147. [Google Scholar]
- Liu, L.; Feng, J.; Wu, C.; Chen, C.; Pei, Q. Reputation management for consensus mechanism in vehicular edge metaverse. IEEE J. Sel. Areas Commun. 2023, 42, 919–932. [Google Scholar] [CrossRef]
- Feng, J.; Liu, L.; Hou, X.; Pei, Q.; Wu, C. QoE fairness resource allocation in digital twin-enabled wireless virtual reality systems. IEEE J. Sel. Areas Commun. 2023, 41, 3355–3368. [Google Scholar] [CrossRef]
- He, M.; Li, X.; Zhao, H.; Yao, Y.; Zhou, T. A Topology-Enhanced Graph Convolutional Network for Urban Traffic Prediction. In Proceedings of the 2024 7th International Conference on Electronics Technology (ICET), Chengdu, China, 17–20 May 2024; pp. 1093–1097. [Google Scholar]
- Ji, J.; Wang, J.; Huang, C.; Wu, J.; Xu, B.; Wu, Z.; Zhang, J.; Zheng, Y. Spatio-Temporal Self-Supervised Learning for Traffic Flow Prediction. In Proceedings of the AAAI Conference on Artificial Intelligence, Washington, DC, USA, 7–14 February 2023; Volume 37, pp. 4356–4364. [Google Scholar]
- Zhu, J.; Wang, Q.; Tao, C.; Deng, H.; Zhao, L.; Li, H. AST-GCN: Attribute-Augmented Spatiotemporal Graph Convolutional Network for Traffic Forecasting. IEEE Access 2021, 9, 35973–35983. [Google Scholar] [CrossRef]
- Fowlkes, E.B.; Mallows, C.L. A Method for Comparing Two Hierarchical Clusterings. J. Am. Stat. Assoc. 1983, 78, 553–569. [Google Scholar] [CrossRef]
- Liu, J.; Guan, W. A Summary of Traffic Flow Forecasting Methods. J. Highw. Transp. Res. Dev. 2004, 21, 82–85. [Google Scholar]
- Su, H.; Zhang, L.; Yu, S. Short-Term Traffic Flow Prediction Based on Incremental Support Vector Regression. In Proceedings of the Third International Conference on Natural Computation (ICNC 2007), Haikou, China, 24–27 August 2007; Volume 1, pp. 640–645. [Google Scholar]
- Li, Y.; Yu, R.; Shahabi, C.; Liu, Y. Diffusion Convolutional Recurrent Neural Network: Data-Driven Traffic Forecasting. arXiv 2017, arXiv:1707.01926. [Google Scholar]
- Liu, D.; Wang, J.; Shang, S.; Han, P. Msdr: Multi-step dependency relation networks for spatial temporal forecasting. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Washington, DC, USA, 14–18 August 2022; pp. 1042–1050. [Google Scholar]
Aarhus | |||||
---|---|---|---|---|---|
Cluster Similarity Metric | |||||
0.2182 | 0.2603 | 0.2619 | 0.3497 |
Aarhus | |||||||
---|---|---|---|---|---|---|---|
Time | Metric | Not Integrated | |||||
RMSE | 13.1304 | 13.1021 | 13.1103 | 12.7745 | 12.8598 | ||
15 min | MAE | 9.8854 | 9.8801 | 9.8763 | 9.6492 | 9.6927 | |
Accuracy | 0.7757 | 0.7768 | 0.7766 | 0.7863 | 0.7842 | ||
RMSE | 14.0531 | 14.0364 | 14.0223 | 13.7028 | 13.7672 | ||
30 min | MAE | 10.8237 | 10.8168 | 10.8097 | 10.3726 | 10.4289 | |
Accuracy | 0.7603 | 0.7615 | 0.7620 | 0.7722 | 0.7701 | ||
RMSE | 15.7129 | 15.6859 | 15.6694 | 15.4019 | 15.4021 | ||
60 min | MAE | 11.6064 | 11.5902 | 11.5891 | 11.0765 | 11.0827 | |
Accuracy | 0.7459 | 0.7466 | 0.7474 | 0.7558 | 0.7554 |
Newcastle | ||||
---|---|---|---|---|
Cluster Similarity Metric | ||||
0.4024 | 0.3333 | 0.2708 |
Newcastle | ||||||
---|---|---|---|---|---|---|
Time | Metric | Not Integrated | ||||
RMSE | 13.6331 | 14.2051 | 15.2487 | 14.6272 | ||
15 min | MAE | 8.7934 | 9.2434 | 9.8574 | 9.2638 | |
Accuracy | 0.8260 | 0.8186 | 0.8055 | 0.8104 | ||
RMSE | 14.6017 | 14.4008 | 15.4207 | 15.0536 | ||
30 min | MAE | 9.2416 | 9.2973 | 10.0594 | 10.0118 | |
Accuracy | 0.8129 | 0.8122 | 0.8035 | 0.8096 | ||
RMSE | 14.9965 | 15.1736 | 16.1318 | 15.1864 | ||
60 min | MAE | 9.3441 | 9.6611 | 10.3876 | 9.7246 | |
Accuracy | 0.8065 | 0.8062 | 0.7941 | 0.8040 |
Aarhus | |||||||||
---|---|---|---|---|---|---|---|---|---|
Time | Metric | HA | SVR | GCN | GRU | DCRNN | TGCN | MSDR | SHGCN |
RMSE | 16.7498 | 14.8709 | 14.2274 | 13.8823 | 13.6291 | 13.1284 | 13.0921 | ||
15 min | MAE | 12.6490 | 10.8795 | 10.6903 | 10.5462 | 10.4286 | 9.8827 | 9.7672 | |
Accuracy | 0.7406 | 0.7630 | 0.7657 | 0.7703 | 0.7722 | 0.7763 | 0.7791 | ||
RMSE | 16.7498 | 15.4021 | 15.0238 | 14.6197 | 14.4801 | 13.9901 | 13.9229 | ||
30 min | MAE | 12.6490 | 11.2958 | 11.2737 | 11.0621 | 10.9359 | 10.8726 | 10.6782 | |
Accuracy | 0.7406 | 0.7482 | 0.7520 | 0.7562 | 0.7578 | 0.7605 | 0.7642 | ||
RMSE | 16.7498 | 16.9085 | 16.5239 | 16.0308 | 15.9762 | 15.5892 | 15.5265 | ||
60 min | MAE | 12.6490 | 11.9698 | 11.9501 | 11.7536 | 11.7289 | 11.3184 | 11.2494 | |
Accuracy | 0.7406 | 0.7352 | 0.7411 | 0.7422 | 0.7432 | 0.7481 | 0.7501 |
Newcastle | |||||||||
---|---|---|---|---|---|---|---|---|---|
Time | Metric | HA | SVR | GCN | GRU | DCRNN | TGCN | MSDR | SHGCN |
RMSE | 19.8753 | 17.4312 | 17.1533 | 16.6129 | 15.9431 | 15.5338 | 14.4815 | ||
15 min | MAE | 13.1284 | 12.3486 | 12.0562 | 11.7281 | 10.1156 | 10.1891 | 9.8861 | |
Accuracy | 0.7531 | 0.7749 | 0.7795 | 0.7813 | 0.7963 | 0.8017 | 0.7985 | ||
RMSE | 19.8753 | 18.9864 | 18.6245 | 17.9531 | 17.0582 | 15.6713 | 15.7153 | ||
30 min | MAE | 13.1284 | 12.9515 | 12.5631 | 12.3124 | 10.1219 | 10.3431 | 10.2541 | |
Accuracy | 0.7531 | 0.7583 | 0.7612 | 0.7685 | 0.7815 | 0.8001 | 0.8111 | ||
RMSE | 19.8753 | 21.2533 | 20.5582 | 19.9824 | 18.4936 | 17.0829 | 16.1024 | ||
60 min | MAE | 13.1284 | 16.0821 | 15.7498 | 15.1532 | 13.1481 | 11.4869 | 10.8135 | |
Accuracy | 0.7531 | 0.7225 | 0.7288 | 0.7345 | 0.7588 | 0.7824 | 0.7952 |
Aarhus | |||||||
---|---|---|---|---|---|---|---|
Time | Metric | DCRNN | TGCN | MSDR | SHGCN | ||
CO | Enhanced | CO + Enhanced | |||||
RMSE | 13.6291 | 13.1284 | 13.0921 | 13.1087 | 12.8598 | ||
15 min | MAE | 10.4286 | 9.8827 | 9.7672 | 9.8126 | 9.6927 | |
Accuracy | 0.7722 | 0.7763 | 0.7791 | 0.7780 | 0.7842 | ||
RMSE | 14.4801 | 13.9901 | 13.9229 | 13.9893 | 13.7672 | ||
30 min | MAE | 10.9359 | 10.8726 | 10.6782 | 10.8056 | 10.4289 | |
Accuracy | 0.7578 | 0.7605 | 0.7642 | 0.7627 | 0.7701 | ||
RMSE | 15.9762 | 15.5892 | 15.5265 | 15.6082 | 15.4021 | ||
60 min | MAE | 11.7289 | 11.3184 | 11.2494 | 11.2957 | 11.0827 | |
Accuracy | 0.7432 | 0.7481 | 0.7501 | 0.7489 | 0.7554 |
Newcastle | |||||||
---|---|---|---|---|---|---|---|
Time | Metric | DCRNN | TGCN | MSDR | SHGCN | ||
CO | Enhanced | CO + Enhanced | |||||
RMSE | 15.9431 | 15.5338 | 14.4815 | 14.7233 | 14.6272 | ||
15 min | MAE | 10.1156 | 10.1891 | 9.8861 | 9.4361 | 9.2638 | |
Accuracy | 0.7963 | 0.8017 | 0.7985 | 0.8096 | 0.8104 | ||
RMSE | 17.0582 | 15.6713 | 15.7153 | 15.1856 | 15.0536 | ||
30 min | MAE | 10.1219 | 10.3431 | 10.2541 | 10.0755 | 10.0118 | |
Accuracy | 0.7815 | 0.8001 | 0.8111 | 0.8037 | 0.8096 | ||
RMSE | 18.4936 | 17.0829 | 16.1024 | 16.0949 | 15.1864 | ||
60 min | MAE | 13.1481 | 11.4869 | 10.8135 | 10.1507 | 9.7246 | |
Accuracy | 0.7588 | 0.7824 | 0.7952 | 0.7991 | 0.8040 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; He, M.; Qin, D.; Zhou, T.; Jiang, N. Spatio-Temporal Heterogeneity-Oriented Graph Convolutional Network for Urban Traffic Flow Prediction. Sensors 2025, 25, 5127. https://doi.org/10.3390/s25165127
Li X, He M, Qin D, Zhou T, Jiang N. Spatio-Temporal Heterogeneity-Oriented Graph Convolutional Network for Urban Traffic Flow Prediction. Sensors. 2025; 25(16):5127. https://doi.org/10.3390/s25165127
Chicago/Turabian StyleLi, Xuan, Muyang He, Dong Qin, Tianqing Zhou, and Nan Jiang. 2025. "Spatio-Temporal Heterogeneity-Oriented Graph Convolutional Network for Urban Traffic Flow Prediction" Sensors 25, no. 16: 5127. https://doi.org/10.3390/s25165127
APA StyleLi, X., He, M., Qin, D., Zhou, T., & Jiang, N. (2025). Spatio-Temporal Heterogeneity-Oriented Graph Convolutional Network for Urban Traffic Flow Prediction. Sensors, 25(16), 5127. https://doi.org/10.3390/s25165127