Mechanosensitivity and Adipose Thickness as Determinants of Pressure to Reach Deep Fasciae in Cervical and Thoracolumbar Regions
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Ethics
2.2. Participants
2.3. Instruments
Sample Selection and Characterisation
2.4. Procedures
- Cervical region: Participants were seated on a chair, with their feet flat on the floor and hands resting on their thighs [30]. Given that the deep fascia of the cervical region involves the upper trapezius muscle [31], the measurement site was defined as the midpoint between the spinous process of the C7 vertebra and the lateral edge of the acromion [30].
- Thoracolumbar region: Participants were placed in a relaxed prone position. The measurement site corresponded to the erector spinae muscle, 5 cm lateral to the spinous process of the L1 vertebra [32].
2.5. Statistical Analysis
3. Results
4. Discussion
4.1. Regional Patterns and Tissue Behaviour
4.2. Mechanosensitivity, Adipose Tissue Thickness and Predictive Value
4.3. Considerations and Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
cm | Centimetre |
Kg | Kilogram |
Kgf/s | Kilogram-force per second |
m | Metre |
Med | Median |
N | Newton |
PPT | Pressure pain threshold |
SD | Standard deviation |
SPSS | Statistical Package for the Social Sciences |
References
- Devantéry, K.; Morin, M.; Grimard, J.; Gaudreault, N. Effects of a Myofascial Technique on the Stiffness and Thickness of the Thoracolumbar Fascia and Lumbar Erector Spinae Muscles in Adults with Chronic Low Back Pain: A Randomized before-and-after Experimental Study. Bioengineering 2023, 10, 332. [Google Scholar] [CrossRef] [PubMed]
- Weiss, K.; Kalichman, L. Deep fascia as a potential source of pain: A narrative review. J. Bodyw. Mov. Ther. 2021, 28, 82–86. [Google Scholar] [CrossRef] [PubMed]
- Stecco, C.; Pirri, C.; Fede, C.; Fan, C.; Giordani, F.; Stecco, L.; Foti, C.; De Caro, R. Dermatome and fasciatome. Clin. Anat. 2019, 32, 896–902. [Google Scholar] [CrossRef]
- Suarez-Rodriguez, V.; Fede, C.; Pirri, C.; Petrelli, L.; Loro-Ferrer, J.F.; Rodriguez-Ruiz, D.; De Caro, R.; Stecco, C. Fascial Innervation: A Systematic Review of the Literature. Int. J. Mol. Sci. 2022, 23, 5674. [Google Scholar] [CrossRef]
- Stecco, A.; Giordani, F.; Fede, C.; Pirri, C.; De Caro, R.; Stecco, C. From Muscle to the Myofascial Unit: Current Evidence and Future Perspectives. Int. J. Mol. Sci. 2023, 24, 4527. [Google Scholar] [CrossRef]
- Kodama, Y.; Masuda, S.; Ohmori, T.; Kanamaru, A.; Tanaka, M.; Sakaguchi, T.; Nakagawa, M. Response to Mechanical Properties and Physiological Challenges of Fascia: Diagnosis and Rehabilitative Therapeutic Intervention for Myofascial System Disorders. Bioengineering 2023, 10, 474. [Google Scholar] [CrossRef]
- Schleip, R.; Hedley, G.; Yucesoy, C.A. Fascial nomenclature: Update on related consensus process. Clin. Anat. 2019, 32, 929–933. [Google Scholar] [CrossRef]
- Stecco, C.; Pratt, R.; Nemetz, L.D.; Schleip, R.; Stecco, A.; Theise, N.D. Towards a comprehensive definition of the human fascial system. Am. J. Anat. 2025, 246, 1084–1098. [Google Scholar] [CrossRef]
- Brandl, A.; Egner, C.; Schleip, R. Immediate Effects of Myofascial Release on the Thoracolumbar Fascia and Osteopathic Treatment for Acute Low Back Pain on Spine Shape Parameters: A Randomized, Placebo-Controlled Trial. Life 2021, 11, 845. [Google Scholar] [CrossRef]
- Willard, F.H.; Vleeming, A.; Schuenke, M.D.; Danneels, L.; Schleip, R. The thoracolumbar fascia: Anatomy, function and clinical considerations. Am. J. Anat. 2012, 221, 507–536. [Google Scholar] [CrossRef] [PubMed]
- Talagas, M.; Lebonvallet, N.; Leschiera, R.; Marcorelles, P.; Misery, L. What about physical contacts between epidermal keratinocytes and sensory neurons? Exp. Dermatol. 2017, 27, 9–13. [Google Scholar] [CrossRef]
- Talagas, M. Anatomical contacts between sensory neurons and epidermal cells: An unrecognized anatomical network for neuro-immuno-cutaneous crosstalk. Br. J. Dermatol. 2022, 188, 176–185. [Google Scholar] [CrossRef]
- Overmann, L.; Schleip, R.; Michalak, J. Exploring fascial properties in patients with depression and chronic neck pain: An observational study. Acta Psychol. 2024, 244, 104214. [Google Scholar] [CrossRef]
- Pirri, C.; Pirri, N.; Guidolin, D.; Macchi, V.; Porzionato, A.; De Caro, R.; Stecco, C. Ultrasound Imaging of Thoracolumbar Fascia Thickness: Chronic Non-Specific Lower Back Pain versus Healthy Subjects; A Sign of a “Frozen Back”? Diagnostics 2023, 13, 1436. [Google Scholar] [CrossRef] [PubMed]
- Raja G, P.; Bhat, S.; Gangavelli, R.; Prabhu, A.; Stecco, A.; Pirri, C.; Jaganathan, V.; Fernández-de-Las-Peñas, C. Effectiveness of Deep Cervical Fascial Manipulation® and Sequential Yoga Poses on Pain and Function in Individuals with Mechanical Neck Pain: A Randomised Controlled Trial. Life 2023, 13, 2173. [Google Scholar] [CrossRef]
- Van Amstel, R.; Noten, K.; Malone, S.; Vaes, P. Fascia Tissue Manipulations in Chronic Low Back Pain: A Pragmatic Comparative Randomized Clinical Trial of the 4xT Method® and Exercise Therapy. Life 2023, 14, 7. [Google Scholar] [CrossRef]
- Ożóg, P.; Weber-Rajek, M.; Radzimińska, A. Effects of Isolated Myofascial Release Therapy in Patients with Chronic Low Back Pain—A Systematic Review. J. Clin. Med. 2023, 12, 6143. [Google Scholar] [CrossRef] [PubMed]
- Benjamin, M. The fascia of the limbs and back—A review. Am. J. Anat. 2008, 214, 1–18. [Google Scholar] [CrossRef]
- Mandel, J.B.; Solorio, L.; Tepole, A.B. Geometry of adipocyte packing in subcutaneous tissue contributes to nonlinear tissue properties captured through a Gaussian process surrogate model. Soft Matter 2024, 20, 4197–4207. [Google Scholar] [CrossRef]
- Chen, D.Z.; Ganapathy, A.; Nayak, Y.; Mejias, C.; Bishop, G.L.; Mellnick, V.M.; Ballard, D.H. Analysis of Superficial Subcutaneous Fat Camper’s and Scarpa’s Fascia in a United States Cohort. J. Cardiovasc. Dev. Dis. 2023, 10, 347. [Google Scholar] [CrossRef]
- Selva-Sarzo, F.; Romero, E.A.S.; Cuenca-Zaldívar, J.N.; García-Haba, B.; Akiyama, C.; Sillevis, R.; Fernández-Carnero, S. Effects on perceived pain and somatosensory function after transcutaneous neuromodulation in patients with chronic low back pain: A quasi-experimental study with a crossover intervention. Front. Pain Res. 2025, 6, 1525964. [Google Scholar] [CrossRef] [PubMed]
- Taljanovic, M.S.; Gimber, L.H.; Becker, G.W.; Latt, L.D.; Klauser, A.S.; Melville, D.M.; Gao, L.; Witte, R.S. Shear-Wave Elastography: Basic Physics and Musculoskeletal Applications. RadioGraphics 2017, 37, 855–870. [Google Scholar] [CrossRef]
- Chaudhry, H.; Schleip, R.; Ji, Z.; Bukiet, B.; Maney, M.; Findley, T. Three-Dimensional Mathematical Model for Deformation of Human Fasciae in Manual Therapy. J. Am. Osteopat. Assoc. 2008, 108, 379–390. [Google Scholar] [CrossRef] [PubMed]
- Vosseler, M.; El Shazly, A.; Parker, J.D.; Münzel, T.; Gori, T. Resting and recruitable endothelial function – Evidence of two distinct circadian patterns. Clin. Hemorheol. Microcirc. 2020, 74, 139–146. [Google Scholar] [CrossRef]
- Ylinen, J.; Häkkinen, A.; Nykänen, M.; Kautiainen, H.; Takala, E.-P. Neck muscle training in the treatment of chronic neck pain: A three-year follow-up study. Eur. Medicophysica 2007, 43, 161–169. [Google Scholar]
- Costa, S.G.; Simim, M.A.; Barbosa, L.F.; Lima, L.C.; Assumpção, C.O. Utilização de diferentes adipómetros e a experiência dos avaliadores não implicam em erros de estimativas da composição corporal. Rev. Bras. Prescrição Fisiol. Exercício 2021, 14, 566–572. [Google Scholar]
- Zuo, C.; Luo, L.; Liu, W. Effects of increased humidity on physiological responses, thermal comfort, perceived air quality, and Sick Building Syndrome symptoms at elevated indoor temperatures for subjects in a hot-humid climate. Indoor Air 2020, 31, 524–540. [Google Scholar] [CrossRef]
- Murguía-Romero, M.; Jiménez-Flores, R.; Méndez-Cruz, A.R.; Villalobos-Molina, R. Improving the Body Mass Index (BMI) Formula with Heuristic Search. In Proceedings of the 2012 11th Mexican International Conference on Artificial Intelligence, San Luis Potos, Mexico, 27 October–4 November 2012; pp. 100–104. [Google Scholar] [CrossRef]
- Kim, Y.M.; Kim, K. Abdominal examination using pressure pain threshold algometer reflecting clinical characteristics of complementary and alternative medicine in Korea: A systematic review and a brief proposal. Medicine 2022, 101, e31417. [Google Scholar] [CrossRef]
- Zamani, S.; Okhovatian, F.; Naimi, S.S.; Baghban, A.A. Intra- Examiner and Between-Day Reliability of Algometer for Pressure Pain Threshold and Pain Sensitivity in Upper Trapezius Muscle in Asymptomatic Young Adult Women. J. Clin. Physiother. Res. 2017, 2, 15–20. [Google Scholar]
- Feigl, G.; Hammer, G.P.; Litz, R.; Kachlik, D. The intercarotid or alar fascia, other cervical fascias, and their adjacent spaces—A plea for clarification of cervical fascia and spaces terminology. Am. J. Anat. 2020, 237, 197–207. [Google Scholar] [CrossRef]
- de Oliveira, R.F.; Liebano, R.E.; Costa, L.d.C.M.; Rissato, L.L.; Costa, L.O.P. Immediate Effects of Region-Specific and Non–Region-Specific Spinal Manipulative Therapy in Patients With Chronic Low Back Pain: A Randomized Controlled Trial. Phys. Ther. 2013, 93, 748–756. [Google Scholar] [CrossRef]
- Fischer, A.A. Pressure algometry over normal muscles. Standard values, validity and reproducibility of pressure threshold. Pain 1987, 30, 115–126. [Google Scholar] [CrossRef] [PubMed]
- American College of Sports Medicine. ACSM’s Guidelines for Exercise Testing and Prescription, 8th ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2009. [Google Scholar]
- Finocchietti, S.M.; Mørch, C.D.; Arendt-Nielsen, L.P.; Graven-Nielsen, T.P. Effects of Adipose Thickness and Muscle Hardness on Pressure Pain Sensitivity. Clin. J. Pain 2011, 27, 735–745. [Google Scholar] [CrossRef] [PubMed]
- Ajimsha, M.; Daniel, B.; Chithra, S. Effectiveness of Myofascial release in the management of chronic low back pain in nursing professionals. J. Bodyw. Mov. Ther. 2014, 18, 273–281. [Google Scholar] [CrossRef] [PubMed]
- Marzvanyan, A.; Alhawaj, A.F. Physiology, Sensory Receptors. In StatPearls; StatPearls Publishing LLC: Tampa, FL, USA, 2023; p. 14. [Google Scholar]
- Martinez-Merinero, P.; Nuñez-Nagy, S.; Achalandabaso-Ochoa, A.; Fernandez-Matias, R.; Pecos-Martin, D.; Gallego-Izquierdo, T. Relationship between Forward Head Posture and Tissue Mechanosensitivity: A Cross-Sectional Study. J. Clin. Med. 2020, 9, 634. [Google Scholar] [CrossRef]
- Chaudhuri, O.; Cooper-White, J.; Janmey, P.A.; Mooney, D.J.; Shenoy, V.B. Effects of extracellular matrix viscoelasticity on cellular behaviour. Nature 2020, 584, 535–546. [Google Scholar] [CrossRef]
- Cowman, M.K.; Lee, H.; Schwertfeger, K.L.; McCarthy, J.B.; Turley, E.A. The content and size of hyaluronan in biological fluids and tissues. Front. Immunol. 2015, 2, 261. [Google Scholar] [CrossRef]
- Chaudhry, H.; Bukiet, B.; Ji, Z.; Stecco, A.; Findley, T.W. Deformations Experienced in the Human Skin, Adipose Tissue, and Fascia in Osteopathic Manipulative Medicine. J. Am. Osteopath. Assoc. 2014, 144, 780–787. [Google Scholar] [CrossRef]
- Fischer, A.; Anwar, M.; Hertwig, A.; Hahn, R.; Pesta, M.; Timmermann, I.; Siebenrock, T.; Liebau, K.; Hiesmayr, M. Ultrasound method of the USVALID study to measure subcutaneous adipose tissue and muscle thickness on the thigh and upper arm: An illustrated step-by-step guide. Clin. Nutr. Exp. 2020, 32, 38–73. [Google Scholar] [CrossRef]
- Bordoni, B.; Escher, A.R. Fascial Manual Medicine: The Concept of Fascial Continuum. Cureus 2025, 17, e82136. [Google Scholar] [CrossRef]
- Branchini, M.; Lopopolo, F.; Andreoli, E.; Loreti, I.; Marchand, A.M.; Stecco, A. Fascial Manipulation® for chronic aspecific low back pain: A single blinded randomized controlled trial. F1000Research 2016, 4, 1208. [Google Scholar] [CrossRef] [PubMed]
- Melo, B.L.; Silva, L.L.; Almeida, P.F. Relação da força muscular e limiar de tolerância à dor à pressão em pacientes com lombalgia crónica. Acta Fisiátrica 2019, 26, 134–138. [Google Scholar] [CrossRef]
- Descarreaux, M.; Blouin, J.; Drolet, M.; Papadimitriou, S.; Teasdale, N. Efficacy of Preventive Spinal Manipulation for Chronic Low-Back Pain and Related Disabilities: A Preliminary Study. J. Manip. Physiol. Ther. 2004, 27, 509–514. [Google Scholar] [CrossRef]
- Georgoudis, G.; Oldham, J.; Watson, P.J.; Grammatopolou, E. Reliability Measures of Subcutaneous Pressure Pain Threshold Measurements: A Proposed Method of Assessing Painful Musculoskeletal Disorders. J. Nov. Physiother. 2014, 4, 1000234. [Google Scholar] [CrossRef]
- Stecco, C.; Schleip, R. A fascia and the fascial system. J. Bodyw. Mov. Ther. 2016, 20, 139–140. [Google Scholar] [CrossRef] [PubMed]
Variable | Mean (SD) | Med (P25; P75) |
---|---|---|
Age (years) | 21 (19; 24) | |
Weight (Kg) | 64.77 (12.793) | |
Height (m) | 1.70 (0.095) | |
BMI (Kg/m2) | 22.38 (3.565) |
Variable | Mean (SD) | Med (P25; P75) | p-Value | ||
---|---|---|---|---|---|
Cervical | Thoracolumbar | Cervical | Thoracolumbar | 0.80 * | |
Mechanical pressure (N/cm2) | 6.06 (0.186) | 5.85 (5.280; 7.287) | <0.001 # | ||
Pressure pain threshold (N/cm2) | 18.88 (0.917) | 46.46 (2.408) | |||
Adipose tissue thickness (cm) | 1.48 (0.069) | 0.88 (0.675;1.08) | <0.001 * |
Region | r/ρ; p | |
---|---|---|
Cervical | Mechanical Pressure vs. PPT | 0.262 *; 0.089 |
Mechanical Pressure vs. Adipose Tissue Thickness | 0.134 #; 0.392 | |
Thoracolumbar | Mechanical Pressure vs. PPT | 0.139 #; 0.375 |
Mechanical Pressure vs. Adipose Tissue Thickness | −0.214 #; 0.169 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pires, S.; Freitas, M.; Pinho, F.; Brandão, S. Mechanosensitivity and Adipose Thickness as Determinants of Pressure to Reach Deep Fasciae in Cervical and Thoracolumbar Regions. Sensors 2025, 25, 5073. https://doi.org/10.3390/s25165073
Pires S, Freitas M, Pinho F, Brandão S. Mechanosensitivity and Adipose Thickness as Determinants of Pressure to Reach Deep Fasciae in Cervical and Thoracolumbar Regions. Sensors. 2025; 25(16):5073. https://doi.org/10.3390/s25165073
Chicago/Turabian StylePires, Sílvia, Marta Freitas, Francisco Pinho, and Sofia Brandão. 2025. "Mechanosensitivity and Adipose Thickness as Determinants of Pressure to Reach Deep Fasciae in Cervical and Thoracolumbar Regions" Sensors 25, no. 16: 5073. https://doi.org/10.3390/s25165073
APA StylePires, S., Freitas, M., Pinho, F., & Brandão, S. (2025). Mechanosensitivity and Adipose Thickness as Determinants of Pressure to Reach Deep Fasciae in Cervical and Thoracolumbar Regions. Sensors, 25(16), 5073. https://doi.org/10.3390/s25165073