Recent Technological Upgrades to the SHYPROM IoT-Based System for Monitoring Soil Water Status
Abstract
Highlights
- Development of a low-cost hydrological monitoring system.
- Consistent and reliable performance.
- Possibility to build the device on one’s own.
- It makes the IoT monitoring system suitable for monitoring soil water status with acceptable accuracy.
Abstract
1. Introduction
2. Materials and Methods
2.1. Hardware Description
2.2. Soil Properties and Experimental Setup
2.3. Statistical Indices for SHYPROM60 Performance Evaluation
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Third Overtone Operation in the Pierce Oscillator Circuit
- Operation at the Third Overtone:
- Implementation in the Pierce Circuit:
- Design Considerations:
- -
- The LC circuit must be designed to present a high impedance at the fundamental frequency, preventing oscillation at this frequency.
- -
- At the same time, the circuit must present adequate impedance at the third harmonic, facilitating oscillation at this frequency.
- -
- Careful selection of inductance and capacitance values is crucial to ensure that the resonant circuit is correctly tuned and functions as intended.
Appendix B. Supplementary Information
- Board Fabrication Files folder:
- (a)
- The Gerber files (SHYPROM 60 MHz ver 2.4 (two layers).kicad_pcb_gerber.zip);
- (b)
- The Centroid file (SHYPROM 60 MHz ver 2.4 (two layers).kicad_pcb_positions);
- (c)
- The BOM (SHYPROM 60 MHz ver 2.4 (two layers).kicad_pcb_bom).
- 2.
- SHYPROM60 Firmware folder:
- (a)
- The Arduino IDE-based source code utilized to program the SHYPROM60 device (SHYPROM60.ino);
- (b)
- Source code for the SHYPROM60_PRO APP (for Android-based devices only: SHYPROM60_PRO.aia).
- 3.
- 3D Printing Materials folder:
- (a)
- SHYPROM60_BOX Folder: external waterproof box, .stl files for containing the whole monitoring system;
- (b)
- SHYPROM_RINGS Folder: .stl files for assembling the capacitive electrodes;
- (c)
- How to assemble the SHYPROM60 sensor: a comprehensive user guide for realizing and assembling the SHYPROM60 device.
- Details on production costs
Footprint Assignment | Designator | Quantity | Footprint Specification (Kikad) | Mounting Type |
---|---|---|---|---|
C1 | Capacitor: 100 nF | 1 | C_Disc_D8.0mm_W5.0mm_P5.00mm | THT * |
C2 | Capacitor: 100 nF | 1 | C_Disc_D8.0mm_W5.0mm_P5.00mm | THT |
C3 | Capacitor: 100 nF | 1 | C_Disc_D8.0mm_W5.0mm_P5.00mm | THT |
C4 | Capacitor: 100 nF | 1 | C_Disc_D8.0mm_W5.0mm_P5.00mm | THT |
C5 | Capacitor: 5 pF | 1 | C_Disc_D8.0mm_W5.0mm_P5.00mm | THT |
C6 | Capacitor: 10 pF | 1 | C_Disc_D8.0mm_W5.0mm_P5.00mm | THT |
C7 | Capacitor: 1 nF | 1 | C_Disc_D8.0mm_W5.0mm_P5.00mm | THT |
D1 | Diode: 1N4001 | 1 | D_DO-41_SOD81_P10.16mm_Horizontal | THT |
D2 | Diode: 1N4001 | 1 | D_DO-41_SOD81_P10.16mm_Horizontal | THT |
D3 | Diode: 1N4001 | 1 | D_DO-41_SOD81_P10.16mm_Horizontal | THT |
J1 | MPX5100DP | 1 | PinHeader_1×03_P2.54mm_Vertical | THT |
J2 | MPX5100DP | 1 | PinHeader_1×03_P2.54mm_Vertical | THT |
J3 | Connector 01×02 | 1 | PinHeader_1×02_P2.54mm_Vertical | THT |
J4 | Micro SD | 1 | PinHeader_1×06_P2.54mm_Vertical | THT |
J5 | DS18B20 | 1 | PinHeader_1×03_P2.54mm_Vertical | THT |
J6 | Connector 01×02 | 1 | PinHeader_1×02_P2.54mm_Vertical | THT |
J7 | Connector 01×02 | 1 | PinHeader_1×02_P2.54mm_Vertical | THT |
J8 | Connector 01×02 | 1 | PinHeader_1×02_P2.54mm_Vertical | THT |
J9 | Connector 01×02 | 1 | PinHeader_1×02_P2.54mm_Vertical | THT |
L1 | Inductor: 1 μH | 1 | R_Axial_DIN0207_L6.3mm_D2.5mm_P10.16mm_H | THT |
R1 | Resistor: 4k7 Ω | 1 | R_Axial_DIN0207_L6.3mm_D2.5mm_P10.16mm_H | THT |
R2 | Resistor: 4k7 Ω | 1 | R_Axial_DIN0207_L6.3mm_D2.5mm_P10.16mm_H | THT |
R3 | Resistor: 4k7 Ω | 1 | R_Axial_DIN0207_L6.3mm_D2.5mm_P10.16mm_H | THT |
R4 | Resistor: 10 kΩ | 1 | R_Axial_DIN0207_L6.3mm_D2.5mm_P10.16mm_H | THT |
R5 | Resistor: 1 MΩ | 1 | R_Axial_DIN0207_L6.3mm_D2.5mm_P10.16mm_H | THT |
R6 | Resistor: 10 kΩ | 1 | R_Axial_DIN0207_L6.3mm_D2.5mm_P10.16mm_H | THT |
R7 | Resistor: 1 MΩ | 1 | R_Axial_DIN0207_L6.3mm_D2.5mm_P10.16mm_H | THT |
R8 | Resistor: 10 kΩ | 1 | R_Axial_DIN0207_L6.3mm_D2.5mm_P10.16mm_H | THT |
R9 | Resistor: 1 MΩ | 1 | R_Axial_DIN0207_L6.3mm_D2.5mm_P10.16mm_H | THT |
R10 | Resistor: 1 MΩ | 1 | R_Axial_DIN0207_L6.3mm_D2.5mm_P10.16mm_H | THT |
R11 | Resistor: 22 Ω | 1 | R_Axial_DIN0207_L6.3mm_D2.5mm_P10.16mm_H | THT |
U1 | ESP32SIM800L | 1 | TTGO-TCALL-SIM800:TTGO-TCALL-SIM800 | THT |
U2 | Inverter: 74HCU04 | 1 | Package_DIP:DIP-14_W7.62mm | THT |
Y1 | Crystal 60 MHz | 1 | Crystal:Resonator-2Pin_W10.0mm_H5.0mm | THT |
- Comparisons between SHYPROM and SHYPROM60
Parameter | SHYPROM | SHYPROM-60 | Variation |
---|---|---|---|
Operating temperature range (°C) | 20–30 | 20–30 | Same range |
Operating frequency | 600 kHz | 60 MHz | Higher operating frequency |
PCB structure | 4-layer PCB | 2-layer PCB | Simplified design and lower cost |
PCB dimensions (mm) | 95 × 100 | 95 × 100 | Same dimension |
Estimated cost (USD/unit) | ~75 | ~65 | Slight cost reduction |
Transmission technology | GSM | GSM | Same technology |
Sensor calibration/validation | 1 soil | 3 soils | Increased accuracy |
References
- Comegna, A.; Hassan, S.B.M.; Coppola, A. Development and Application of an IoT-Based System for Soil Water Status Monitoring in a Soil Profile. Sensors 2024, 24, 2725. [Google Scholar] [CrossRef]
- Topp, G.C.; Watt, M.; Hayhoe, H.N. Point specific measurement and monitoring of soil water content with an emphasis on TDR. Can. J. Soil Sci. 1996, 76, 307–316. [Google Scholar] [CrossRef]
- Noborio, K. Measurement of soil water content and electrical conductivity by time domain reflectometry: A review. Comput. Electron. Agric. 2007, 31, 213–237. [Google Scholar] [CrossRef]
- Comegna, A.; Coppola, A.; Dragonetti, G.; Severino, G.; Sommella, A.; Basile, A. Dielectric properties of a tilled sandy volcanic vesuvian soil with moderate andic features. Soil Tillage Res. 2013, 133, 93–100. [Google Scholar] [CrossRef]
- Comegna, A.; Coppola, A.; Dragonetti, G.; Sommella, A. Estimating non-aqueous phase liquid (NAPL) content in variable saturated soils using time domain reflectometry (TDR). Vadose Zone J. 2016, 15, 1–11. [Google Scholar] [CrossRef]
- Saeed, A.; Comegna, A.; Dragonetti, G.; Lamaddalena, N.; Sommella, A.; Coppola, A. Soil electrical conductivity estimated by time domain reflectometry and electromagnetic induction sensors: Accounting for the different sensor observation volumes. J. Agric. Eng. 2017, 48, 223–234. [Google Scholar] [CrossRef]
- Severino, G.; Scarfato, M.; Comegna, A. Stochastic analysis of unsaturated steady flows above the water table. Water Resour. Res. 2017, 53, 6687–6708. [Google Scholar] [CrossRef]
- Wu, Y.; Yang, Z.; Liu, Y. Internet-of-Things-Based Multiple-Sensor Monitoring System for Soil Information Diagnosis Using a Smartphone. Micromachines 2023, 14, 1395. [Google Scholar] [CrossRef]
- Jones, H.G. Irrigation scheduling: Advantages and pitfalls of plant-based methods. J. Exp. Bot. 2004, 55, 2427–2436. [Google Scholar] [CrossRef] [PubMed]
- Comegna, A.; Di Prima, S.; Hassan, S.B.M.; Coppola, A. A Novel Time Domain Reflectometry (TDR) System for Water Content Estimation in Soils: Development and Application. Sensors 2025, 25, 1099. [Google Scholar] [CrossRef] [PubMed]
- Gómez, J.A.; Giráldez, J.V.; Pastor, M.; Fereres, E. Effects of soil management on soil physical properties, soil loss, and crop yield in irrigated annual crops. Agron. J. 2018, 110, 134–142. [Google Scholar]
- Visconti, P.; Giannoccaro, N.L.; de Fazio, R.; Cafagna, D.; Strazzella, S. IoT-oriented software platform applied to sensor-based farming facility with smartphone farmer app. Bull. Electr. Eng. Inform. 2020, 9, 1095–1105. [Google Scholar] [CrossRef]
- Sasot, A.S. Study of the Development of an IoT-Based Sensor Platform for E-Agriculture. Master’s Thesis, Universitat Politecnica de Catalunya, Department of Engineering Electronics, Barcelona, Spain, 2020. [Google Scholar]
- Comegna, A.; Dragonetti, G.; Kodesova, R.; Coppola, A. Impact of olive mill wastewater (OMW) on the soil hydraulic and solute transport properties. Int. J. Environ. Sci. Technol. 2022, 19, 7079–7092. [Google Scholar] [CrossRef]
- Comegna, A.; Severino, G.; Coppola, A. A review of new TDR applications for measuring non-aqueous phase liquids (NAPLs) in soils. Environ. Adv. 2022, 9, 100296. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, X.; Wang, X. Precision agriculture—A worldwide overview. Comput. Electron. Agric. 2017, 136, 131–132. [Google Scholar] [CrossRef]
- Fares, A.; Abbas, F.; Maria, D.; Mair, A. Improved Calibration Functions of Three Capacitance Probes for the Measurement of Soil Moisture in Tropical Soils. Sensors 2011, 11, 4858–4874. [Google Scholar] [CrossRef] [PubMed]
- Kapilaratne, R.G.C.; Lu, M. Automated general temperature correction method for dielectric soil moisture sensors. J. Hydrol. 2017, 551, 203–216. [Google Scholar] [CrossRef]
- Payero, J.O.; Qiao, X.; Khalilian, A.; Mirzakhani-Nafchi, A.; Davis, R. Evaluating the Effect of Soil Texture on the Response of Three Types of Sensors Used to Monitor Soil Water Status. J. Water Resour. Prot. 2017, 9, 566–577. [Google Scholar] [CrossRef]
- González-Teruel, J.D.; Torres-Sánchez, R.; Blaya-Ros, P.J.; Toledo-Moreo, A.B.; Jiménez-Buendía, M.; Soto-Valles, F. Design and Calibration of a Low-Cost SDI-12 Soil Moisture Sensor. Sensors 2019, 19, 491. [Google Scholar] [CrossRef]
- García, L.; Parra, L.; Jimenez, J.M.; Lloret, J.; Lorenz, P. IoT-Based Smart Irrigation Systems: An Overview on the Recent Trends on Sensors and IoT Systems for Irrigation in Precision Agriculture. Sensors 2020, 20, 1042. [Google Scholar] [CrossRef]
- Peddinti, S.R.; Hopmans, J.W.; Abou Najm, M.; Kisekka, I. Assessing Effects of Salinity on the Performance of a Low-Cost Wireless Soil Water Sensor. Sensors 2020, 20, 7041. [Google Scholar] [CrossRef]
- Comegna, A.; Coppola, A.; Dragonetti, G. Time domain reflectometry for dielectric characterization of olive mill wastewater contaminated soils. J. Agric. Eng. 2020, 51, 248–254. [Google Scholar] [CrossRef]
- Chowdhury, S.; Sen, S.; Janardhanan, S. Comparative Analysis and Calibration of Low Cost Resistive and Capacitive Soil Moisture Sensor. arXiv 2022, arXiv:2210.03019v1. [Google Scholar]
- Meter Group. Soil Moisture Sensors-How They Work. Why Some Are Not Research-Grade. On Line Technical Note. Available online: https://metergroup.com/measurement-insights/soil-moisture-sensors-how-they-work-why-some-are-not-research-grade/ (accessed on 1 January 2025).
- Logsdon, S.; Laird, D. Cation and Water Content Effects on Dipole Rotation Activation Energy of Smectites. Soil Sci. Soc. Am. J. 2004, 68, 1586–1591. [Google Scholar] [CrossRef]
- Robinson, D.A.; Kelleners, T.J.; Cooper, J.D.; Gardner, C.M.K.; Wilson, P.; Lebron, I.; Logsdon, S.D. Evaluation of a capacitance probe frequency response model accounting for bulk electrical conductivity: Comparisons with TDR and network analyzer measurements. Vadose Zone J. 2005, 4, 992–1003. [Google Scholar] [CrossRef]
- Kizito, F.; Campbell, C.S.; Campbell, G.S.; Cobos, D.R.; Teare, B.L.; Carter, B.; Hopmans, J.W. Frequency, electrical conductivity and temperature analysis of a low-cost moisture sensor. J. Hydrol. 2008, 352, 367–378. [Google Scholar] [CrossRef]
- IUSS Working Group WRB. World Reference Base for Soil Resources. A Framework for International Classification, Correlation and Communication, 2nd ed.; World Soil Resources Reports; FAO: Rome, Italy, 2006; Volume 103. [Google Scholar]
- Day, P.R. Particle fractionation and particle-size analysis. In Methods of Soil Analysis, Part 1, Madison; Black, C.A., Ed.; American Society of Agronomy: Madison, WI, USA, 1965; pp. 545–567. [Google Scholar]
- Blake, G.R.; Hartge, K.H. Particle density. In Methods of Soil Analysis, Part 1, 2nd ed.; Klute, A., Ed.; American Society of Agronomy: Madison, WI, USA, 1986; pp. 377–381. [Google Scholar]
- Eckert, D.J. Soil pH. In Recommended Chemical Soil Test Procedures for the North Central Region; Dahnke, W.C., Ed.; North Dakota Agricultural Experiment Station Bulletin: Fargo, ND, USA, 1988; No. 221 (revised); pp. 6–8. [Google Scholar]
- Allison, L.E. Organic carbon. In Methods of Soil Analysis, Part 1; Klute, A., Ed.; Agronomy Monographs; American Society of Agronomy: Madison, WI, USA, 1965; Volume 9, pp. 1367–1378. [Google Scholar]
- Watson, K.K. An instantaneous profile method for determining the hydraulic conductivity of unsaturated porous materials. Water Resour. Res. 1966, 2, 709–715. [Google Scholar] [CrossRef]
- Vachaud, G.; Dane, J.H. Instantaneous profile. In Methods of Soil Analysis, Part 4; Dane, J.H., Topp, G.C., Eds.; Physical Methods; Soil Science Society of America, Inc.: Madison, WI, USA, 2002; pp. 937–945. [Google Scholar]
- Oates, M.J.; Fernández-López, A.; Ferrández-Villena, M.; Ruiz-Canales, A. Temperature compensation in a low cost frequency domain (capacitance based) soil moisture sensor. Agric. Water Manag. 2017, 183, 86–93. [Google Scholar] [CrossRef]
- Saeed, I.A.; Wang, M.; Ren, Y.; Shi, Q.; Malik, M.H.; Tao, S.; Cai, Q.; Gao, W. Performance analysis of dielectric soil moisture sensor. Soil Water Res. 2019, 14, 195–199. [Google Scholar] [CrossRef]
- Topp, G.C.; Ferré, T.P.A. Water content. In Methods of Soil Analysis, Part 4; Dane, J.H., Topp, G.C., Eds.; Physical Methods; Soil Science Society of America, Inc.: Madison, WI, USA, 2002; pp. 417–446. [Google Scholar]
- Legates, D.R.; McCabe, G.J., Jr. Evaluating the use of “goodness-of-fit” measures in hydrologic and hydroclimatic model validation. Water Resour. Res. 1999, 35, 233–241. [Google Scholar] [CrossRef]
- Goovaerts, P.; AvRuskin, G.; Meliker, J.; Slotnick, M.; Jacquez, G.; Nriagu, J. Geostatistical modeling of the spatial variability of arsenic in groundwater of southeast Michigan. Water Resour. Res. 2005, 41, W07013. [Google Scholar] [CrossRef]
- Bristow, K.L.; Campbell, G.S.; Calissendorff, K. Test of a Heat-Pulse Probe for Measuring Changes in Soil Water Content. Soil Sci. Soc. Am. J. 1993, 57, 930–934. [Google Scholar] [CrossRef]
- Rowlandson, T.L.; Berg, A.A.; Bullock, P.R.; Ojo, E.R.T.; McNairn, H.; Wiseman, G.; Cosh, M.H. Evaluation of several calibration procedures for a portable soil moisture sensor. J. Hydrol. 2013, 498, 335–344. [Google Scholar] [CrossRef]
- Mohamed, A.M.O. Principles and applications of time domain electrometry in geoenvironmental engineering. In Developments in Arid Region Research; Taylor and Francis: Oxfordshire, UK, 2006; Volume 5. [Google Scholar]
- Comegna, A.; Coppola, A.; Dragonetti, G.; Severino, G.; Sommella, A. Interpreting TDR signal propagation through soils with distinct layers of nonaqueous-phase liquid and water content. Vadose Zone J. 2017, 16, 1–11. [Google Scholar] [CrossRef]
- Misara, R.; Verma, D.; Mishra, N.; Rai, S.K.; Mishra, S. Twenty-two years of precision agriculture: A bibliometric review. Precis. Agric. 2022, 23, 2135–2158. [Google Scholar] [CrossRef]
- Comegna, A.; Coppola, A.; Dragonetti, G.; Sommella, A. A soil non-aqueous phase liquid (NAPL) flushing laboratory experiment based on measuring the dielectric properties of soil-organic mixtures via time domain reflectometry (TDR). Hydrol. Earth Syst. Sci. 2019, 23, 3593–3602. [Google Scholar] [CrossRef]
- van Genuchten, M.T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 1980, 44, 892–898. [Google Scholar] [CrossRef]
- Mualem, Y.A. New model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour. Res. 1976, 12, 513–522. [Google Scholar] [CrossRef]
- van Genuchten, M.T.; Leij, F.T.; Yates, S.R. The RETC Code for Quantifying the Hydraulic Functions of Unsaturated Soils; Report EPA/600/2–91/065; Environmental Protection Agency: Ada, OK, USA.
- Vittoz, E. Theory of the Pierce Oscillator. In Low-Power Crystal and MEMS Oscillators. Integrated Circuits and Systems; Springer: Dordrecht, The Netherlands, 2010. [Google Scholar]
- Arndt, G.; Colinet, E.; Arcamone, J.; Juillard, J. A design methodology for fully integrated MEMS and NEMS Pierce oscillators. Sens. Actuators A Phys. 2011, 172, 293–300. [Google Scholar] [CrossRef]
- Perelló-Roig, R.; Verd, J.; Bota, S.; Segura, J. A Tunable-Gain Transimpedance Amplifier for CMOS-MEMS Resonators Characterization. Micromachines 2021, 12, 82. [Google Scholar] [CrossRef]
Soil ID | Depth (cm) | Soil Texture and Classification (USDA) | ρb (g/cm3) | OC (g/kg) | pH | |||
---|---|---|---|---|---|---|---|---|
Texture |
Sand
(%) |
Silt
(%) | Clay (%) | |||||
SALO | 0–20 | sandy loam | 57.43 | 31.95 | 10.62 | 1.02 | 9.5 | 7.7 |
SILO | 0–20 | silty loam | 15.7 | 72.7 | 11.6 | 1.02 | 26.4 | 8.4 |
SAND | 0–20 | sand | 98 | 1.5 | 0.5 | 1.02 | 4.5 | 7.9 |
Soil Temperature (°C) | SALO a, b, R2 | SILO a, b, R2 | SAND a, b, R2 |
---|---|---|---|
20 | 0.1028, −0.0221, 0.94 | 0.0844, −0.0102, 0.92 | 0.0106, −0.0261, 0.95 |
21 | 0.0879, −0.0074, 0.95 | 0.0794, −0.0044, 0.95 | 0.0786, 0.0056, 0.91 |
22 | 0.0082, −0.0047, 0.96 | 0.0682, 0.009, 0.96 | 0.0712, 0.0055, 0.91 |
23 | 0.0824, −0.0008, 0.96 | 0.0762, −0.0017, 0.96 | 0.0793, −0.0010, 0.94 |
24 | 0.0792, 0.0009, 0.93 | 0.0688, 0.0039, 0.94 | 0.0709, −0.0095, 0.91 |
25 | 0.0733, 0.0049, 0.95 | 0.074, −0.0067, 0.95 | 0.0672, −0.0004, 0.92 |
26 | 0.0813, −0.048, 0.96 | 0.057, 0.026, 0.94 | 0.0721, −0.0029, 0.93 |
27 | 0.089, −0.008, 0.96 | 0.0735, −0.0045, 0.92 | 0.0687, −0.0124, 0.96 |
28 | 0.0726, −0.003, 0.96 | 0.0666, 0.102, 0.94 | 0.069, −0.0153, 0.95 |
29 | 0.0751, −0.0035, 0.95 | 0.0583, 0.015, 0.95 | 0.0587, −0.005, 0.93 |
30 | 0.0699, −0.0035, 0.94 | 0.0561, 0.0238, 0.94 | 0.0544, 0.0016, 0.94 |
Soil Temperature (°C) | SALO MBE, MAE, EF | SILO MBE, MAE, EF | SAND MBE, MAE, EF |
---|---|---|---|
20 | −6.55E-05, 2.74, 0.94 | 5.86E-04, 3.66, 0.92 | −4.09E-03, 2.67, 0.95 |
21 | −1.87E-02, 2.81, 0.93 | 6.54E-04, 2.51, 0.95 | −1.52E-02, 2.82, 0.91 |
22 | −4.80E-03, 2.47, 0.95 | −1.73E-02, 2.71, 0.94 | −1.50E-02, 2.70, 0.91 |
23 | 2.90E-05, 2.01, 0.96 | 6.01E-04, 2.19, 0.96 | −4.15E-03, 2.05, 0.95 |
24 | −1.74E-03, 3.12, 0.93 | −7.20E-03, 3.11, 0.93 | −4.15E-03, 2.76, 0.92 |
25 | −9.88E-03, 2.39, 0.95 | 5.71E-04, 2.76, 0.95 | −4.26E-03, 2.50, 0.93 |
26 | −1.62E-04, 2.38, 0.96 | 7.42E-04, 2.98, 0.93 | −4.03E-03, 2.36, 0.95 |
27 | 6.43E-05, 3.04, 0.93 | 7.62E-04, 3.25, 0.92 | 1.31E-02, 2.18, 0.96 |
28 | 1.42E-04, 2.44, 0.96 | −1.98E-02, 3.61, 0.92 | −4.11E-03, 2.62, 0.95 |
29 | −3.71E-05, 2.87, 0.95 | −1.30E-02, 2.45, 0.94 | −4.15E-03, 2.53, 0.94 |
30 | −2.18E-05, 2.88, 0.94 | 5.61E-04, 2.62, 0.94 | −7.26E-03, 2.48, 0.94 |
Overall * | −3.52E-03, 2.65, 0.95 | −1.05E-02, 2.90, 0.94 | −5.33E-03, 2.51, 0.94 |
Soil | θs (cm3/cm3) | θr (cm3/cm3) | α (1/cm) | n | K0 (cm/min) | R2vG | R2vGM |
---|---|---|---|---|---|---|---|
SILO | 0.42 | 0.0 | 0.048 | 1.743 | 0.006 | 0.99 | 0.98 |
SALO | 0.40 | 0.0 | 0.075 | 1.890 | 0.042 | 0.98 | 0.98 |
SAND | 0.35 | 0.0 | 0.145 | 2.680 | 3.0 | 0.99 | 0.97 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Comegna, A.; Hassan, S.B.M.; Coppola, A. Recent Technological Upgrades to the SHYPROM IoT-Based System for Monitoring Soil Water Status. Sensors 2025, 25, 4934. https://doi.org/10.3390/s25164934
Comegna A, Hassan SBM, Coppola A. Recent Technological Upgrades to the SHYPROM IoT-Based System for Monitoring Soil Water Status. Sensors. 2025; 25(16):4934. https://doi.org/10.3390/s25164934
Chicago/Turabian StyleComegna, Alessandro, Shawkat Basel Mostafa Hassan, and Antonio Coppola. 2025. "Recent Technological Upgrades to the SHYPROM IoT-Based System for Monitoring Soil Water Status" Sensors 25, no. 16: 4934. https://doi.org/10.3390/s25164934
APA StyleComegna, A., Hassan, S. B. M., & Coppola, A. (2025). Recent Technological Upgrades to the SHYPROM IoT-Based System for Monitoring Soil Water Status. Sensors, 25(16), 4934. https://doi.org/10.3390/s25164934