Termite Detection Techniques in Embankment Maintenance: Methods and Trends
Abstract
1. Introduction
2. Physical Sensing Technologies
2.1. Ground-Penetrating Radar
2.2. Acoustic Detection
2.3. Electrical Resistivity Method
2.4. Summary
3. Biological Characteristic Detection
3.1. Gas Detection
3.1.1. Electronic Nose
3.1.2. Sniffer Dogs
3.2. Termite Activity Sign Detection
3.2.1. Visual Inspection
3.2.2. Intelligent Monitoring
3.2.3. Drone-Based Termite Detection
3.3. Summary
4. Discussion
5. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CP | Conductive polymer |
ERT | Electrical resistivity tomography |
GPR | Ground-penetrating radar |
QCM | Quartz crystal microbalance |
UAV | Unmanned aerial vehicle |
VOC | Volatile organic compound |
References
- Orlandini, S.; Moretti, G.; Albertson, J.D. Evidence of an emerging levee failure mechanism causing disastrous floods in Italy. Water Resour. Res. 2015, 51, 7995–8011. [Google Scholar] [CrossRef]
- Xu, X.; Zeng, Q.; Li, D.; Wu, J.; Wu, X.; Shen, J. GPR detection of several common subsurface voids inside dikes and dams. Eng. Geol. 2010, 111, 31–42. [Google Scholar] [CrossRef]
- Henderson, G. The termite menace in New Orleans: Did they cause the floodwalls to tumble? Am. Entomol. 2008, 54, 156. [Google Scholar] [CrossRef]
- Ahmad, F.; Fouad, H.; Liang, S.Y.; Hu, Y.; Mo, J.C. Termites and Chinese agricultural system: Applications and advances in integrated termite management and chemical control. Insect Sci. 2021, 28, 2–20. [Google Scholar] [CrossRef] [PubMed]
- Adeyemi, J.A.; Adedire, C.O. Effects of aqueous extracts of six plant materials and four synthetic insecticides on the mortality of subterranean termites, Macrotermes subhyalinus (Isoptera: Termitidae) in the laboratory. Int. J. Trop. Insect Sci. 2022, 42, 1429–1435. [Google Scholar] [CrossRef]
- Ugbomeh, A.P.; Diboyesuku, A.T.G. Studies on termite infestation of buildings in Ase, a rural community in the Niger Delta of Nigeria. J. Basic Appl. Zool. 2019, 80, 27. [Google Scholar] [CrossRef]
- Tay, J.W.; James, D. Field demonstration of heat technology to mitigate heat sinks for drywood termite (Blattodea: Kalotermitidae) management. Insects 2021, 12, 1090. [Google Scholar] [CrossRef]
- Subekti, N.; Yoshimura, T.; Rokhman, F.; Mastur, Z. Potential for subterranean termite attack against five bamboo speciesin correlation with chemical components. Procedia Environ. Sci. 2015, 28, 783–788. [Google Scholar] [CrossRef]
- Rust, M.K.; Su, N.Y. Managing social insects of urban importance. Annu. Rev. Entomol. 2012, 57, 355–375. [Google Scholar] [CrossRef]
- Vongkaluang, C. Current termite management in Thailand. In Proceedings of the First Pacific Rim Termite Research Group Meeting, Penang, Malaysia, 8–9 March 2004. [Google Scholar]
- Staunton, I. Termite Cost: The Real Story About Termite Damage in Australia. 2012. Available online: https://termikill.com.au/termite-cost/ (accessed on 7 June 2025).
- Bayen, S.; Modak, D.; Roy, S.; Chakraborti, D.; Babu, A. Non-chemical management of termite pests: An overview. Int. J. Trop. Insect Sci. 2024, 44, 995–1011. [Google Scholar] [CrossRef]
- De la Rosa, J.J.G.; Pérez, A.A.; Salas, J.C.P.; Fernández, J.M.S. A novel measurement method for transient detection based in wavelets entropy and the spectral kurtosis: An application to vibrations and acoustic emission signals from termite activity. Measurement 2015, 68, 58–69. [Google Scholar] [CrossRef]
- Su, N.Y. Novel technologies for subterranean termite control. Sociobiology 2002, 40, 95–102. [Google Scholar]
- Hassan, B.; Nanda, M.A. Detection and monitoring techniques of termites in buildings: A review. Int. Biodeterior. Biodegrad. 2024, 195, 105890. [Google Scholar] [CrossRef]
- Chand, R.R.; Jokhan, A.D.; Charan, H.; Raj, K.; Singh, P. Threats posed by Asian subterranean termites in the Fiji Islands and their potential controls: A review. N. Z. Plant Prot. 2018, 71, 129–139. [Google Scholar] [CrossRef]
- Acda, M.N. Geographical distribution of subterranean termites (Isoptera) in economically important regions of Luzon, Philippines. Philipp. Agric. Sci. 2013, 96, 205–209. [Google Scholar]
- Indrayani, Y.; Yoshimura, T.; Yanase, Y.; Fujii, Y.; Imamura, Y. Evaluation of the temperature and relative humidity preferences of the western dry-wood termite Incisitermes minor (Hagen) using acoustic emission (AE) monitoring. J. Wood Sci. 2007, 53, 76–79. [Google Scholar] [CrossRef]
- Kuswanto, E.; Ahmad, I.; Dungani, R. Threat of subterranean termites attack on the wooden buildings in Asian countries and their control: A review. Indian J. Entomol. 2015, 77, 356–362. [Google Scholar] [CrossRef]
- Oliver-Villanueva, J.V.; Abián-Pérez, M.A. Advanced wireless sensors for termite detection in wood constructions. Wood Sci. Technol. 2013, 47, 269–280. [Google Scholar] [CrossRef]
- Lewis, V.R. Isoptera (Termites). In Encyclopedia of Insects, 2nd ed.; Resh, V.H., Cardé, R.T., Eds.; Academic Press: San Diego, CA, USA, 2009; pp. 535–538. [Google Scholar] [CrossRef]
- Facchini, G.; Rathery, A.; Douady, S.; Sillam-Dussès, D.; Perna, A. Substrate evaporation drives collective construction in termites. eLife 2024, 12, RP86843. [Google Scholar] [CrossRef]
- Li, Y.; Dong, Z.Y.; Pan, D.Z.; Pan, C.H. Effects of subterranean termite nest architectures on earth embankment seepage and stability. Paddy Water Environ. 2020, 18, 367–384. [Google Scholar] [CrossRef]
- Li, H.; Greening, C. Termite-engineered microbial communities of termite nest structures: A new dimension to the extended phenotype. FEMS Microbiol. Rev. 2022, 46, fuac034. [Google Scholar] [CrossRef] [PubMed]
- Cosarinsky, M.I. A review of micromorphological studies of ant and termite’s epigean nests located in neotropical soils of Argentina. J. S. Am. Earth Sci. 2021, 110, 103380. [Google Scholar] [CrossRef]
- Jouquet, P.; Traoré, S.; Choosai, C.; Hartmann, C.; Bignell, D. Influence of termites on ecosystem functioning. Ecosystem services provided by termites. Eur. J. Soil Biol. 2011, 47, 215–222. [Google Scholar] [CrossRef]
- Huang, Q.; Lei, C.; Xue, D. Field evaluation of a fipronil bait against subterranean termite Odontotermes formosanus (Isoptera: Termitidae). J. Econ. Entomol. 2006, 99, 455–461. [Google Scholar] [CrossRef]
- Li, Y.; Dong, Z.Y.; Pan, D.Z.; Pan, C.H.; Chen, L.H. Effects of termites on soil pH and its application for termite control in Zhejiang Province, China. Sociobiology 2017, 64, 317–326. [Google Scholar] [CrossRef]
- Mankin, R.W.; Hagstrum, D.W.; Smith, M.T.; Roda, A.L.; Kairo, M.T.K. Perspective and promise: A century of insect acoustic detection and monitoring. Am. Entomol. 2011, 57, 30–44. [Google Scholar] [CrossRef]
- De la Rosa, J.J.G.; Puntonet, C.G.; Lloret, I. An application of the independent component analysis to monitor acoustic emission signals generated by termite activity in wood. Measurement 2005, 37, 63–76. [Google Scholar] [CrossRef]
- Nanda, M.A.; Seminar, K.B.; Maddu, A.; Nandika, D. Identifying relevant features of termite signals applied in termite detection system. Ecol. Inform. 2021, 64, 101391. [Google Scholar] [CrossRef]
- Cao, J.; Yuan, B.; Bai, Y. Simulation Study on Image Characteristics of Typical GPR Targets in Water Conservancy Projects. Geofluids 2021, 2021, 5550620. [Google Scholar] [CrossRef]
- Weller, A.; Canh, T.; Breede, K.; Vu, N.T. Multi-electrode measurements at Thai Binh dikes (Vietnam). Near Surf. Geophys. 2006, 4, 135–143. [Google Scholar] [CrossRef]
- Sugimoto, A.; Inoue, T.; Tayasu, I.; Miller, L.; Takeichi, S.; Abe, T. Methane and hydrogen production in a termite-symbiont system. Ecol. Res. 1998, 13, 241–257. [Google Scholar] [CrossRef]
- Wilson, A.D.; Forse, L.B. Chemical ecology, detection and identification of subterranean termites based on electronic-nose volatile emissions analysis. Environments 2024, 11, 15. [Google Scholar] [CrossRef]
- Khalil, M.A.K.; Rasmussen, R.A.; French, J.R.J.; Holt, J.A. The influence of termites on atmospheric trace gases: CH4, CO2, CHCl3, N2O, CO, H2, and light hydrocarbons. J. Geophys. Res. Atmos. 1990, 95, 3619–3634. [Google Scholar] [CrossRef]
- Wehrenfennig, C.; Schott, M.; Gasch, T.; Düring, R.A.; Vilcinskas, A.; Kohl, C.-D. On-site airborne pheromone sensing. Anal. Bioanal. Chem. 2013, 405, 6389–6403. [Google Scholar] [CrossRef]
- Cui, F.; Chen, Y.; Zhang, Y.; Du, Y. Research on application of ground penetrating radar array method based on plane beam signal in different geological models. Acta Geophys. 2021, 69, 2241–2260. [Google Scholar] [CrossRef]
- NASA. Technology Readiness Level (TRL) Definitions; 2012. Available online: https://www.nasa.gov/pdf/458490main_TRL_Definitions.pdf (accessed on 5 July 2025).
- Chlaib, H.K.; Mahdi, H.; Al-Shukri, H.; Su, M.M.; Catakli, A.; Abd, N. Using ground penetrating radar in levee assessment to detect small scale animal burrows. J. Appl. Geophys. 2014, 103, 121–131. [Google Scholar] [CrossRef]
- D’hont, B.; Calders, K.; Bartholomeus, H.; Whiteside, T.; Bartolo, R.; Levick, S.; Krishna Moorthy, S.M.; Terryn, L.; Verbeeck, H. Characterising termite mounds in a tropical savanna with UAV laser scanning. Remote Sens. 2021, 13, 476. [Google Scholar] [CrossRef]
- Wang, M.; Jiang, P.; Wu, F.; Jiang, L.; Che, T. Real-Time and Sustainable Termite Management: Application of Intelligent Monitoring Systems in Reservoirs. Appl. Sci. 2025, 15, 3303. [Google Scholar] [CrossRef]
- Jiang, P.; Jiang, L.; Wu, F.; Che, T.; Wang, M.; Zheng, C. Target Detection Method for Soil-Dwelling Termite Damage Based on MCD-YOLOv8. Sensors 2025, 25, 2199. [Google Scholar] [CrossRef]
- Hennig, T.; Weller, A.; Canh, T. The effect of dike geometry on different resistivity configurations. J. Appl. Geophys. 2005, 57, 278–292. [Google Scholar] [CrossRef]
- De la Rosa, J.J.G.; Moreno-Muñoz, A.; Gallego, A.; Piotrkowski, R.; Castro, E. On-site non-destructive measurement of termite activity using the spectral kurtosis and the discrete wavelet transform. Measurement 2010, 43, 1472–1488. [Google Scholar] [CrossRef]
- Wang, L.C.; Tang, K.T.; Chiu, S.W.; Yang, S.R.; Kuo, C.T. A bio-inspired two-layer multiple-walled carbon nanotube–polymer composite sensor array and a bio-inspired fast-adaptive readout circuit for a portable electronic nose. Biosens. Bioelectron. 2011, 26, 4301–4307. [Google Scholar] [CrossRef]
- Qi, S.; Li, G.; Chen, D.; Chai, M.; Zhou, Y.; Du, Q.; Cao, Y.; Tang, L.; Jia, H. Damage properties of the block-stone embankment in the Qinghai–Tibet highway using ground-penetrating radar imagery. Remote Sens. 2022, 14, 2950. [Google Scholar] [CrossRef]
- Peng, J.; Xue, W.; Wang, W.; Song, J.; Zhou, F.; Huang, P.; Zhang, Z.; Zhang, F.; Zhang, X.; Chen, L.; et al. Detection of Termite Nests in Dams Using Ground Penetrating Radar Based on Deep Learning. J. Phys. Conf. Ser. 2024, 2887, 012033. [Google Scholar] [CrossRef]
- Fang, Z.; Li, H.; Ma, Y.; Zhang, M.; Gao, S.; Chen, B.; Shen, J.; Zhang, D. A Wireless System for Monitoring Termite Activity Using Electromagnetic Induction with Non-Looping Method. Appl. Sci. 2023, 13, 11956. [Google Scholar] [CrossRef]
- Anchuela, Ó.P.; Frongia, P.; Di Gregorio, F.; Sainz, A.M.C.; Juan, A.P. Internal characterization of embankment dams using ground penetrating radar (GPR) and thermographic analysis: A case study of the Medau Zirimilis Dam (Sardinia, Italy). Eng. Geol. 2018, 237, 129–139. [Google Scholar] [CrossRef]
- Conyers, L.B. Ground-penetrating radar for archaeological mapping. In Remote Sensing in Archaeology; Wiseman, J., El-Baz, F., Eds.; Springer: New York, NY, USA, 2007; pp. 329–344. [Google Scholar] [CrossRef]
- Hambrey, M.J.; Quincey, D.J.; Glasser, N.F.; Reynolds, J.M.; Richardson, S.J.; Clemmens, S. Sedimentological, geomorphological and dynamic context of debris-mantled glaciers, Mount Everest (Sagarmatha) region, Nepal. Quat. Sci. Rev. 2008, 27, 2361–2389. [Google Scholar] [CrossRef]
- Zhao, W.; Forte, E.; Fontana, F.; Pipan, M.; Tian, G. GPR imaging and characterization of ancient Roman ruins in the Aquileia Archaeological Park, NE Italy. Measurement 2018, 113, 161–171. [Google Scholar] [CrossRef]
- Bigman, D.P.; Day, D.J. Ground penetrating radar inspection of a large concrete spillway: A case-study using SFCW GPR at a hydroelectric dam. Case Stud. Constr. Mater. 2022, 16, e00975. [Google Scholar] [CrossRef]
- Klotzsche, A.; Jonard, F.; Looms, M.C.; van der Kruk, J.; Huisman, J.A. Measuring soil water content with ground penetrating radar: A decade of progress. Vadose Zone J. 2018, 17, 1–9. [Google Scholar] [CrossRef]
- Yang, X.; Henderson, G.; Mao, L.; Evans, A. Application of ground penetrating radar in detecting the hazards and risks of termites and ants in soil levees. Environ. Entomol. 2009, 38, 1241–1249. [Google Scholar] [CrossRef] [PubMed]
- Biavati, G.; Ghirotti, M.; Mazzini, E.; Mori, G.; Todini, E. The use of GPR for the detection of non-homogeneities in the Reno River embankments (North-Eastern Italy). In Proceedings of the 4th Canadian Conference on Geohazards: From Causes to Management, Québec, QC, Canada, 20–24 May 2008; Presse de l’Université Laval: Québec, QC, Canada, 2008; pp. 133–140. Available online: https://cris.unibo.it/handle/11585/59050 (accessed on 20 March 2025).
- Di Prinzio, M.; Bittelli, M.; Castellarin, A.; Pisa, P.R. Application of GPR to the monitoring of river embankments. J. Appl. Geophys. 2010, 71, 53–61. [Google Scholar] [CrossRef]
- Nanda, M.A.; Seminar, K.B.; Nandika, D.; Maddu, A. Discriminant analysis as a tool for detecting the acoustic signals of termites Coptotermes curvignathus (Isoptera: Rhinotermitidae). Int. J. Technol. 2018, 9, 840–851. [Google Scholar] [CrossRef]
- Nasir, V.; Ayanleye, S.; Kazemirad, S.; Sassani, F.; Adamopoulos, S. Acoustic emission monitoring of wood materials and timber structures: A critical review. Constr. Build. Mater. 2022, 350, 128877. [Google Scholar] [CrossRef]
- Evans, T.A.; Lai, J.C.S.; Toledano, E.; McDowall, L.; Rakotonarivo, S.; Lenz, M. Termites assess wood size by using vibration signals. Proc. Natl. Acad. Sci. USA 2005, 102, 3732–3737. [Google Scholar] [CrossRef]
- Janowiecki, M.A.; Jandák, V.; Brothánek, M.; Jiříček, O.; Vargo, E.L.; Šobotník, J. Effect of soldiers on vibroacoustic alarm response in workers of subterranean termites (Blattodea: Rhinotermitidae). Insectes Soc. 2024, 71, 75–83. [Google Scholar] [CrossRef]
- Nanda, M.A.; Seminar, K.B.; Nandika, D.; Maddu, A. Development of termite detection system based on acoustic and temperature signals. Measurement 2019, 147, 106902. [Google Scholar] [CrossRef]
- González-de-la-Rosa, J.J.; Agüera-Pérez, A.; Palomares-Salas, J.C.; Sierra-Fernández, J.M. Wavelets’ filters and higher-order frequency analysis of acoustic emission signals from termite activity. Measurement 2016, 93, 315–318. [Google Scholar] [CrossRef]
- Nanda, M.A.; Seminar, K.B.; Maddu, A.; Nandika, D. Acoustic and temperature signals generated by subterranean termite infestation: Its characteristics and implementations. All Life 2023, 16, 2167866. [Google Scholar] [CrossRef]
- De la Rosa, J.J.G.; Muñoz, A.M. Higher-order cumulants and spectral kurtosis for early detection of subterranean termites. Mech. Syst. Sig. Process. 2008, 22, 279–294. [Google Scholar] [CrossRef]
- Achirul Nanda, M.; Boro Seminar, K.; Nandika, D.; Maddu, A. A comparison study of kernel functions in the support vector machine and its application for termite detection. Information 2018, 9, 5. [Google Scholar] [CrossRef]
- Mankin, R.W.; Osbrink, W.L.; Oi, F.M.; Anderson, J.B. Acoustic detection of termite infestations in urban trees. J. Econ. Entomol. 2002, 95, 981–988. [Google Scholar] [CrossRef]
- Loperte, A.; Soldovieri, F.; Lapenna, V. Monte Cotugno dam monitoring by the electrical resistivity tomography. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 5346–5351. [Google Scholar] [CrossRef]
- Evans, T.A. Assessing efficacy of TermatracTM; a new microwave based technology for non-destructive detection of termites (Isoptera). Sociobiology 2002, 40, 575–584. [Google Scholar]
- Borgatti, L.; Forte, E.; Mocnik, A.; Zambrini, R.; Cervi, F.; Martinucci, D.; Pellegrini, F.; Pillon, S.; Prizzon, A.; Zamariolo, A. Detection and characterization of animal burrows within river embankments by means of coupled remote sensing and geophysical techniques: Lessons from River Panaro (northern Italy). Eng. Geol. 2017, 226, 277–289. [Google Scholar] [CrossRef]
- Eze, S.U.; Abolarin, M.O.; Ozegin, K.O.; Bello, M.A.; William, S.J. Numerical modeling of 2-D and 3-D geoelectrical resistivity data for engineering site investigation and groundwater flow direction study in a sedimentary terrain. Model. Earth Syst. Environ. 2022, 8, 3737–3755. [Google Scholar] [CrossRef]
- Kim, K.J.; Cho, I.K. Time-lapse inversion of 2D resistivity monitoring data with a spatially varying cross-model constraint. J. Appl. Geophys. 2011, 74, 114–122. [Google Scholar] [CrossRef]
- Busato, L.; Boaga, J.; Peruzzo, L.; Himi, M.; Cola, S.; Bersan, S.; Cassiani, G. Combined geophysical surveys for the characterization of a reconstructed river embankment. Eng. Geol. 2016, 211, 74–84. [Google Scholar] [CrossRef]
- White, A.; Wilkinson, P.; Boyd, J.; Wookey, J.; Kendall, J.M.; Binley, A.; Grossey, T.; Chambers, J. Combined electrical resistivity tomography and ground penetrating radar to map Eurasian badger (Meles Meles) burrows in clay-rich flood embankments (levees). Eng. Geol. 2023, 323, 107198. [Google Scholar] [CrossRef]
- Dong, H.; Wang, C.; Wang, H.; Cai, X.; Liu, C.R. Two-dimensional resistivity imaging survey for detecting termitaria in a dam. In Proceedings of the 2006 IEEE International Conference on Networking, Sensing and Control, Ft. Lauderdale, FL, USA, 23–25 April 2006; IEEE: Piscataway, NJ, USA, 2006; pp. 846–849. [Google Scholar] [CrossRef]
- Popoola, K.O.K.; Opayele, A.V. Morphometrics of Macrotermes bellicosus (African mound termite)(Blattodea: Termitidae) and the impact of its saliva amylase on the strength of termitarium soil. N. Y. Sci. J. 2012, 5, 207–216. [Google Scholar]
- Brooks, S.E.; Oi, F.M.; Koehler, P.G. Ability of canine termite detectors to locate live termites and discriminate them from non-termite material. J. Econ. Entomol. 2003, 96, 1259–1266. [Google Scholar] [CrossRef] [PubMed]
- Yanase, Y.; Fujii, Y.; Okumura, S.; Yoshimura, T. Detection of metabolic gas emitted by termites using semiconductor gas sensors. For. Prod. J. 2012, 62, 579–583. [Google Scholar] [CrossRef]
- Yanase, Y.; Miura, M.; Fujii, Y.; Okumura, S.; Yoshimura, T. Evaluation of the concentrations of hydrogen and methane emitted by termite using a semiconductor gas sensor. J. Wood Sci. 2013, 59, 243–248. [Google Scholar] [CrossRef]
- Wilson, A.D.; Baietto, M. Applications and advances in electronic-nose technologies. Sensors 2009, 9, 5099–5148. [Google Scholar] [CrossRef]
- Persaud, K.; Dodd, G. Analysis of discrimination mechanisms in the mammalian olfactory system using a model nose. Nature 1982, 299, 352–355. [Google Scholar] [CrossRef]
- Gardner, J.W. Detection of vapours and odours from a multisensor array using pattern recognition Part 1. Principal component and cluster analysis. Sens. Actuators B Chem. 1991, 4, 109–115. [Google Scholar] [CrossRef]
- Ming, W.; Xu, Y.; Chang, H.; Zhang, G.; Wang, Y.; Zhang, Z. Bio-inspired designing and fabricating hydrophobic functional surface for advanced fuel cell applications: A review. Renew. Sustain. Energy Rev. 2025, 223, 116066. [Google Scholar] [CrossRef]
- Hoyer-Tomiczek, U.; Sauseng, G.; Hoch, G. Scent detection dogs for the A sian longhorn beetle, A noplophora glabripennis. EPPO Bull. 2016, 46, 148–155. [Google Scholar] [CrossRef]
- Isenhart, P. THE DOG’S NOSE: HOW IT WORKS AND SKIN CONDITIONS. 20 June 2013. Available online: https://api.semanticscholar.org/CorpusID:201912989 (accessed on 15 April 2025).
- Ward, D.F.; Toft, R.J.; Cook, J.; Shields, B.; Jones, R.; Waipara, N.W. A ‘sniffer’dog to detect Argentine ants. Prot. Spring 2014, 15–16. Available online: https://www.academia.edu/51041136/A_sniffer_dog_to_detect_Argentine_ants (accessed on 7 June 2025).
- Zahid, I.; Grgurinovic, C.; Zaman, T.; De Keyzer, R.; Cayzer, L. Assessment of technologies and dogs for detecting insect pests in timber and forest products. Scand. J. For. Res. 2012, 27, 492–502. [Google Scholar] [CrossRef]
- Welch, J.B. A detector dog for screwworms (Diptera: Calliphoridae). J. Econ. Entomol. 1990, 83, 1932–1934. [Google Scholar] [CrossRef]
- Vošvrdová, N.; Johansson, A.; Turčáni, M.; Jakuš, R.; Tyšer, D.; Schlyter, F.; Modlinger, R. Dogs trained to recognise a bark beetle pheromone locate recently attacked spruces better than human experts. For. Ecol. Manag. 2023, 528, 120626. [Google Scholar] [CrossRef]
- Essler, J.L.; Kane, S.A.; Collins, A.; Ryder, K.; DeAngelo, A.; Kaynaroglu, P.; Otto, C.M. Egg masses as training aids for spotted lanternfly Lycorma delicatula detection dogs. PLoS ONE 2021, 16, e0250945. [Google Scholar] [CrossRef]
- Lim, B.A.; Kim, M.N.; Kim, Y.H.; Lee, J.M.; Jo, C.W.; Jeong, S.Y. Statistical analysis of termite damage and environmental characteristics of the Josadang shrine in Seonamsa temple. J. Conserv. Sci. 2019, 35, 197–208. [Google Scholar] [CrossRef]
- Kim, S.; Chung, Y. An analysis of termite (R. speratus kyushuensis) damage to nationally designated wooden architectural heritage in Korea. Munhwajae 2022, 55, 102–111. [Google Scholar] [CrossRef]
- Orkin, J.D.; Yang, Y.; Yang, C.; Yu, D.W.; Jiang, X. Cost-effective scat-detection dogs: Unleashing a powerful new tool for international mammalian conservation biology. Sci. Rep. 2016, 6, 34758. [Google Scholar] [CrossRef]
- Abbadie, L.; Lepage, M. The role of subterranean fungus comb chambers (Isoptera, Macrotermitinae) in soil nitrogen cycling in a preforest savanna (Cote dIvoire). Soil Biol. Biochem. 1989, 21, 1067–1071. [Google Scholar] [CrossRef]
- Wang, Y.; Lu, W.; Yuan, T.; Chen, L.; Zhang, F.; Wu, P.; Huang, Q. Identification of soil-dwelling termites activity signs based on ACP-YOLOv5s. Trans. Chin. Soc. Agric. Eng. 2025, 41, 221–229. [Google Scholar] [CrossRef]
- Evans, T.A.; Dawes, T.Z.; Ward, P.R.; Lo, N. Ants and termites increase crop yield in a dry climate. Nat. Commun. 2011, 2, 262. [Google Scholar] [CrossRef]
- Jouquet, P.; Barré, P.; Lepage, M.; Velde, B. Impact of subterranean fungus-growing termites (Isoptera, Macrotermitiane) on chosen soil properties in a West African savanna. Biol. Fertil. Soils 2005, 41, 365–370. [Google Scholar] [CrossRef]
- Sands, W.A. The Association of Termites and Fungi. Biol. Termit. 1969, 1, 495–524. [Google Scholar] [CrossRef]
- López-Hernández, D.; Brossard, M.; Fardeau, J.C.; Lepage, M. Effect of different termite feeding groups on P sorption and P availability in African and South American savannas. Biol. Fertil. Soils 2006, 42, 207–214. [Google Scholar] [CrossRef]
- Wiltz, B. Effect of temperature and humidity on survival of Coptotermes formosanus and Reticulitermes flavipes (Isoptera: Rhinotermitidae). Sociobiology 2012, 59, 381–394. [Google Scholar] [CrossRef]
- Xu, H.; Zhu, Q.; Hu, W.; Kim, K.; Lei, C.; Xiang, Y.; Huang, Q. Impacts of different environmental factors on tunnelling behaviour of the subterranean termite Odontotermes formosanus (Shiraki). Ethol. Ecol. Evol. 2019, 31, 231–239. [Google Scholar] [CrossRef]
- Nakayama, T.; Yoshimura, T.; Imamura, Y. The optimum temperature–humidity combination for the feeding activities of Japanese subterranean termites. J. Wood Sci. 2004, 50, 530–534. [Google Scholar] [CrossRef]
- Cornelius, M.L.; Osbrink, W.L.A. Effect of seasonal changes in soil temperature and moisture on wood consumption and foraging activity of Formosan subterranean termite (Isoptera: Rhinotermitidae). J. Econ. Entomol. 2011, 104, 1024–1030. [Google Scholar] [CrossRef]
- Wyngaard, J.; Barbieri, L.; Thomer, A.; Adams, J.; Sullivan, D.; Crosby, C.; Parr, C.; Klump, J.; Shrestha, S.R.; Bell, T. Emergent challenges for science sUAS data management: Fairness through community engagement and best practices development. Remote Sens. 2019, 11, 1797. [Google Scholar] [CrossRef]
- Zeng, C.; King, D.J.; Richardson, M.; Shan, B. Fusion of multispectral imagery and spectrometer data in UAV remote sensing. Remote Sens. 2017, 9, 696. [Google Scholar] [CrossRef]
- Sandino, J.; Wooler, A.; Gonzalez, F. Towards the automatic detection of pre-existing termite mounds through UAS and hyperspectral imagery. Sensors 2017, 17, 2196. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zuo, G. Small target detection in UAV view based on improved YOLOv8 algorithm. Sci. Rep. 2025, 15, 421. [Google Scholar] [CrossRef]
- Sousa, K.K.A.; Camargo, R.S.; Caldato, N.; Farias, A.P.; Matos, C.A.O.; Zanuncioet, J.C.; Santos, L.C.L.; Forti, L.C. Carbon dioxide levels in initial nests of the leaf-cutting ant Atta sexdens (Hymenoptera: Formicidae). Sci. Rep. 2021, 11, 20562. [Google Scholar] [CrossRef]
- Liu, J.; Tang, X.; Yang, F.; Qiao, X.; Li, F.; Peng, S.; Huang, X.; Fang, Y.; Xu, M. Study on the Identification Method of Planar Geological Structures in Coal Mines Using Ground-Penetrating Radar. Remote Sens. 2024, 16, 3990. [Google Scholar] [CrossRef]
- Álvarez López, Y.; García Fernández, M.; Arboleya Arboleya, A.; González-Valdés, B.; Rodriguez Vaqueiro, Y.; Las-Heras Andres, F.; Pino García, A. SAR-based technique for soil permittivity estimation. Int. J. Remote Sens. 2017, 38, 5168–5185. [Google Scholar] [CrossRef]
- Tejera-Berengue, D.; Zhu-Zhou, F.; Utrilla-Manso, M.; Gil-Pita, R.; Rosa-Zurera, M. Analysis of distance and environmental impact on UAV acoustic detection. Electronics 2024, 13, 643. [Google Scholar] [CrossRef]
- Tejera-Berengue, D.; Zhu-Zhou, F.; Utrilla-Manso, M.; Gil-Pita, R.; Rosa-Zurera, M. Acoustic-Based Detection of UAVs Using Machine Learning: Analysis of Distance and Environmental Effects. In Proceedings of the 2023 IEEE Sensors Applications Symposium (SAS), Ottawa, ON, Canada, 18–20 July 2023; IEEE: Piscataway, NJ, USA; pp. 1–6. [Google Scholar]
- Metcalf, O.C.; Baccaro, F.; Barlow, J.; Berenguer, E.; Bradfer-Lawrence, T.; Rossi, L.C.; do Vale, É.M.; Lees, A.C. Listening to tropical forest soils. Ecol. Indic. 2024, 158, 111566. [Google Scholar] [CrossRef]
- Qu, C.; Zhang, Z.; Liu, J.; Zhao, P.; Jing, B.; Li, W.; Wu, C.; Liu, J. Multi-scenario adaptive electronic nose for the detection of environmental odor pollutants. J. Hazard. Mater. 2025, 489, 137660. [Google Scholar] [CrossRef]
- Liu, Y.; Li, F.; Liu, H.; Hou, Y.; Nazir, N. Study and application of coupling relationship between water-salt-resistivity-soil structure in saline soils in arid and semi-arid areas of northwest China. Environ. Res. 2024, 241, 117608. [Google Scholar] [CrossRef]
- Xiao, X.; Cai, Y.; He, X.; Li, H.; Li, Y.; He, X.; Yuan, T.; Chen, Q. Optimal inversion method for composite layered soil model considering outlier dispersion. IEEE Access 2023, 11, 99653–99669. [Google Scholar] [CrossRef]
- Sørensen, L.V.; Rodríguez-Martínez, S.; Rollo, M.; Klaminder, J. Continuous measurement of red wood ant (Formica rufa) outdoor behaviour using passive acoustic monitoring. Eur. J. Soil Biol. 2024, 123, 103687. [Google Scholar] [CrossRef]
- Chang, H.; Zhang, Z.; Wang, P.; Zhang, G. A novel composite film with superhydrophobic graphene for anti-icing/deicing via chemical-assisted magnetically controllable picosecond laser writing. Mater. Today Phys. 2025, 54, 101726. [Google Scholar] [CrossRef]
- Wang, P.; Zhang, Z.; Wei, S.; Hao, B.; Chang, H.; Huang, Y.; Zhang, G. Study on plasma behaviour, ablation mechanism, and surface morphology of CFRP by underwater laser-induced plasma micro-machining. J. Mater. Process. Technol. 2025, 338, 118757. [Google Scholar] [CrossRef]
Country | Location | GPR Model | Measurement Length (m) | Frequency | Detection Depth (m) | Data Processing | Conclusions | References |
---|---|---|---|---|---|---|---|---|
USA | Lollie Levee | GSSI SIR-30 GPR (Geophysical Survey Systems, Inc. (GSSI), Nashua, NH, USA) | 850 | 900 MHz, 400 MHz | 0.5–1, 2–3 | GSSI RADAN7 | The resolution is related to the detection depth. | [40] |
USA | London Avenue Canal | SIR-3000 GPR (Geophysical Survey Systems, Inc. (GSSI), Nashua, NH, USA) | 4442 | 400 MHz | 0.61 | SAS 9.1 | Detect tree roots, internal voids, and termite nests in embankments. | [56] |
China | Nanmenxia Reservoir | Groundvue (Utsi Electronics Ltd., Cambridge, UK) | 50 | 15, 50,400 MHz | 70,22,5 | ReflexW | Seepage analysis. | [32] |
Italy | Medau Zirimilis | ------- | 480 | 100, 250, 500 MHz | 10,4,2 | CUI-2 Central Unit | Detection of cracks and seepage zones. | [50] |
Italy | Reno River | RIS MF (IDS) (IDS GeoRadar s.r.l., Pisa, Italy) | 500 | 100, 200, 500, 600 MHz | 3.5–4, 2–3 | ------- | Detection of cavities. | [57] |
Italy | Travallino, Lousana | RAMAC/GPR (Mala Geosciences Co., Stockholm, Sweden) | ------- | 250 MHz | 0.4–30 | ReflexW 5.0 | Locating cavities. | [58] |
Parameter | Ground-Penetrating Radar | Acoustic Detection | Electrical Resistivity Tomography |
---|---|---|---|
Physical Principle | Electromagnetic wave reflection [2]. | Detection of transient mechanical (vibration) signals [66]. | Subsurface electrical resistivity measurement [69]. |
Resolution | Moderate to high (depends on frequency) [2]. | High (for localized impulsive events). | Low to moderate (meter-scale resolution). |
Environmental Limitations | Affected by salinity, clay, and high moisture [2]. | Sensitive to wind, vibration, background interference [31,59]. | Requires good ground contact, susceptible to temperature extremes. |
Deployment Complexity | Moderate (portable, surface scanning). | Low (requires surface-mounted sensors) [31,59]. | High (electrode array setup, contact-dependent) [44]. |
Automation Readiness | Moderate (integratable with robotic platforms). | Moderate (requires signal processing) [31] | Low (mostly manual setup and control). |
Cost | Moderate to high. | Low to moderate. | High (equipment and field deployment). |
Data Interpretation | Moderate (requires signal inversion and depth calibration) [48]. | Moderate to complex (needs filtering and feature extraction) [31,59]. | Complex (inversion modeling, geological expertise needed) [44]. |
Typical Application | Detecting cavities, tunnels, or moisture anomalies near surface [2]. | Real-time detection of termite activity in confined media. | Mapping of large-scale termite-affected zones and subsurface heterogeneity [44]. |
Parameter | Electronic Nose. | Intelligent Monitoring. | Drone Image Analysis. | Sniffer Dogs. |
---|---|---|---|---|
Physical Principle | VOC pattern recognition via gas sensor arrays [35]. | Data fusion from multi-sensor networks and machine learning. | Remote imaging [41]. | Olfactory detection of termite-related scents [78]. |
Environmental Limitations | Sensitive to temperature and humidity changes. | Robust when properly configured and shielded. | Wind, rain, fog, and canopy cover limit performance. | extreme temperatures affect dog performance; heavy rain and snow limits scent detection; dense vegetation may block scent paths. |
Deployment Complexity | Low (portable, battery-powered, field-friendly). | High (requires sensor integration, network, AI backend) [42,49]. | Moderate (requires flight clearance, GPS setup). | Low–moderate (needs handler training, dog conditioning; limited by dog endurance/availability) [78]. |
Automation Readiness | High (pattern recognition and real-time output). | Very high (autonomous decision-making and cloud control) [49,92]. | High (predefined flight and onboard image processing possible) [41]. | Low (relies on human handler interpretation of dog behavior) [78]. |
Cost | Moderate (low hardware cost, requires calibration). | High (sensors and infrastructure and software). | Moderate–high (drone, sensors, training costs) [106]. | Low–moderate (dog acquisition/training, ongoing care) [43]. |
Data Interpretation | Simple with AI model; requires calibration dataset [35]. | Complex; AI models must be trained per site [42]. | Moderate; machine learning model required for image classification [41,96,108]. | Subjective (handler interprets dog alerts; experience-based) [78]. |
Typical Application | On-site early-stage termite gas detection (VOCs) [35]. | Long-term continuous monitoring of termite activity and risk [42]. | Large-area inspection of termite mounds or infestation signs [41]. | Targeted on-ground search for active termite colonies, nest localization in complex terrains [78]. |
Detection Technology | Advantages | Disadvantages | Application Scenarios | Detection Accuracy |
---|---|---|---|---|
Ground-penetrating radar | Non-invasive, real-time data, high precision. | High cost, susceptible to geological conditions. | Large-area preliminary detection. | 96% [29] |
Acoustic detection | Non-destructive, fast detection. | Highly affected by noise environment. | Relatively quiet local detection. | 98.316% [65] |
Electrical resistivity method | Capable of estimating nest location and volume. | Limited detection depth. | Areas with relatively stable geological conditions. | - |
Electronic nose | High precision, real-time analysis and processing, remote monitoring. | Easily affected by ambient odors, high cost. | Large areas with minimal interference. | 72.7% [78] |
Sniffer dogs | Strong adaptability to complex environments, able to detect trace odors. | High training costs, influenced by the dogs’ physical condition. | Complex terrains, high accuracy requirement areas. | 95.93% [36] |
Visual inspection | Low cost, more intuitive. | High subjectivity, influenced by season. | Routine patrols, preliminary judgment. | - |
Intelligent monitoring | High real-time performance, labor-saving, predictive. | High cost, easily affected by the environment. | Areas with minimal interference. | 97.5–98.5% [42] |
Drone image analysis | Wide coverage, high efficiency, monitoring of hazardous areas, capable of dynamic comparison across periods. | Poor performance in early detection, weather-dependent, relies on image processing algorithms and technology. | Large-scale macro monitoring. | 81% [97] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Zhang, X.; Dong, S.; Li, A.; Wang, L.; Ming, W. Termite Detection Techniques in Embankment Maintenance: Methods and Trends. Sensors 2025, 25, 4404. https://doi.org/10.3390/s25144404
Li X, Zhang X, Dong S, Li A, Wang L, Ming W. Termite Detection Techniques in Embankment Maintenance: Methods and Trends. Sensors. 2025; 25(14):4404. https://doi.org/10.3390/s25144404
Chicago/Turabian StyleLi, Xiaoke, Xiaofei Zhang, Shengwen Dong, Ansheng Li, Liqing Wang, and Wuyi Ming. 2025. "Termite Detection Techniques in Embankment Maintenance: Methods and Trends" Sensors 25, no. 14: 4404. https://doi.org/10.3390/s25144404
APA StyleLi, X., Zhang, X., Dong, S., Li, A., Wang, L., & Ming, W. (2025). Termite Detection Techniques in Embankment Maintenance: Methods and Trends. Sensors, 25(14), 4404. https://doi.org/10.3390/s25144404