Current State of the Art and Potential for Construction and Demolition Waste Processing: A Scoping Review of Sensor-Based Quality Monitoring and Control for In- and Online Implementation in Production Processes
Abstract
1. Introduction
1.1. Relevance of Sensor-Based Quality Assurance in CDW Processing
1.2. Related Work
1.3. Aim and Research Question
2. Materials and Methods
2.1. Definition of Central Concepts
2.2. Search Strategy
2.3. Classification Procedure
3. Results
TRL | % | Year | % | Phase in the Chain of Production | % | Application Area | % |
---|---|---|---|---|---|---|---|
2 | 2.5% | 2014 | 4.1% | Exhaustive resource extraction | 2.7% | Additive manufacturing | 10.2% |
3 | 69.8% | 2015 | 6.3% | Non-exhaustive resource extraction | 11.0% | Ceramics manufacturing | 1.4% |
4 | 15.7% | 2016 | 30.2% | Production and processing | 76.9% | Concrete and cement production | 3.3% |
5 | 5.8% | 2017 | 5.8% | Post-consumer sorting and processing | 9.3% | Electronics manufacturing | 6.6% |
6 | 3.3% | 2018 | 7.4% | - | - | Food production and harvesting | 15.7% |
7 | 2.5% | 2019 | 10.7% | - | - | Food storage | 4.9% |
8 | 0.3% | 2020 | 10.7% | - | - | Fuel and energy production | 0.8% |
9 | 0.3% | 2021 | 9.9% | - | - | Glass manufacturing | 3.0% |
- | - | 2022 | 12.6% | - | - | Metals manufacturing | 12.9% |
- | - | 2023 | 17.3% | - | - | Mining | 2.5% |
- | - | 2024 | 1.4% | - | - | Miscellaneous | 4.9% |
- | - | 2025 | 1.4% | - | - | Pharmaceutics and biomanufacturing | 5.8% |
- | - | - | - | - | - | Plastics manufacturing | 8.0% |
- | - | - | - | - | - | Recycling | 9.3% |
- | - | - | - | - | - | Unspecified | 1.4% |
- | - | - | - | - | - | Welding | 9.3% |
3.1. Sensor Technology
3.2. Quality Control
3.3. State of Research in CDW Processing Compared to Mining and Concrete Production
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
HSI | Hyperspectral imaging |
CDW | Construction and demolition waste |
PRISMA-ScR | Preferred Reporting Items for Systematic reviews and |
Meta-Analyses extension for Scoping Reviews | |
RGB | Red–green–blue |
ACM | Association for Computing Machinery |
TRL | Technology readiness level |
VIS | Visual imaging |
IR | Infrared |
UV | Ultraviolet |
LIBS | Laser-induced breakdown spectroscopy |
RPM | Revolutions per minute |
AI | Artificial intelligence |
CCD | Charge-coupled device |
CMOS | Complementary metal oxide semiconductor |
3D | Three-dimensional |
CDF | Cumulative distribution function |
Probability distribution function | |
P & P | Production and processing |
PCSP | Post-consumer sorting and processing |
PC | Post-consumer |
non-exh. res. extr./extraction | Non-exhaustive resource (extraction) |
exh. res. extr./extraction | Exhaustive resource (extraction) |
m. | Manufacturing |
p. | Production |
References
- Kroell, N.; Chen, X.; Greiff, K.; Feil, A. Optical sensors and machine learning algorithms in sensor-based material flow characterization for mechanical recycling processes: A systematic literature review. Waste Manag. 2022, 149, 259–290. [Google Scholar] [CrossRef]
- Kroell, N.; Dietl, T.; Maghmoumi, A.; Chen, X.; Küppers, B.; Feil, A.; Greiff, K. Assessment of Sensor-Based Sorting Performance for Lightweight Packaging Waste Through Sensor-Based Material Flow Monitoring: Concept and Preliminary Results, Aachen, 2022; Shaker Verlag GmbH: Düren, Germany, 2022; Volume 9. [Google Scholar] [CrossRef]
- Bhoi, N.K. Advancements in E-waste recycling technologies: A comprehensive overview of strategies and mechatronics integration for future development. Sustain. Mater. Technol. 2024, 42, e01182. [Google Scholar] [CrossRef]
- Feil, A.; Kroell, N.; Pretz, T.; Greiff, K. Anforderungen an eine effiziente technologische Behandlung von Post-Consumer Verpackungsmaterialien in Sortieranlagen. Müll Abfall 2021, 21, 362–370. [Google Scholar] [CrossRef]
- Dehoust, G.; Christiani, J. Analyse und Fortentwicklung der Verwertungsquoten für Wertstoffe: Sammel- und Verwertungsquoten für Verpackungen und Stoffgleiche Nichtverpackungen als Lenkungs—Instrument zur Ressourcenschonung; Technical Report 40/2012; Umweltbundesambt: Dessau-Rosslau, Germany, 2012; ISSN 1862-4804. [Google Scholar]
- Bayram, B.; Greiff, K.; Gerlich, L.; Luthin, A.; Hildebrand, L.; Traverso, M. Environmental and economic implications of selective demolition and advanced recycling of construction waste. Sustain. Prod. Consum. 2025, 57, 61–79. [Google Scholar] [CrossRef]
- Göbbels, L.; Kroell, N.; Raulf, K. Towards an improvement of construction and demolition waste recycling: Investigating the feasibility of using AI-based quality control using sensor-based monitoring of particle size distributions. In Global Guide of the Filtration and Separation Industry 2024–2026; Vulkan Verlag GmbH: Essen, Germany, 2024; pp. 124–130. ISBN 9783835674837. [Google Scholar]
- Snell, H.; Nassour, A.; Nelles, M. Qualitative comparison of polyethylene terephthalate flakes from various collection systems in Germany. Waste Manag. Res. 2017, 35, 163–171. [Google Scholar] [CrossRef]
- Kranert, M. (Ed.) Einführung in Die Kreislaufwirtschaft: Planung, Recht, Verfahren, 6th ed.; Springer: Wiesbaden, Germany, 2024. [Google Scholar] [CrossRef]
- Kandlbauer, L.; Khodier, K.; Ninevski, D.; Sarc, R. Sensor-based Particle Size Determination of Shredded Mixed Commercial Waste based on two-dimensional Images. Waste Manag. 2021, 120, 784–794. [Google Scholar] [CrossRef]
- Cuingnet, R.; Ladegaillerie, Y.; Jossent, J.; Maitrot, A.; Chedal-Anglay, J.; Richard, W.; Bernard, M.; Woolfenden, J.; Birot, E.; Chenu, D. PortiK: A computer vision based solution for real-time automatic solid waste characterization—Application to an aluminium stream. Waste Manag. 2022, 150, 267–279. [Google Scholar] [CrossRef]
- Ali, A.; Acharjee, S.; Sk, M.M.; Alharthi, S.Z.; Chaudhuri, S.S.; Akhunzada, A. DWSD: Dense waste segmentation dataset. Data Brief 2025, 59, 111340. [Google Scholar] [CrossRef] [PubMed]
- Deloitte. Construction and Demolition Waste Management in Germany. Available online: https://ec.europa.eu/environment/pdf/waste/studies/deliverables/CDW_Germany_Factsheet_Final.pdf (accessed on 3 January 2025).
- Wu, X.; Kroell, N.; Greiff, K. Deep learning-based instance segmentation on 3D laser triangulation data for inline monitoring of particle size distributions in construction and demolition waste recycling. Resour. Conserv. Recycl. 2024, 205, 107541. [Google Scholar] [CrossRef]
- Kroell, N.; Schönfelder, P.; Chen, X.; Johnen, K.; Feil, A.; Greiff, K. Sensorbasierte Vorhersage von Korngrößenverteilungen durch Machine Learning Modelle auf Basis von 3D- Lasertriangulationsmessungen. In Proceedings of the 11. DGAW-Wissenschaftskongress “Abfall- und Ressourcenwirtschaft”, Dresden, Germany, 17–18 March 2022. [Google Scholar]
- Jakobs, M.; Kroell, N. Influence of plastic packaging design on the sensor-based sortability in lightweight packaging waste sorting plants. Resour. Conserv. Recycl. 2024, 207, 107599. [Google Scholar] [CrossRef]
- Ludes, A.; Küppers, B.; Becker, A. Limitations in detection of textiles with NIR technology. In Proceedings of the 10th Sensor-Based Sorting & Control, Aachen, Germany, 13–14 March 2024; pp. 109–118. [Google Scholar] [CrossRef]
- Pacheco, J.; de Brito, J.; Lamperti Tornaghi, M. Use of Recycled Aggregates in Concrete: Opportunities for Upscaling in Europe. Technical Report; Publications Office of the European Union: Luxembourg, 2023. [Google Scholar]
- Lutz, M.; Kroell, N.; Göbbels, L.; Raulf, K.; Hamacher, A. 1. Akteursworkshop Projekt KIMBA: RC-Baustoffe im Fokus—Hemmnisse überwinnen. In Proceedings of the 1. Akteursworkshop of Project KIMBA, Siegen, Germany, 20 February 2024. [Google Scholar]
- Müller, A.; Martins, I. Recycling of Building Materials: Generation-Processing-Utilization; Springer Fachmedien Wiesbaden: Wiesbaden, Germany, 2022. [Google Scholar] [CrossRef]
- WWF Deutschland. Modell Deutschland Circular Economy: Eine Umfassende Circular Economy für Deutschland 2045: Zum Schutz von Klima und Biodiversität; Technical Report; WWF Deutschland: Gland, Switzerland, 2023. [Google Scholar]
- Wuppertal Institut. Butterfly Effect Consulting. “Nachhaltige Baustoffwende”; Technical Report; Wuppertal Institut: Wuppertal, Germany, 2025. [Google Scholar]
- European Commission. Buildings and Construction; European Commission: Brussels, Belgium, 2025. [Google Scholar]
- Landesamt für Natur, Umwelt und Verbraucherschutz Nordrhein-Westfalen. Verwendung von Beton mit Rezyklierter Gesteinskörnung: Kreisläufe im Hochbau Schließen; Landesamt für Natur, Umwelt und Verbraucherschutz Nordrhein-Westfalen: Duisburg, Germany, 2021. [Google Scholar]
- Knappe, F.; Reinhardt, J.; Schorb, A.; Theis, S. Leitfaden zum Einsatz von R-Beton; Ministerium für Umwelt, Klima und Energiewirtschaft Baden-Württemberg: Stuttgart, Germany, 2017. [Google Scholar]
- UN Gerneral Assembly. Transforming Our World: The 2030 Agenda for Sustainable Development; Technical Report A/RES/70/1; UN Gerneral Assembly: New York, NY, USA, 2015. [Google Scholar]
- Ulucan, M.; Alyamac, K.E. An integrative approach of the use of recycled concrete aggregate in high-rise buildings: Example of the Elysium. Struct. Concr. 2023, 24, 3329–3350. [Google Scholar] [CrossRef]
- Ulucan, M.; Tas, Y.; Alyamac, K.E. Multi-objective optimization and assessment of recycled concrete aggregates for sustainable development: Example of the Kömürhan bridge. Struct. Concr. 2023, 24, 5750–5768. [Google Scholar] [CrossRef]
- European Commission. The European Green Deal; Technical Report; European Commission: Brussels, Belgium, 2019. [Google Scholar]
- European Commission. A New Circular Economy Action Plan; Technical Report; European Commission: Brussels, Belgium, 2020. [Google Scholar]
- Caro, D.; Lodato, C.; Damgaard, A.; Cristóbal, J.; Foster, G.; Flachenecker, F.; Tonini, D. Environmental and socio-economic effects of construction and demolition waste recycling in the European Union. Sci. Total Environ. 2024, 908, 168295. [Google Scholar] [CrossRef] [PubMed]
- Adarsh, U.; Kartha, V.; Santhosh, C.; Unnikrishnan, V. Spectroscopy: A promising tool for plastic waste management. TrAC Trends Anal. Chem. 2022, 149, 116534. [Google Scholar] [CrossRef]
- Peng, W.; Beggio, G.; Pivato, A.; Zhang, H.; Lü, F.; He, P. Applications of near infrared spectroscopy and hyperspectral imaging techniques in anaerobic digestion of bio-wastes: A review. Renew. Sustain. Energy Rev. 2022, 165, 112608. [Google Scholar] [CrossRef]
- Gopalakrishnan, K.; Sharma, A.; Emanuel, N.; Prabhakar, P.; Kumar, R. Sensors for non-destructive quality evaluation of food. In Food Chemistry: The Role of Additives, Preservatives and Adulteration; Wiley: Hoboken, NJ, USA, 2021; pp. 397–449. [Google Scholar] [CrossRef]
- Wang, A.; Zhu, Y.; Zou, L.; Zhu, H.; Cao, R.; Zhao, G. Combination of machine learning and intelligent sensors in real-time quality control of alcoholic beverages. Food Sci. Technol. 2022, 42, e54622. [Google Scholar] [CrossRef]
- Ganguly, A.; Talukdar, A.; Chatterjee, D. Evaluating the role of social capital, tacit knowledge sharing, knowledge quality and reciprocity in determining innovation capability of an organization. J. Knowl. Manag. 2019, 23, 1105–1135. [Google Scholar] [CrossRef]
- S. Oliveira, M.; Barros Lima, G.; Farias Lóscio, B. Investigations into Data Ecosystems: A systematic mapping study. Knowl. Inf. Syst. 2019, 61, 589–630. [Google Scholar] [CrossRef]
- Zhang, Y.; Mao, T.; Huang, Z.; Gao, H.; Li, D. A statistical quality monitoring method for plastic injection molding using machine built-in sensors. Int. J. Adv. Manuf. Technol. 2016, 85, 2483–2494. [Google Scholar] [CrossRef]
- Kessler, R.W. Prozessanalytik: Strategien und Fallbeispiele aus der Industriellen Praxis; Wiley-VCH Verlag GmbH: Weinheim, Germany, 2006; ISBN 9783527608997. [Google Scholar]
- Munn, Z.; Peters, M.D.J.; Stern, C.; Tufanaru, C.; McArthur, A.; Aromataris, E. Systematic review or scoping review? Guidance for authors when choosing between a systematic or scoping review approach. BMC Med. Res. Methodol. 2018, 18, 143. [Google Scholar] [CrossRef]
- Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.; Horsley, T.; Weeks, L.; et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef] [PubMed]
- Peters, M.D.J. In no uncertain terms: The importance of a defined objective in scoping reviews. JBI Database Syst. Rev. Implement. Rep. 2016, 14, 1–4. [Google Scholar] [CrossRef]
- Dagge, L.; Harr, K.; Paul, M.; Schnedl, G. Classification of process analysis: Offline, atline, online, inline. Cem. Int. 2009, 7, 72–81. [Google Scholar]
- Trigwell-Jones, M. O Level Commerce, 2nd ed.; OCLC: 711046661; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Darmian, S.M.; Sgarbossa, F.; Fattahi, M.; Castelblanco, J.P.M. Supply Chain Viability by Integrating R-imperatives, Product Development, and Design Decisions: A Stochastic Programming Framework. Omega 2025, 136, 103317. [Google Scholar] [CrossRef]
- Hagedorn, W.; Gramlich, A.; Greiff, K.; Krupp, U. Alloy and process design of forging steels for better environmental performance. Sustain. Mater. Technol. 2022, 34, e00509. [Google Scholar] [CrossRef]
- Greiff, K. Vom Material über das Produkt zu globalen Netzwerken—Perspektiven einer nachhaltigen Kreislaufwirtschaft. In Proceedings of the Berliner Konferenz Metallkreisläufe, Berlin, Germany, 2 April 2025. [Google Scholar]
- European Commission. Horizon 2020—Work Programme 2014–2015. General Annexes; G. Technology readiness levels (TRLs); Extract from Part 19—Commission Decision C(2014)4995; European Commission: Brussels, Belgium, 2015. [Google Scholar]
- Rijksdienst voor Ondernemend Nederland. Technology Readiness Levels (TRL). Available online: https://www.rvo.nl/onderwerpen/trl (accessed on 5 July 2025).
- Yu, X.; Fu, Y.; Li, J.; Mao, J.; Hoang, T.; Wang, H. Recent advances in wireless sensor networks for structural health monitoring of civil infrastructure. J. Infrastruct. Intell. Resil. 2024, 3, 100066. [Google Scholar] [CrossRef]
- Yan, H.; De Gea Neves, M.; Noda, I.; Guedes, G.M.; Silva Ferreira, A.C.; Pfeifer, F.; Chen, X.; Siesler, H.W. Handheld Near-Infrared Spectroscopy: State-of-the-Art Instrumentation and Applications in Material Identification, Food Authentication, and Environmental Investigations. Chemosensors 2023, 11, 272. [Google Scholar] [CrossRef]
- Gao, R.X.; Krüger, J.; Merklein, M.; Möhring, H.C.; Váncza, J. Artificial Intelligence in manufacturing: State of the art, perspectives, and future directions. CIRP Ann. 2024, 73, 723–749. [Google Scholar] [CrossRef]
- Sze, S.M.; Lee, M.K. Semiconductor Devices, Physics and Technology, 3rd ed.; Wiley: Hoboken, NJ, USA, 2012. [Google Scholar]
- Fossum, E.R.; Hondongwa, D.B. A Review of the Pinned Photodiode for CCD and CMOS Image Sensors. IEEE J. Electron Devices Soc. 2014, 2, 33–43. [Google Scholar] [CrossRef]
- Pearsall, T.P. Photonics Essentials, 2nd ed.; McGraw-Hill: New York, NY, USA, 2010. [Google Scholar]
- Kostovski, G.; Stoddart, P.R.; Mitchell, A. The Optical Fiber Tip: An Inherently Light-Coupled Microscopic Platform for Micro- and Nanotechnologies. Adv. Mater. 2014, 26, 3798–3820. [Google Scholar] [CrossRef]
- Beć, K.B.; Huck, C.W. Breakthrough Potential in Near-Infrared Spectroscopy: Spectra Simulation. A Review of Recent Developments. Front. Chem. 2019, 7, 48. [Google Scholar] [CrossRef]
- Reusch, W. Infrared Spectroscopy. Anal. Chem. 1999, 71, 343–350. [Google Scholar]
- Griffiths, P.R.; De Haseth, J.A. Fourier Transform Infrared Spectrometry, 2nd ed.; Number v. 171 in Chemical Analysis; OCLC: 70265583; Wiley-Interscience: Hoboken, NJ, USA, 2007. [Google Scholar]
- Ibarra-Castanedo, C.; Tarpani, J.R.; Maldague, X.P.V. Nondestructive testing with thermography. Eur. J. Phys. 2013, 34, S91–S109. [Google Scholar] [CrossRef]
- Blais, F. Review of 20 years of range sensor development. J. Electron. Imaging 2004, 13, 231. [Google Scholar] [CrossRef]
- Roriz, P.; Carvalho, L.; Frazão, O.; Santos, J.; Simões, J. From conventional sensors to fibre optic sensors for strain and force measurements in biomechanics applications: A review. J. Biomech. 2014, 47, 1251–1261. [Google Scholar] [CrossRef]
- Zou, L.; Ge, C.; Wang, Z.; Cretu, E.; Li, X. Novel tactile sensor technology and smart tactile sensing systems: A review. Sensors 2017, 17, 2653. [Google Scholar] [CrossRef]
- Zhang, H.; Ju, S.; Jin, X.; Yuan, Y.; Wu, Y.; Nadda, A.; Pugazhendhi, A.; Cai, L.; Xia, C. A review of sensor applications towards precise control of pyrolysis of solid waste and biomasses. Renew. Sustain. Energy Rev. 2022, 169, 112915. [Google Scholar] [CrossRef]
- Alahnomi, R.; Zakaria, Z.; Yussof, Z.; Althuwayb, A.; Alhegazi, A.; Alsariera, H.; Rahman, N. Review of recent microwave planar resonator-based sensors: Techniques of complex permittivity extraction, applications, open challenges and future research directions. Sensors 2021, 21, 2267. [Google Scholar] [CrossRef]
- Ajayan, J.; Sreejith, S.; Manikandan, M.; Lai, W.C.; Saha, S. Terahertz sensors for next generation biomedical and other industrial electronics applications: A critical review. Sens. Actuators A Phys. 2024, 369, 115169. [Google Scholar] [CrossRef]
- Fu, B.; Cheng, Y.; Shang, C.; Li, J.; Wang, G.; Zhang, C.; Sun, J.; Ma, J.; Ji, X.; He, B. Optical ultrasound sensors for photoacoustic imaging: A narrative review. Quant. Imaging Med. Surg. 2022, 12, 1608–1631. [Google Scholar] [CrossRef]
- Zhao, G.; Huang, Y.; Zhang, W.; Wang, C.; Chen, J. Advances in high-precision displacement and thickness measurement based on eddy current sensors: A review. Meas. J. Int. Meas. Confed. 2025, 243, 116410. [Google Scholar] [CrossRef]
- Tinder, R. Relativistic Flight Mechanics and Space Travel: A Primer for Students, Engineers and Scientists; Number #1 in Synthesis Lectures on Engineering; Morgan & Claypool Publishers: San Rafael, CA, USA, 2007. [Google Scholar] [CrossRef]
- Turner, R.; Fuierer, P.; Newnham, R.; Shrout, T. Materials for high temperature acoustic and vibration sensors: A review. Appl. Acoust. 1994, 41, 299–324. [Google Scholar] [CrossRef]
- Rahman, N.; Rahim, R.; Nawi, A.; Ling, L.; Pusppanathan, J.; Mohamad, E.; Seong, C.; Din, S.; Ayob, N.; Yunus, F. A review on electrical capacitance tomography sensor development. J. Teknol. 2015, 73, 35–41. [Google Scholar]
- Zhang, J.; Zhang, S.; Yang, Y.; Zhang, W. Progress of MEMS acoustic emission sensor: A review. Sens. Rev. 2024, 44, 414–428. [Google Scholar] [CrossRef]
- Thompson, A.; Maskery, I.; Leach, R. X-ray computed tomography for additive manufacturing: A review. Meas. Sci. Technol. 2016, 27, 072001. [Google Scholar] [CrossRef]
- De Pauw, E.; Tack, P.; Vincze, L. A review of laboratory, commercially available, and facility based wavelength dispersive X-ray fluorescence spectrometers. J. Anal. At. Spectrom. 2024, 39, 310–329. [Google Scholar] [CrossRef]
- Platt, C. Encyclopedia of Electronic Components Volume 1: Resistors, Capacitors, Inductors, Switches, Encoders, Relays, Transistors; Maker Media, Inc.: Sebastopol, CA, USA, 2012. [Google Scholar]
- Khalilian, A.; Khan, M.R.R.; Kang, S.W. Highly sensitive and wide-dynamic-range side-polished fiber-optic taste sensor. Sens. Actuators B Chem. 2017, 249, 700–707. [Google Scholar] [CrossRef]
- Niu, Y.; Qin, Z.; Zhang, Y.; Chen, C.; Liu, S.; Chen, H. Expanding the potential of biosensors: A review on organic field effect transistor (OFET) and organic electrochemical transistor (OECT) biosensors. Mater. Futur. 2023, 2, 042401. [Google Scholar] [CrossRef]
- Herrero, A. Raman spectroscopy a promising technique for quality assessment of meat and fish: A review. Food Chem. 2008, 107, 1642–1651. [Google Scholar] [CrossRef]
- Van Broeke, J.; Langergraber, G.; Weingartner, A. On-line and in situ UV/vis spectroscopy for multi-parameter measurements: A brief review. Spectrosc. Eur. 2006, 18, S3–S4. [Google Scholar]
- Oberthaler, M.K.; Bernet, S.; Rasel, E.M.; Schmiedmayer, J.; Zeilinger, A. Inertial sensing with classical atomic beams. Phys. Rev. A 1996, 54, 3165–3176. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Idir, M.; Zuo, C.; Asundi, A. Review of phase measuring deflectometry. Opt. Lasers Eng. 2018, 107, 247–257. [Google Scholar] [CrossRef]
- Bratov, A.; Abramova, N.; Ipatov, A. Recent trends in potentiometric sensor arrays—A review. Anal. Chim. Acta 2010, 678, 149–159. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, N. Micromachined flow sensors—A review. Flow Meas. Instrum. 1997, 8, 7–16. [Google Scholar] [CrossRef]
- Omar, A.; MatJafri, M. Turbidimeter design and analysis: A review on optical fiber sensors for the measurement of water turbidity. Sensors 2009, 9, 8311–8335. [Google Scholar] [CrossRef]
- Mirzaei, A.; Kim, S.; Kim, H. Resistance-based H2S gas sensors using metal oxide nanostructures: A review of recent advances. J. Hazard. Mater. 2018, 357, 314–331. [Google Scholar] [CrossRef]
- Reynoso, E.; Laschi, S.; Palchetti, I.; Torres, E. Advances in antimicrobial resistance monitoring using sensors and biosensors: A review. Chemosensors 2021, 9, 232. [Google Scholar] [CrossRef]
- Myakalwar, A.; Sandoval, C.; Velásquez, M.; Sbarbaro, D.; Sepúlveda, B.; Yáñez, J. LIBS as a spectral sensor for monitoring metallic molten phase in metallurgical applications—A review. Minerals 2021, 11, 1073. [Google Scholar] [CrossRef]
- Chen, Z.; Lu, C. Humidity sensors: A review of materials and mechanisms. Sens. Lett. 2005, 3, 274–295. [Google Scholar] [CrossRef]
- Alwis, L.; Sun, T.; Grattan, K. Optical fibre-based sensor technology for humidity and moisture measurement: Review of recent progress. Meas. J. Int. Meas. Confed. 2013, 46, 4052–4074. [Google Scholar] [CrossRef]
- Lenz, J. A Review of Magnetic Sensors. Proc. IEEE 1990, 78, 973–989. [Google Scholar] [CrossRef]
- Göbbels, L.; Feil, A.; Raulf, K.; Greiff, K. Protocol for the work “Current State-Of-The-Art and Potentials for Construction and Demolition Waste Processing: A Scoping Review of Sensor-Based Quality Monitoring and Control for In- And Online Implementation in Production Processes; (Protocol); OSF. 2025. Available online: https://osf.io/2bx63 (accessed on 8 July 2025).
- Jiang, J.; Cen, H.; Zhang, C.; Lyu, X.; Weng, H.; Xu, H.; He, Y. Nondestructive quality assessment of chili peppers using near-infrared hyperspectral imaging combined with multivariate analysis. Postharvest Biol. Technol. 2018, 146, 147–154. [Google Scholar] [CrossRef]
- Entrenas, J.A.; Pérez-Marín, D.; Torres, I.; Garrido-Varo, A.; Sánchez, M.T. Simultaneous detection of quality and safety in spinach plants using a new generation of NIRS sensors. Postharvest Biol. Technol. 2020, 160, 111026. [Google Scholar] [CrossRef]
- Kumar, S.; Mohapatra, D.; Kotwaliwale, N.; Singh, K. Efficacy of sensor assisted vacuum hermetic storage against chemical fumigated wheat. J. Stored Prod. Res. 2020, 88, 101640. [Google Scholar] [CrossRef]
- de Medeiros, A.; Bernardes, R.; da Silva, L.; de Freitas, B.; Dias, D.; da Silva, C. Deep learning-based approach using X-ray images for classifying Crambe abyssinica seed quality. Ind. Crops Prod. 2021, 164, 113378. [Google Scholar] [CrossRef]
- Sandak, J.; Sandak, A.; Marrazza, S.; Picchi, G. Development of a sensorized timber processor head prototype—Part 1: Sensors description and hardware integration. Croat. J. For. Eng. 2019, 40, 25–37. [Google Scholar]
- Mahanti, N.; Chakraborty, S.; Kotwaliwale, N.; Vishwakarma, A. Chemometric strategies for nondestructive and rapid assessment of nitrate content in harvested spinach using Vis-NIR spectroscopy. J. Food Sci. 2020, 85, 3653–3662. [Google Scholar] [CrossRef]
- Jie, D.; Xie, L.; Rao, X.; Ying, Y. Using visible and near infrared diffuse transmittance technique to predict soluble solids content of watermelon in an on-line detection system. Postharvest Biol. Technol. 2014, 90, 1–6. [Google Scholar] [CrossRef]
- Xu, G.; Tobin, J.; Amani, H.; Subhir, S.; O’Donnell, C.; O’Shea, N. Potential of acoustic sensors for real-time monitoring of physicochemical properties of milk protein concentrate during ultrafiltration. J. Food Eng. 2025, 387, 112314. [Google Scholar] [CrossRef]
- Torres, I.; Sánchez, M.T.; Entrenas, J.A.; Garrido-Varo, A.; Pérez-Marín, D. Monitoring quality and safety assessment of summer squashes along the food supply chain using near infrared sensors. Postharvest Biol. Technol. 2019, 154, 21–30. [Google Scholar] [CrossRef]
- Vega-Castellote, M.; Pérez-Marín, D.; Torres, I.; Sánchez, M.T. Online NIRS analysis for the routine assessment of the nitrate content in spinach plants in the processing industry using linear and non-linear methods. LWT 2021, 151, 112192. [Google Scholar] [CrossRef]
- Wahyudi, D.; Noor, E.; Setyaningsih, D.; Djatna, T.; Irmansyah, I. Prediction of the rhodinol content in Java citronella oil using NIR spectroscopy in the initial stage of developing a spectral smart sensor system—Case report. Res. Agric. Eng. 2022, 68, 216–222. [Google Scholar] [CrossRef]
- Liu, H.; Hu, S.; Meng, Y.; Chen, J.; Li, Z.; Li, J.; Zhang, Y. Online measurement of syrup brix with microwave open coaxial resonator sensor. J. Food Eng. 2022, 322, 110975. [Google Scholar] [CrossRef]
- Gilbert Murengami, B.; Jing, X.; Jiang, H.; Liu, X.; Mao, W.; Li, Y.; Chen, X.; Wang, S.; Li, R.; Fu, L. Monitor and classify dough based on color image with deep learning. J. Food Eng. 2025, 386, 112299. [Google Scholar] [CrossRef]
- Pu, Y.; O’Shea, N.; Hogan, S.; Tobin, J. Assessment of a solid-state bulk acoustic wave sensor to measure viscosity of Newtonian and Non-Newtonian fluids under static and flow conditions. J. Food Eng. 2020, 277, 109917. [Google Scholar] [CrossRef]
- Ding, C.; Wu, H.; Feng, Z.; Wang, D.; Li, W.; Cui, D. Online assessment of pear firmness by acoustic vibration analysis. Postharvest Biol. Technol. 2020, 160, 111042. [Google Scholar] [CrossRef]
- Saechua, W.; Sharma, S.; Nakawajana, N.; Leepaitoon, K.; Chunsri, R.; Posom, J.; Roeksukrungrueang, C.; Siritechavong, T.; Phanomsophon, T.; Sirisomboon, P.; et al. Integrating Vis-SWNIR spectrometer in a conveyor system for in-line measurement of dry matter content and soluble solids content of durian pulp. Postharvest Biol. Technol. 2021, 181, 111640. [Google Scholar] [CrossRef]
- Banga, K.; Kotwaliwale, N.; Mohapatra, D.; Giri, S.; Babu, V. Bioacoustic detection of Callosobruchus chinensis and Callosobruchus maculatus in bulk stored chickpea (Cicer arietinum) and green gram (Vigna radiata). Food Control 2019, 104, 278–287. [Google Scholar] [CrossRef]
- Pieczywek, P.; Cybulska, J.; Szymańska-Chargot, M.; Siedliska, A.; Zdunek, A.; Nosalewicz, A.; Baranowski, P.; Kurenda, A. Early detection of fungal infection of stored apple fruit with optical sensors—Comparison of biospeckle, hyperspectral imaging and chlorophyll fluorescence. Food Control 2018, 85, 327–338. [Google Scholar] [CrossRef]
- Jiang, X.; Bu, Y.; Han, L.; Tian, J.; Hu, X.; Zhang, X.; Huang, D.; Luo, H. Rapid nondestructive detecting of wheat varieties and mixing ratio by combining hyperspectral imaging and ensemble learning. Food Control 2023, 150, 109740. [Google Scholar] [CrossRef]
- Bowler, A.; Escrig, J.; Pound, M.; Watson, N. Predicting alcohol concentration during beer fermentation using ultrasonic measurements and machine learning. Fermentation 2021, 7, 34. [Google Scholar] [CrossRef]
- Huang, W.; Xia, J.; Li, N.; Zhu, H.; Zhang, X. Improvement of a flexible multimode pressure-strain sensor (FMPSS) for blueberry firmness tactile sensing and tamper-evident packaging. Food Control 2024, 156, 110129. [Google Scholar] [CrossRef]
- Li, Z.; Meng, Z.; Soutis, C.; Wang, P.; Gibson, A. Detection and analysis of metallic contaminants in dry foods using a microwave resonator sensor. Food Control. 2022, 133, 108634. [Google Scholar] [CrossRef]
- Boukazia, Y.; Delaplace, G.; Cadé, M.; Bellouard, F.; Fillaudeau, L. On-line biofouling monitoring and qualification based on local thermal and periodic excitation with MEMS sensor. Food Bioprod. Process. 2021, 126, 12–22. [Google Scholar] [CrossRef]
- Poornapushpakala, S.; Dawn, S.; Arun Govind, M.; Santhosh, A.; Nirmala, N.; Barani, S.; Nirmala, M. A novel image processing technique to evaluate biodiesel wastewater for recovery, recycle and reuse towards zero liquid discharge approach. Biocatal. Agric. Biotechnol. 2021, 31, 101874. [Google Scholar] [CrossRef]
- Nair, A.; Hykkerud, A.; Ratnaweera, H. Estimating Phosphorus and COD Concentrations Using a Hybrid Soft Sensor: A Case Study in a Norwegian Municipal Wastewater Treatment Plant. Water 2022, 14, 332. [Google Scholar] [CrossRef]
- Teumer, T.; Capitain, C.; Ross-Jones, J.; Tippkötter, N.; Rädle, M.; Methner, F.J. In-line haze monitoring using a spectrally resolved back scattering sensor. BrewingScience 2018, 71, 49–55. [Google Scholar] [CrossRef]
- Hou, Y.; Xiong, L.; Luo, X.; Han, S.; Tang, X. Detection of pest infestation in stored grain using an electronic nose system optimized for sensor arrays. J. Food Meas. Charact. 2024, 19, 439–452. [Google Scholar] [CrossRef]
- Wang, Y.; Fei, C.; Wang, D.; Wei, Y.; Qing, Z.; Zhao, S.; Wu, H.; Zhang, W. Quantitative analysis and early detection of postharvest soft rot in kiwifruit using E-nose and chemometrics. J. Food Meas. Charact. 2023, 17, 4462–4472. [Google Scholar] [CrossRef]
- Li, M.; Yin, Y.; Yu, H.; Yuan, Y.; Liu, X. Early Warning Potential of Banana Spoilage Based on 3D Fluorescence Data of Storage Room Gas. Food Bioprocess Technol. 2021, 14, 1946–1961. [Google Scholar] [CrossRef]
- Makky, M.; Soni, P.; Salokhe, V. Automatic non-destructive quality inspection system for oil palm fruits. Int. Agrophysics 2014, 28, 319–329. [Google Scholar] [CrossRef]
- Caporaso, N.; Whitworth, M.; Fisk, I. Protein content prediction in single wheat kernels using hyperspectral imaging. Food Chem. 2018, 240, 32–42. [Google Scholar] [CrossRef]
- Zhang, S.; Qi, X.; Gao, M.; Dai, C.; Yin, G.; Ma, D.; Feng, W.; Guo, T.; He, L. Estimation of wheat protein content and wet gluten content based on fusion of hyperspectral and RGB sensors using machine learning algorithms. Food Chem. 2024, 448, 139103. [Google Scholar] [CrossRef] [PubMed]
- Cui, H.; Wang, S.; Yang, X.; Zhang, W.; Chen, M.; Wu, Y.; Li, S.; Li, L.; Cai, D.; Guo, B.; et al. Predictive models for assessing the risk of Fusarium pseudograminearum mycotoxin contamination in post-harvest wheat with multi-parameter integrated sensors. Food Chem. X 2022, 16, 100472. [Google Scholar] [CrossRef]
- Steinbach, J.; Golovko, D.; Kandelbauer, A.; Rebner, K. Real-Time Quantification of Meat Paste Constituents Displaying Nonlinear Blending Behavior Including Salt Using an In-Line NIR MEMS Sensor. ACS Food Sci. Technol. 2023, 3, 1288–1299. [Google Scholar] [CrossRef]
- Davis, N.; Danes, J.; Vorst, K. Sensor array for the detection of organic and inorganic contaminants in post-consumer recycled plastics for food contact. Food Addit. Contam.—Part A Chem. Anal. Control Expo. Risk Assess. 2017, 34, 1681–1689. [Google Scholar] [CrossRef]
- Balingbing, C.; Kirchner, S.; Siebald, H.; Kaufmann, H.H.; Gummert, M.; Van Hung, N.; Hensel, O. Application of a multi-layer convolutional neural network model to classify major insect pests in stored rice detected by an acoustic device. Comput. Electron. Agric. 2024, 225, 109297. [Google Scholar] [CrossRef]
- Ma, C.; Ying, Y.; Xie, L. Visuo-tactile sensor development and its application for non-destructive measurement of peach firmness. Comput. Electron. Agric. 2024, 218, 108709. [Google Scholar] [CrossRef]
- Singh Thakur, P.; Tiwari, B.; Kumar, A.; Gedam, B.; Bhatia, V.; Krejcar, O.; Dobrovolny, M.; Nebhen, J.; Prakash, S. Deep transfer learning based photonics sensor for assessment of seed-quality. Comput. Electron. Agric. 2022, 196, 106891. [Google Scholar] [CrossRef]
- Ignat, T.; Alchanatis, V.; Schmilovitch, Z. Maturity prediction of intact bell peppers by sensor fusion. Comput. Electron. Agric. 2014, 104, 9–17. [Google Scholar] [CrossRef]
- Pamornnak, B.; Limsiroratana, S.; Khaorapapong, T.; Chongcheawchamnan, M.; Ruckelshausen, A. An automatic and rapid system for grading palm bunch using a Kinect camera. Comput. Electron. Agric. 2017, 143, 227–237. [Google Scholar] [CrossRef]
- Zhang, M.; Lee, D.J.; Lillywhite, K.; Tippetts, B. Automatic quality and moisture evaluations using Evolution Constructed Features. Comput. Electron. Agric. 2017, 135, 321–327. [Google Scholar] [CrossRef]
- Yang, J.; Zheng, X.; Yao, J.; Xiao, J.; Yan, L. 3D Surface Defects Recognition of Lumber and Straw-Based Panels Based on Structure Laser Sensor Scanning Technology; INMA Bucharest: București, Romania, 2019. [Google Scholar]
- Chen, J.; Lian, Y.; Zou, R.; Zhang, S.; Ning, X.; Han, M. Real-time grain breakage sensing for rice combine harvesters using machine vision technology. Int. J. Agric. Biol. Eng. 2020, 13, 194–199. [Google Scholar] [CrossRef]
- Chen, J.; Lian, Y.; Li, Y.; Wang, Y.; Liu, X.; Gu, Y. Design of sampling device for rice grain impurity sensor in grain-bin of combine harvester. Nongye Gongcheng Xuebao/Trans. Chin. Soc. Agric. Eng. 2019, 35, 18–25. [Google Scholar] [CrossRef]
- Liu, Z.; He, Y.; Cen, H.; Lu, R. Deep feature representation with stacked sparse auto-encoder and convolutional neural network for hyperspectral imaging-based detection of cucumber defects. Trans. ASABE 2018, 61, 425–436. [Google Scholar] [CrossRef]
- Amjad, W.; Crichton, S.O.; Munir, A.; Hensel, O.; Sturm, B. Hyperspectral imaging for the determination of potato slice moisture content and chromaticity during the convective hot air drying process. Biosyst. Eng. 2018, 166, 170–183. [Google Scholar] [CrossRef]
- Watson, N.; Bowler, A.; Rady, A.; Fisher, O.; Simeone, A.; Escrig, J.; Woolley, E.; Adedeji, A. Intelligent Sensors for Sustainable Food and Drink Manufacturing. Front. Sustain. Food Syst. 2021, 5, 642786. [Google Scholar] [CrossRef]
- Yin, L.; Jayan, H.; Cai, J.; El-Seedi, H.; Guo, Z.; Zou, X. Spoilage Monitoring and Early Warning for Apples in Storage Using Gas Sensors and Chemometrics. Foods 2023, 12, 2968. [Google Scholar] [CrossRef]
- Bista, A.; Tobin, J.; O’Donnell, C.; O’Shea, N. Monitoring viscosity and total solids content of milk protein concentrate using an inline acoustic flowmeter at laboratory scale. Foods 2020, 9, 1310. [Google Scholar] [CrossRef]
- Tanzilli, D.; D’Alessandro, A.; Tamelli, S.; Durante, C.; Cocchi, M.; Strani, L. A Feasibility Study towards the On-Line Quality Assessment of Pesto Sauce Production by NIR and Chemometrics. Foods 2023, 12, 1679. [Google Scholar] [CrossRef]
- Bukhamsin, A.; Moussi, K.; Tao, R.; Lubineau, G.; Blilou, I.; Salama, K.; Kosel, J. Robust, Long-Term, and Exceptionally Sensitive Microneedle-Based Bioimpedance Sensor for Precision Farming. Adv. Sci. 2021, 8, 2101261. [Google Scholar] [CrossRef]
- Marquard, D.; Enders, A.; Roth, G.; Rinas, U.; Scheper, T.; Lindner, P. In situ microscopy for online monitoring of cell concentration in Pichia pastoris cultivations. J. Biotechnol. 2016, 234, 90–98. [Google Scholar] [CrossRef]
- Lambrechts, T.; Papantoniou, I.; Sonnaert, M.; Schrooten, J.; Aerts, J.M. Model-based cell number quantification using online single-oxygen sensor data for tissue engineering perfusion bioreactors. Biotechnol. Bioeng. 2014, 111, 1982–1992. [Google Scholar] [CrossRef] [PubMed]
- de Medeiros, A.; da Silva, L.; Ribeiro, J.; Ferreira, K.; Rosas, J.; Santos, A.; da Silva, C. Machine learning for seed quality classification: An advanced approach using merger data from FT-NIR spectroscopy and X-ray imaging. Sensors 2020, 20, 4319. [Google Scholar] [CrossRef] [PubMed]
- Jahromi, K.; Pan, Q.; Khodabakhsh, A.; Sikkens, C.; Assman, P.; Cristescu, S.; Moselund, P.; Janssens, M.; Verlinden, B.; Harren, F. A broadband mid-infrared trace gas sensor using supercontinuum light source: Applications for real-time quality control for fruit storage. Sensors 2019, 19, 2334. [Google Scholar] [CrossRef]
- Liu, L.; Song, C.; Zhu, K.; Liu, P. A Design Method for an SVM-Based Humidity Sensor for Grain Storage. Sensors 2024, 24, 2854. [Google Scholar] [CrossRef]
- Guan, Z.; Li, H.; Chen, X.; Mu, S.; Jiang, T.; Zhang, M.; Wu, C. Development of Impurity-Detection System for Tracked Rice Combine Harvester Based on DEM and Mask R-CNN. Sensors 2022, 22, 9550. [Google Scholar] [CrossRef] [PubMed]
- Kyriazis, A.; Charif, S.; Rager, K.; Dietzel, A.; Sinapius, M. A Parametric Model for the Analysis of the Impedance Spectra of Dielectric Sensors in Curing Epoxy Resins. Sensors 2023, 23, 1825. [Google Scholar] [CrossRef]
- Ranjan, J.; Patra, K.; Szalay, T.; Mia, M.; Gupta, M.; Song, Q.; Krolczyk, G.; Chudy, R.; Pashnyov, V.; Pimenov, D. Artificial intelligence-based hole quality prediction in micro-drilling using multiple sensors. Sensors 2020, 20, 885. [Google Scholar] [CrossRef]
- Alonso, M.; Maestro, D.; Izaguirre, A.; Andonegui, I.; Graña, M. Depth data denoising in optical laser based sensors for metal sheet flatness measurement: A deep learning approach. Sensors 2021, 21, 7024. [Google Scholar] [CrossRef]
- Schmid, E.; Kontschak, L.; Nirschl, H.; Guthausen, G. NMR in Battery Anode Slurries with a V-Shaped Sensor. Sensors 2024, 24, 3353. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Lee, C.; Park, S. Artificial neural network-based early-age concrete strength monitoring using dynamic response signals. Sensors 2017, 17, 1319. [Google Scholar] [CrossRef] [PubMed]
- Meng, D.; Meng, F.; Sun, W.; Deng, S. A compound sensor for simultaneous measurement of packing density and moisture content of silage. Sensors 2018, 18, 73. [Google Scholar] [CrossRef]
- Tenório Filho, J.; Abbas, Y.; Oudenhoven, J.; Matthys, S. Application of Cost Effective and Real-Time Resistivity Sensor to Study Early Age Concrete. Sensors 2023, 23, 7525. [Google Scholar] [CrossRef] [PubMed]
- Yoon, H.; Kim, Y.; Kim, H.; Kang, J.; Koh, H.M. Evaluation of Early-Age Concrete Compressive Strength with Ultrasonic Sensors. Sensors 2017, 17, 1817. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, W.; Li, Q.; Wang, T.; Wang, G. In-situ monitoring and diagnosing for fused filament fabrication process based on vibration sensors. Sensors 2019, 19, 2589. [Google Scholar] [CrossRef]
- Pinto-Lopera, J.; Motta, J.; Alfaro, S. Real-time measurement of width and height of weld beads in GMAW processes. Sensors 2016, 16, 1500. [Google Scholar] [CrossRef]
- Klarák, J.; Kuric, I.; Zajačko, I.; Bulej, V.; Tlach, V.; Józwik, J. Analysis of laser sensors and camera vision in the shoe position inspection system. Sensors 2021, 21, 7531. [Google Scholar] [CrossRef]
- Lee, K.; Hwang, I.; Kim, Y.M.; Lee, H.; Kang, M.; Yu, J. Real-time weld quality prediction using a laser vision sensor in a lap fillet joint during gas metal arc welding. Sensors 2020, 20, 1625. [Google Scholar] [CrossRef]
- Siekański, P.; Magda, K.; Malowany, K.; Rutkiewicz, J.; Styk, A.; Krzesłowski, J.; Kowaluk, T.; Zagórski, A. On-line laser triangulation scanner for wood logs surface geometry measurement. Sensors 2019, 19, 1074. [Google Scholar] [CrossRef]
- Kuo, C.F.; Wang, W.R.; Barman, J. Automated Optical Inspection for Defect Identification and Classification in Actual Woven Fabric Production Lines. Sensors 2022, 22, 7246. [Google Scholar] [CrossRef]
- Pierer, A.; Hauser, M.; Hoffmann, M.; Naumann, M.; Wiener, T.; De León, M.A.L.; Mende, M.; Koziorek, J.; Dix, M. Inline Quality Monitoring of Reverse Extruded Aluminum Parts with Cathodic Dip-Paint Coating (KTL). Sensors 2022, 22, 9646. [Google Scholar] [CrossRef]
- Li, C.; Li, B.; Huang, J.; Li, C. Developing an online measurement device based on resistance sensor for measurement of single grain moisture content in drying process. Sensors 2020, 20, 4102. [Google Scholar] [CrossRef] [PubMed]
- García Plaza, E.; Núñez López, P.; Beamud González, E. Multi-sensor data fusion for real-time surface quality control in automated machining systems. Sensors 2018, 18, 4381. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zhong, M.; Xie, F.; Cao, M. Application of a saddle-type eddy current sensor in steel ball surface-defect inspection. Sensors 2017, 17, 2814. [Google Scholar] [CrossRef]
- Berger, D.; Lanza, G. Development and application of eddy current sensor arrays for process integrated inspection of carbon fibre preforms. Sensors 2018, 18, 4. [Google Scholar] [CrossRef] [PubMed]
- Li, X.Q.; Wang, Z.; Fu, L.H. A laser-based measuring system for online quality control of car engine block. Sensors 2016, 16, 1877. [Google Scholar] [CrossRef]
- Zhang, H.; Xie, F.; Cao, M.; Zhong, M. A steel ball surface quality inspection method based on a circumferential eddy current array sensor. Sensors 2017, 17, 1536. [Google Scholar] [CrossRef]
- Lin, H.D.; Lee, T.H.; Lin, C.H.; Wu, H.C. Optical Imaging Deformation Inspection and Quality Level Determination of Multifocal Glasses. Sensors 2023, 23, 4497. [Google Scholar] [CrossRef]
- Grigs, O.; Bolmanis, E.; Galvanauskas, V. Application of in-situ and soft-sensors for estimation of recombinant p. Pastoris gs115 biomass concentration: A case analysis of hbcag (mut+) and hbsag (muts) production processes under varying conditions. Sensors 2021, 21, 1268. [Google Scholar] [CrossRef]
- Alonso, M.; Izaguirre, A.; Andonegui, I.; Graña, M. Optical dual laser based sensor denoising for onlinemetal sheet flatness measurement using hermite interpolation. Sensors 2020, 20, 5441. [Google Scholar] [CrossRef] [PubMed]
- Yoon, H.; Kim, Y.; Chin, W.; Kang, J.; Koh, H.M. Experimental validation of slip-forming using ultrasonic sensors. Sensors 2019, 19, 5053. [Google Scholar] [CrossRef] [PubMed]
- Austin, J.; Gupta, A.; McDonnell, R.; Reklaitis, G.; Harris, M. A novel microwave sensor to determine particulate blend composition on-line. Anal. Chim. Acta 2014, 819, 82–93. [Google Scholar] [CrossRef] [PubMed]
- Tanzilli, D.; Strani, L.; Bonacini, F.; Ferrando, A.; Cocchi, M.; Durante, C. Implementing multiblock techniques in a full-scale plant scenario: On-line prediction of quality parameters in a continuous process for different acrylonitrile butadiene styrene (ABS) products. Anal. Chim. Acta 2024, 1316, 342851. [Google Scholar] [CrossRef]
- Somerson, J.; Plaxco, K. Electrochemical Aptamer-Based Sensors for Rapid Point-of-Use Monitoring of the Mycotoxin Ochratoxin A Directly in a Food Stream. Molecules 2018, 23, 912. [Google Scholar] [CrossRef]
- De la Rosa, M.; Báez, J.; Romañach, R.; López-Mejías, V.; Stelzer, T. Real-time concentration monitoring using a compact composite sensor array for in situ quality control of aqueous formulations. J. Pharm. Biomed. Anal. 2021, 206, 114386. [Google Scholar] [CrossRef]
- Koyanagi, K.; Ueno, A.; Sasaki, T.; Otsuka, M. Real-Time Monitoring of Critical Quality Attributes during High-Shear Wet Granulation Process by Near-Infrared Spectroscopy Effect of Water Addition and Stirring Speed on Pharmaceutical Properties of the Granules. Pharmaceuticals 2022, 15, 822. [Google Scholar] [CrossRef]
- Bayer, B.; von Stosch, M.; Melcher, M.; Duerkop, M.; Striedner, G. Soft sensor based on 2D-fluorescence and process data enabling real-time estimation of biomass in Escherichia coli cultivations. Eng. Life Sci. 2020, 20, 26–35. [Google Scholar] [CrossRef]
- Medeiros Garcia Alcântara, J.; Iannacci, F.; Morbidelli, M.; Sponchioni, M. Soft sensor based on Raman spectroscopy for the in-line monitoring of metabolites and polymer quality in the biomanufacturing of polyhydroxyalkanoates. J. Biotechnol. 2023, 377, 23–33. [Google Scholar] [CrossRef]
- Fan, A.; Huang, Y.; Xu, F.; Bom, S. Soft-Sensing Regression Model: From Sensor to Wafer Metrology Forecasting. Sensors 2023, 23, 8363. [Google Scholar] [CrossRef]
- Chen, X.; Sun, H.; Huang, W.; Jin, J.; Su, M.; Yang, H. The Development of a Novel Headspace O2 Concentration Measurement Sensor for Vials. Sensors 2023, 23, 2438. [Google Scholar] [CrossRef] [PubMed]
- Strani, L.; Vitale, R.; Tanzilli, D.; Bonacini, F.; Perolo, A.; Mantovani, E.; Ferrando, A.; Cocchi, M. A Multiblock Approach to Fuse Process and Near-Infrared Sensors for On-Line Prediction of Polymer Properties. Sensors 2022, 22, 1436. [Google Scholar] [CrossRef]
- Ruan, X.Q. Investigation on early hydration behavior of cement based on piezoelectric sensor. Emerg. Mater. Res. 2017, 6, 184–188. [Google Scholar] [CrossRef]
- Górka, J.; Jamrozik, W.; Wyględacz, B.; Kiel-Jamrozik, M.; Ferreira, B. Virtual Sensor for On-Line Hardness Assessment in TIG Welding of Inconel 600 Alloy Thin Plates. Sensors 2024, 24, 3569. [Google Scholar] [CrossRef] [PubMed]
- Icagic, S.; Kvascev, G. A Smart Alcoholmeter Sensor Based on Deep Learning Visual Perception. Sensors 2022, 22, 7394. [Google Scholar] [CrossRef]
- Chunhachatrachai, P.; Lin, C.Y. CLensRimVision: A Novel Computer Vision Algorithm for Detecting Rim Defects in Contact Lenses. Sensors 2023, 23, 9610. [Google Scholar] [CrossRef] [PubMed]
- Ohira, S.I.; Miki, Y.; Matsuzaki, T.; Nakamura, N.; Sato, Y.K.; Hirose, Y.; Toda, K. A fiber optic sensor with a metal organic framework as a sensing material for trace levels of water in industrial gases. Anal. Chim. Acta 2015, 886, 188–193. [Google Scholar] [CrossRef]
- Gao, L.; Sun, J.; Wang, L.; Fan, Q.; Zhu, G.; Guo, H.; Sun, X. Highly sensitive real-Time detection of intracellular oxidative stress and application in mycotoxin toxicity evaluation based on living single-cell electrochemical sensors. Analyst 2021, 146, 1444–1454. [Google Scholar] [CrossRef]
- Idroas, M.; Najib, S.; Ibrahim, M. Imaging particles in solid/air flows using an optical tomography system based on complementary metal oxide semiconductor area image sensors. Sens. Actuators B Chem. 2015, 220, 75–80. [Google Scholar] [CrossRef]
- Li, J.; Li, X.; Yardimci, N.; Hu, J.; Li, Y.; Chen, J.; Hung, Y.C.; Jarrahi, M.; Ozcan, A. Rapid sensing of hidden objects and defects using a single-pixel diffractive terahertz sensor. Nat. Commun. 2023, 14, 6791. [Google Scholar] [CrossRef]
- Liu, Z.; Jiang, X.; Li, S.; Chen, J.; Jiang, C.; Wang, K.; Zhang, C.; Wang, B. A disposable impedance-based sensor for in-line cell growth monitoring in CAR-T cell manufacturing. Bioelectrochemistry 2023, 152, 108416. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Gao, X. Soft sensor of flotation froth grade classification based on hybrid deep neural network. Int. J. Prod. Res. 2021, 59, 4794–4810. [Google Scholar] [CrossRef]
- Wu, Y.; Meng, Y.; Shao, C. End-to-end online quality prediction for ultrasonic metal welding using sensor fusion and deep learning. J. Manuf. Process. 2022, 83, 685–694. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, N.; You, D.; Gao, X.; Katayama, S. High-power disk laser welding statuses monitoring based on analyses of multiple-sensor signals. J. Manuf. Process. 2019, 41, 221–230. [Google Scholar] [CrossRef]
- Li, J.; Zhang, X.; Zhou, Q.; Chan, F.; Hu, Z. A feature-level multi-sensor fusion approach for in-situ quality monitoring of selective laser melting. J. Manuf. Process. 2022, 84, 913–926. [Google Scholar] [CrossRef]
- Li, J.; Cao, L.; Zhou, Q.; Liu, H.; Zhang, X. Imbalanced quality monitoring of selective laser melting using acoustic and photodiode signals. J. Manuf. Process. 2023, 105, 14–26. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Z.; Bai, Z.; Zhang, S.; Qin, R.; Huang, J.; Wen, G. On-line defect recognition of MIG lap welding for stainless steel sheet based on weld image and CMT voltage: Feature fusion and attention weights visualization. J. Manuf. Process. 2023, 108, 430–444. [Google Scholar] [CrossRef]
- Chen, C.; Xiao, R.; Chen, H.; Lv, N.; Chen, S. Prediction of welding quality characteristics during pulsed GTAW process of aluminum alloy by multisensory fusion and hybrid network model. J. Manuf. Process. 2021, 68, 209–224. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, Z.; Ren, W.; Wen, G. Random forest-based real-time defect detection of Al alloy in robotic arc welding using optical spectrum. J. Manuf. Process. 2019, 42, 51–59. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, J.; Wang, Y.; Dou, D.; Xia, W. Ash content prediction of coarse coal by image analysis and GA-SVM. Powder Technol. 2014, 268, 429–435. [Google Scholar] [CrossRef]
- Strani, L.; Bonacini, F.; Ferrando, A.; Perolo, A.; Tanzilli, D.; Vitale, R.; Cocchi, M. Real Time Quality Assessment of General Purpose Polystyrene (GPPS) by means of Multiblock-PLS Applied on On-line Sensors Data. Chem. Eng. Trans. 2023, 100, 175–180. [Google Scholar] [CrossRef]
- Clark, N.; Jones, N.; Setchi, R.; Porch, A. Particle size characterisation of metals powders for Additive Manufacturing using a microwave sensor. Powder Technol. 2018, 327, 536–543. [Google Scholar] [CrossRef]
- Mishra, G.; Srivastava, S.; Panda, B.; Mishra, H. Sensor array optimization and determination of Rhyzopertha dominica infestation in wheat using hybrid neuro-fuzzy-assisted electronic nose analysis. Anal. Methods 2018, 10, 5687–5695. [Google Scholar] [CrossRef]
- Duan, W.; Gunes, M.; Baldi, A.; Gich, M.; Fernández-Sánchez, C. Compact fluidic electrochemical sensor platform for on-line monitoring of chemical oxygen demand in urban wastewater. Chem. Eng. J. 2022, 449, 137837. [Google Scholar] [CrossRef]
- Marín, A.; Núñez, C.; Rodríguez, P.; Shen, G.; Kim, S.; Kung, P.; Piqueras, J.; Pau, J. Continuous-flow system and monitoring tools for the dielectrophoretic integration of nanowires in light sensor arrays. Nanotechnology 2015, 26, 115502. [Google Scholar] [CrossRef] [PubMed]
- Dimou, A.; Maistros, G.; Poulin, P.; Alexopoulos, N. In situ control of graphene oxide dispersions with a small impedance sensor. Nanotechnology 2022, 33, 055708. [Google Scholar] [CrossRef]
- Mao, J.; Zhao, H.; Xie, Y.; Wang, M.; Wang, P.; Shi, Y.; Zhao, Y. Fast and Nondestructive Proximate Analysis of Coal from Hyperspectral Images with Machine Learning and Combined Spectra-Texture Features. Appl. Sci. 2024, 14, 7920. [Google Scholar] [CrossRef]
- Bonifazi, G.; Capobianco, G.; Serranti, S. Hyperspectral imaging and hierarchical PLS-DA applied to asbestos recognition in construction and demolition waste. Appl. Sci. 2019, 9, 4587. [Google Scholar] [CrossRef]
- Giefer, L.; Lütjen, M.; Rohde, A.K.; Freitag, M. Determination of the optimal state of dough fermentation in bread production by using optical sensors and deep learning. Appl. Sci. 2019, 9, 4266. [Google Scholar] [CrossRef]
- Jurko, J.; Miškiv-Pavlík, M.; Hladký, V.; Lazorík, P.; Michalík, P.; Petruška, I. Measurement of the Machined Surface Diameter by a Laser Triangulation Sensor and Optimalization of Turning Conditions Based on the Diameter Deviation and Tool Wear by GRA and ANOVA. Appl. Sci. 2022, 12, 5266. [Google Scholar] [CrossRef]
- Guan, X.; Tang, Y.; Dong, B.; Li, G.; Fu, Y.; Tian, C. An Intelligent Detection System for Surface Shape Error of Shaft Workpieces Based on Multi-Sensor Combination. Appl. Sci. 2023, 13, 2931. [Google Scholar] [CrossRef]
- Guo, B.; Chen, D.; Huo, L.; Song, G. Monitoring of grouting compactness in tendon duct using multi-sensing electro-mechanical impedance method. Appl. Sci. 2020, 10, 2018. [Google Scholar] [CrossRef]
- Lee, J.; Choi, H.; Kim, J. Welding Bead Inspection Using Image and Multi-Sensor Fusion. Appl. Sci. 2023, 13, 11497. [Google Scholar] [CrossRef]
- Huang, W.; Tu, Z.; Di, Z.; Wang, C.; Su, Y.; Bi, H. Large-Area Thickness Measurement of Transparent Films Based on a Multichannel Spectral Interference Sensor. Appl. Sci. 2024, 14, 2816. [Google Scholar] [CrossRef]
- Gülcan, E.; Gülsoy, Ö.; Can, I. Ash content estimation of lignite with visible light and near-infrared sensors. Int. J. Coal Prep. Util. 2020, 40, 438–458. [Google Scholar] [CrossRef]
- Xu, Z.; Liu, B.; Dong, Q.; Lei, Y.; Li, Y.; Ren, J.; McCutcheon, J.; Li, B. Flat microliter membrane-based microbial fuel cell as "on-line sticker sensor" for self-supported in situ monitoring of wastewater shocks. Bioresour. Technol. 2015, 197, 244–251. [Google Scholar] [CrossRef]
- Agimelen, O.; Svoboda, V.; Ahmed, B.; Cardona, J.; Dziewierz, J.; Brown, C.; McGlone, T.; Cleary, A.; Tachtatzis, C.; Michie, C.; et al. Multi-sensor inline measurements of crystal size and shape distributions during high shear wet milling of crystal slurries. Adv. Powder Technol. 2018, 29, 2987–2995. [Google Scholar] [CrossRef]
- Aigner, M.; Hundeshagen, A.; Hinterberger, T.; Mayrbäurl, E.; Buchberger, W.; Miethlinger, J. A gas-sensor-based measurement setup for inline quality and process control in polymer extrusion. Int. Polym. Process. 2014, 29, 461–466. [Google Scholar] [CrossRef]
- Lei, Z.; Sun, J.; Zhu, X.; Ma, H.; Liang, L. Error-compensated one-dimensional convolutional neural network-based ultrasonic defect signal recognition method for flat ceramic membranes. Ceram. Int. 2023, 49, 5391–5400. [Google Scholar] [CrossRef]
- Gutiérrez-Capitán, M.; Baldi, A.; Gómez, R.; García, V.; Jiménez-Jorquera, C.; Fernández-Sánchez, C. Electrochemical nanocomposite-derived sensor for the analysis of chemical oxygen demand in urban wastewaters. Anal. Chem. 2015, 87, 2152–2160. [Google Scholar] [CrossRef]
- Akgönüllü, S.; Yavuz, H.; Denizli, A. Development of gold nanoparticles decorated molecularly imprinted–based plasmonic sensor for the detection of aflatoxin M1 in milk samples. Chemosensors 2021, 9, 363. [Google Scholar] [CrossRef]
- Li, H.; Somerson, J.; Xia, F.; Plaxco, K. Electrochemical DNA-Based Sensors for Molecular Quality Control: Continuous, Real-Time Melamine Detection in Flowing Whole Milk. Anal. Chem. 2018, 90, 10641–10645. [Google Scholar] [CrossRef] [PubMed]
- Greco, G.; Núñez-Carmona, E.; Genzardi, D.; Bianchini, L.; Piccoli, P.; Zottele, I.; Tamanini, A.; Motolose, C.; Scalmato, A.; Sberveglieri, G.; et al. Tailored Gas Sensors as Rapid Technology to Support the Jams Production. Chemosensors 2023, 11, 403. [Google Scholar] [CrossRef]
- Kuchmenko, T.; Lisitskaya, R. Using Chemical Sensors in Process Control: Formation of Confectionery Mass Aroma. J. Anal. Chem. 2021, 76, 881–890. [Google Scholar] [CrossRef]
- Strani, L.; Mantovani, E.; Bonacini, F.; Marini, F.; Cocchi, M. Fusing NIR and Process Sensors Data for Polymer Production Monitoring. Front. Chem. 2021, 9, 748723. [Google Scholar] [CrossRef]
- Ganjali, M.; Aghili, S.; Larijani, B.; Ghasemi, M. Potentiometric determination of betahistine in pharmaceutical formulations by drug selective sensors. Int. J. Electrochem. Sci. 2015, 10, 1893–1903. [Google Scholar] [CrossRef]
- Bilodeau, M.; Gouveia, D.; Demers, A.; Di Feo, A. 3D free fall rock size sensor. Miner. Eng. 2020, 148, 6169. [Google Scholar] [CrossRef]
- Sung, P.C.; Wang, W.C.; Hwang, C.H.; Li, M.H. Large-area full-field thickness measurement of glass plates by an optical interferometric system. Opt. Commun. 2014, 333, 243–252. [Google Scholar] [CrossRef]
- Cozzarini, L.; Marsich, L.; Ferluga, A. Qualitative and quantitative contaminants assessment in recycled pellets from post-consumer plastic waste by means of spectroscopic and thermal characterization. Polym. Eng. Sci. 2023, 63, 1126–1132. [Google Scholar] [CrossRef]
- Mulrennan, K.; Donovan, J.; Creedon, L.; Rogers, I.; Lyons, J.; McAfee, M. A soft sensor for prediction of mechanical properties of extruded PLA sheet using an instrumented slit die and machine learning algorithms. Polym. Test. 2018, 69, 462–469. [Google Scholar] [CrossRef]
- Zhang, M.; Xu, B.; Zhou, L.; Zheng, H.; Jie, J. A data-driven soft sensor based on weighted probabilistic slow feature analysis for nonlinear dynamic chemical processes. J. Chemom. 2023, 37, e3471. [Google Scholar] [CrossRef]
- Galdón-Navarro, B.; Prats-Montalbán, J.; Cubero, S.; Blasco, J.; Ferrer, A. Comparison of latent variable-based and artificial intelligence methods for impurity detection in PET recycling from NIR hyperspectral images. J. Chemom. 2018, 32, e2980. [Google Scholar] [CrossRef]
- Riba, J.R.; Canals, T.; Cantero, R. Determination of the recovered-fiber content in paperboard samples by applying mid-infrared spectroscopy. Appl. Spectrosc. 2015, 69, 442–450. [Google Scholar] [CrossRef] [PubMed]
- Grönroos, S.; Pierini, M.; Chernyavskaya, N. Automated visual inspection of CMS HGCAL silicon sensor surface using an ensemble of a deep convolutional autoencoder and classifier. Mach. Learn. Sci. Technol. 2023, 4, 035028. [Google Scholar] [CrossRef]
- Zhang, K.; Wang, W.; Cui, Y.; Lv, Z.; Fan, Y. GFNet: A pioneering approach for precisely estimating ash content in coal through the fusion of graph convolution and feedforward network. Eng. Appl. Artif. Intell. 2024, 127, 107301. [Google Scholar] [CrossRef]
- Chang, C.; Di Maio, F.; Bheemireddy, R.; Posthoorn, P.; Gebremariam, A.; Rem, P. Rapid quality control for recycled coarse aggregates (RCA) streams: Multi-sensor integration for advanced contaminant detection. Comput. Ind. 2025, 164, 104196. [Google Scholar] [CrossRef]
- García Plaza, E.; Núñez López, P. Application of the wavelet packet transform to vibration signals for surface roughness monitoring in CNC turning operations. Mech. Syst. Signal Processing 2018, 98, 902–919. [Google Scholar] [CrossRef]
- Gaja, H.; Liou, F. Defects monitoring of laser metal deposition using acoustic emission sensor. Int. J. Adv. Manuf. Technol. 2017, 90, 561–574. [Google Scholar] [CrossRef]
- Choi, J.; Kim, D.; Chung, M.; Lim, S.; Park, H. Multimodal 1D CNN for delamination prediction in CFRP drilling process with industrial robots. Comput. Ind. Eng. 2024, 190, 110074. [Google Scholar] [CrossRef]
- Sorrentino, L.; Bellini, C.; Capriglione, D.; Ferrigno, L. Local monitoring of polymerization trend by an interdigital dielectric sensor. Int. J. Adv. Manuf. Technol. 2015, 79, 1007–1016. [Google Scholar] [CrossRef]
- Trung, L.; Kasai, N.; Le, M.; Sekino, K.; Funada, Y. Crack detection using a cutting-edge flexible eddy current sensor with voltage and phase measurement techniques. Mech. Syst. Signal Process. 2024, 219, 111613. [Google Scholar] [CrossRef]
- García Plaza, E.; Núñez López, P. Analysis of cutting force signals by wavelet packet transform for surface roughness monitoring in CNC turning. Mech. Syst. Signal Processing 2018, 98, 634–651. [Google Scholar] [CrossRef]
- Deepak, A.; Rao, N. Real Time Defect Identification using Advanced Artificial Intelligence based Material Strain Sensors for Environmental Safety. J. Electr. Syst. 2024, 20, 33–40. [Google Scholar] [CrossRef]
- Chen, J.C.; Huang, M.S. Transfer learning to predict part quality for injection molding with recycled materials. Int. J. Adv. Manuf. Technol. 2024, 135, 3241–3256. [Google Scholar] [CrossRef]
- Ma, D.; Jiang, P.; Shu, L.; Gong, Z.; Wang, Y.; Geng, S. Online porosity prediction in laser welding of aluminum alloys based on a multi-fidelity deep learning framework. J. Intell. Manuf. 2024, 35, 55–73. [Google Scholar] [CrossRef]
- Chu, H.H.; Wang, Z.Y. A vision-based system for post-welding quality measurement and defect detection. Int. J. Adv. Manuf. Technol. 2016, 86, 3007–3014. [Google Scholar] [CrossRef]
- Kotsiopoulos, T.; Leontaris, L.; Dimitriou, N.; Ioannidis, D.; Oliveira, F.; Sacramento, J.; Amanatiadis, S.; Karagiannis, G.; Votis, K.; Tzovaras, D.; et al. Deep multi-sensorial data analysis for production monitoring in hard metal industry. Int. J. Adv. Manuf. Technol. 2021, 115, 823–836. [Google Scholar] [CrossRef]
- Yan, Z.; Shi, B.; Sun, L.; Xiao, J. Surface defect detection of aluminum alloy welds with 3D depth image and 2D gray image. Int. J. Adv. Manuf. Technol. 2020, 110, 741–752. [Google Scholar] [CrossRef]
- Chung, J.; Shen, B.; Kong, Z. Anomaly detection in additive manufacturing processes using supervised classification with imbalanced sensor data based on generative adversarial network. J. Intell. Manuf. 2024, 35, 2387–2406. [Google Scholar] [CrossRef]
- Gordon, G.; Kazmer, D.; Tang, X.; Fan, Z.; Gao, R. Quality control using a multivariate injection molding sensor. Int. J. Adv. Manuf. Technol. 2015, 78, 1381–1391. [Google Scholar] [CrossRef]
- Cui, J.; Liu, W.; Zhang, Y.; Gao, C.; Lu, Z.; Li, M.; Wang, F. A novel method for predicting delamination of carbon fiber reinforced plastic (CFRP) based on multi-sensor data. Mech. Syst. Signal Process. 2021, 157, 107708. [Google Scholar] [CrossRef]
- Yang, C.; Yang, C.; Zhang, X.; Zhang, J. Multisource Information Fusion for Autoformer: Soft Sensor Modeling of FeO Content in Iron Ore Sintering Process. IEEE Trans. Ind. Inform. 2023, 19, 11584–11595. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, K.; Yang, J.; Yao, Y. Spatial-Neighborhood Manifold Learning for Nondestructive Testing of Defects in Polymer Composites. IEEE Trans. Ind. Inform. 2020, 16, 4639–4649. [Google Scholar] [CrossRef]
- Chen, J.; Guo, G.; Wang, W.N. Artificial neural network-based online defect detection system with in-mold temperature and pressure sensors for high precision injection molding. Int. J. Adv. Manuf. Technol. 2020, 110, 2023–2033. [Google Scholar] [CrossRef]
- Zhu, Q.; Li, H.; Yu, K.; Zhang, H.; Zhang, Q. In-process ultrasonic inspection of first layer detachment during additive manufacturing. Int. J. Adv. Manuf. Technol. 2022, 121, 8341–8356. [Google Scholar] [CrossRef]
- Lee, S.; Simeth, A.; Hinchy, E.; Plapper, P.; O’Dowd, N.; McCarthy, C. A vision-based hole quality assessment technique for robotic drilling of composite materials using a hybrid classification model. Int. J. Adv. Manuf. Technol. 2023, 129, 1249–1258. [Google Scholar] [CrossRef]
- Isaac Medina, I.; Arana, G.; Castillo Atoche, A.; Estrada Lopez, J.; Vazquez Castillo, J.; Aviles, F.; Castillo Atoche, A. Adhesion Testing System Based on Convolutional Neural Networks for Quality Inspection of Flexible Strain Sensors. IEEE Trans. Ind. Inform. 2024, 20, 9235–9243. [Google Scholar] [CrossRef]
- Miao, Y.; Jeon, J.; Park, G. An image processing-based crack detection technique for pressed panel products. J. Manuf. Syst. 2020, 57, 287–297. [Google Scholar] [CrossRef]
- Jung, B.; You, H.; Lee, S. Anomaly Candidate Extraction and Detection for automatic quality inspection of metal casting products using high-resolution images. J. Manuf. Syst. 2023, 67, 229–241. [Google Scholar] [CrossRef]
- Chen, S.H.; Perng, D.B. Automatic optical inspection system for IC molding surface. J. Intell. Manuf. 2016, 27, 915–926. [Google Scholar] [CrossRef]
- Li, J.; Zhou, Q.; Huang, X.; Li, M.; Cao, L. In situ quality inspection with layer-wise visual images based on deep transfer learning during selective laser melting. J. Intell. Manuf. 2023, 34, 853–867. [Google Scholar] [CrossRef]
- Lee, J.; Choi, H.; Kim, J. Inspection Algorithm of Welding Bead Based on Image Projection. Electronics 2023, 12, 2523. [Google Scholar] [CrossRef]
- Wang, J.; Fu, P.; Gao, R. Machine vision intelligence for product defect inspection based on deep learning and Hough transform. J. Manuf. Syst. 2019, 51, 52–60. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, H.; Xu, Y.; Zhong, J.; Lv, N.; Chen, S. Multisensor-based real-time quality monitoring by means of feature extraction, selection and modeling for Al alloy in arc welding. Mech. Syst. Signal Process. 2015, 60, 151–165. [Google Scholar] [CrossRef]
- Aminzadeh, M.; Kurfess, T.R. Online quality inspection using Bayesian classification in powder-bed additive manufacturing from high-resolution visual camera images. J. Intell. Manuf. 2019, 30, 2505–2523. [Google Scholar] [CrossRef]
- Liu, G.; Gao, X.; You, D.; Zhang, N. Prediction of high power laser welding status based on PCA and SVM classification of multiple sensors. J. Intell. Manuf. 2019, 30, 821–832. [Google Scholar] [CrossRef]
- Li, J.; Zhou, Q.; Cao, L.; Wang, Y.; Hu, J. A convolutional neural network-based multi-sensor fusion approach for in-situ quality monitoring of selective laser melting. J. Manuf. Syst. 2022, 64, 429–442. [Google Scholar] [CrossRef]
- Bimrose, M.; Hu, T.; McGregor, D.; Wang, J.; Tawfick, S.; Shao, C.; Liu, Z.; King, W. Detecting and classifying hidden defects in additively manufactured parts using deep learning and X-ray computed tomography. J. Intell. Manuf. 2024, 36, 3465–3479. [Google Scholar] [CrossRef]
- Snow, Z.; Diehl, B.; Reutzel, E.; Nassar, A. Toward in-situ flaw detection in laser powder bed fusion additive manufacturing through layerwise imagery and machine learning. J. Manuf. Syst. 2021, 59, 12–26. [Google Scholar] [CrossRef]
- Yasuda, T.; Sugawa, S.; Kuroda, R.; Yokomichi, Y.; Kobayashi, K.; Hamori, H.; Teramoto, A. High-Resolution Defect Detection for Flat Panel Display Using Proximity Capacitance Image Sensor. ITE Trans. Media Technol. Appl. 2023, 11, 158–163. [Google Scholar] [CrossRef]
- Lee, K.M.; Hao, B.; Li, M.; Bai, K. Multiparameter Eddy-Current Sensor Design for Conductivity Estimation and Simultaneous Distance and Thickness Measurements. IEEE Trans. Ind. Inform. 2019, 15, 1647–1657. [Google Scholar] [CrossRef]
- Hassanin, A.A.; Abd El-Samie, F.; El Banby, G. A real-time approach for automatic defect detection from PCBs based on SURF features and morphological operations. Multimed. Tools Appl. 2019, 78, 34437–34457. [Google Scholar] [CrossRef]
- Zhang, Y.; You, D.; Gao, X.; Zhang, N.; Gao, P. Welding defects detection based on deep learning with multiple optical sensors during disk laser welding of thick plates. J. Manuf. Syst. 2019, 51, 87–94. [Google Scholar] [CrossRef]
- Wang, S.; Cui, Y.; Song, Y.; Ding, C.; Ding, W.; Yin, J. A novel surface temperature sensor and random forest-based welding quality prediction model. J. Intell. Manuf. 2023, 35, 3291–3314. [Google Scholar] [CrossRef]
- Jeffrey Kuo, C.F.; Lo, W.C.; Huang, Y.R.; Tsai, H.Y.; Lee, C.L.; Wu, H.C. Automated defect inspection system for CMOS image sensor with micro multi-layer non-spherical lens module. J. Manuf. Syst. 2017, 45, 248–259. [Google Scholar] [CrossRef]
- Mikkelstrup, A.; Kristiansen, M.; Kristiansen, E. Development of an automated system for adaptive post-weld treatment and quality inspection of linear welds. Int. J. Adv. Manuf. Technol. 2022, 119, 3675–3693. [Google Scholar] [CrossRef]
- Liu, C.; Law, A.; Roberson, D.; Kong, Z. Image analysis-based closed loop quality control for additive manufacturing with fused filament fabrication. J. Manuf. Syst. 2019, 51, 75–86. [Google Scholar] [CrossRef]
- Masato, D.; Kazmer, D.; Panchal, R. Analysis of in-mold shrinkage measurement for amorphous and semicrystalline polymers using a multivariate sensor. Int. J. Adv. Manuf. Technol. 2023, 125, 587–602. [Google Scholar] [CrossRef]
- Hu, W.; Chen, C.; Su, S.; Zhang, J.; Zhu, A. Real-time defect detection for FFF 3D printing using lightweight model deployment. Int. J. Adv. Manuf. Technol. 2024, 134, 4871–4885. [Google Scholar] [CrossRef]
- Kaler, N.; Bhatia, V.; Mishra, A. Deep Learning-Based Robust Analysis of Laser Bio-Speckle Data for Detection of Fungal-Infected Soybean Seeds. IEEE Access 2023, 11, 89331–89348. [Google Scholar] [CrossRef]
- Men, H.; Yin, C.; Shi, Y.; Liu, X.; Fang, H.; Han, X.; Liu, J. Quantification of Acrylonitrile Butadiene Styrene Odor Intensity Based on a Novel Odor Assessment System with a Sensor Array. IEEE Access 2020, 8, 33237–33249. [Google Scholar] [CrossRef]
- Liu, J.; Wang, D.; Chen, J.; Hou, J. Functional Soft Sensor Based on Spectra Data for Predicting Multiple Quality Variables. IEEE Access 2020, 8, 160355–160362. [Google Scholar] [CrossRef]
- Rodriguez-Cobo, L.; Mirapeix, J.; Ruiz-Lombera, R.; Cobo, A.; López-Higuera, J.M. Fiber Bragg grating sensors for on-line welding diagnostics. J. Mater. Process. Technol. 2014, 214, 839–843. [Google Scholar] [CrossRef]
- Tang, X.; Zhong, P.; Zhang, L.; Gu, J.; Liu, Z.; Gao, Y.; Hu, H.; Yang, X. A New Method to Assess Fiber Laser Welding Quality of Stainless Steel 304 Based on Machine Vision and Hidden Markov Models. IEEE Access 2020, 8, 130633–130646. [Google Scholar] [CrossRef]
- Snow, Z.; Reutzel, E.; Petrich, J. Correlating in-situ sensor data to defect locations and part quality for additively manufactured parts using machine learning. J. Mater. Process. Technol. 2022, 302, 117476. [Google Scholar] [CrossRef]
- Rehman, A.; Kim, I.G.; Kim, J.H. Towards full automation in 3D concrete printing construction: Development of an automated and inline sensor-printer integrated instrument for in-situ assessment of structural build-up and quality of concrete. Dev. Built Environ. 2024, 17, 100344. [Google Scholar] [CrossRef]
- Wang, W.; Wang, Z.B. A technological research of high temperature float glass thickness un-touch detection based on CCD sensor. J. Comput. Methods Sci. Eng. 2015, 15, 251–260. [Google Scholar] [CrossRef]
- Lishchenko, N.; Pitel’, J.; Larshin, V. Online Monitoring of Surface Quality for Diagnostic Features in 3D Printing. Machines 2022, 10, 541. [Google Scholar] [CrossRef]
- Ślot, M.; Samolej, K.; Bartosik, M.; Drabik, P.; Zasada, I. Non-contact microwave sensor for FDM 3D printing quality control. Virtual Phys. Prototyp. 2024, 19, e2360167. [Google Scholar] [CrossRef]
- Lishchenko, N.; O’Donnell, G.; Culleton, M. Contactless Method for Measurement of Surface Roughness Based on a Chromatic Confocal Sensor. Machines 2023, 11, 836. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, Z.; Shi, J.; Wu, D. Prediction of surface roughness in extrusion-based additive manufacturing with machine learning. Robot. Comput.-Integr. Manuf. 2019, 57, 488–495. [Google Scholar] [CrossRef]
- Chen, L.; Yao, X.; Xu, P.; Moon, S.; Bi, G. Rapid surface defect identification for additive manufacturing with in-situ point cloud processing and machine learning. Virtual Phys. Prototyp. 2021, 16, 50–67. [Google Scholar] [CrossRef]
- Zhou, J.; Li, H.; Lu, L.; Cheng, Y. Machine Vision-Based Surface Defect Detection Study for Ceramic 3D Printing. Machines 2024, 12, 166. [Google Scholar] [CrossRef]
- Chen, L.; Bi, G.; Yao, X.; Tan, C.; Su, J.; Ng, N.; Chew, Y.; Liu, K.; Moon, S. Multisensor fusion-based digital twin for localized quality prediction in robotic laser-directed energy deposition. Robot. Comput.-Integr. Manuf. 2023, 84, 102581. [Google Scholar] [CrossRef]
- Molina, J.; Solanes, J.; Arnal, L.; Tornero, J. On the detection of defects on specular car body surfaces. Robot. Comput.-Integr. Manuf. 2017, 48, 263–278. [Google Scholar] [CrossRef]
- Deng, M.; Zhang, Q.; Zhang, K.; Li, H.; Zhang, Y.; Cao, W. A Novel Defect Inspection System Using Convolutional Neural Network for MEMS Pressure Sensors. J. Imaging 2022, 8, 268. [Google Scholar] [CrossRef]
- Serranti, S.; Palmieri, R.; Bonifazi, G. Hyperspectral imaging applied to demolition waste recycling: Innovative approach for product quality control. J. Electron. Imaging 2015, 24, 043003. [Google Scholar] [CrossRef]
- Rodriguez-Rodriguez, A.; May-Arrioja, D.; Hernandez-Romano, I.; Matías, I. Multimode interference fiber sensors for the monitoring of gasoline/ethanol blends. In Smart Sensors, Measurement and Instrumentation; Springer International Publishing: Cham, Switzerland, 2017; Volume 21, pp. 329–346. [Google Scholar] [CrossRef]
- Wang, W.; Wang, Z. Research on detecting thickness of high temperature float glass by laser trigonometry measurement of CCD sensor. J. Fiber Bioeng. Inform. 2015, 8, 171–178. [Google Scholar] [CrossRef]
- Lin, H.D.; Lo, Y.C.; Lin, C.H. Computer-Aided Transmitted Deformation Inspection System For See-Through Glass Products. Int. J. Innov. Comput. Inf. Control 2022, 18, 1217–1234. [Google Scholar] [CrossRef]
- Deng, W.; Bao, J.; Ye, B. Defect Image Recognition and Classification for Eddy Current Testing of Titanium Plate Based on Convolutional Neural Network. Complexity 2020, 2020, 8868190. [Google Scholar] [CrossRef]
- Setiawan, A.; Mengko, R.; Putri, A.; Danudirdjo, D.; Ananda, A. Classification of palm oil fresh fruit bunch using multiband optical sensors. Int. J. Electr. Comput. Eng. 2019, 9, 2386–2393. [Google Scholar] [CrossRef]
- Lin, H.D.; Lee, T.H.; Lin, C.H.; Chiu, Y.S. Exploring quality inspection and grade judgment of distortion defects in the fabrication of spectacle lenses. Decis. Sci. Lett. 2022, 11, 497–508. [Google Scholar] [CrossRef]
- Cetin, M.; Klein, B.; Li, G.; Futcher, W.; Haest, M.; Welsh, A. Deployment of XRF Sensors Underground: An Opportunity for Grade Monitoring or Bulk Ore Sorting in Cave Mines. Minerals 2023, 13, 672. [Google Scholar] [CrossRef]
- Kim, J.W.; Kim, J.; Park, S.; Oh, T. Integrating embedded piezoelectric sensors with continuous wavelet transforms for real-time concrete curing strength monitoring. Struct. Infrastruct. Eng. 2015, 11, 897–903. [Google Scholar] [CrossRef]
- Mäkelä, M.; Rissanen, M.; Sixta, H. Machine vision estimates the polyester content in recyclable waste textiles. Resour. Conserv. Recycl. 2020, 161, 105007. [Google Scholar] [CrossRef]
- Kroell, N.; Chen, X.; Küppers, B.; Schlögl, S.; Feil, A.; Greiff, K. Near-infrared-based quality control of plastic pre-concentrates in lightweight-packaging waste sorting plants. Resour. Conserv. Recycl. 2024, 201, 107256. [Google Scholar] [CrossRef]
- Wagner, F.; Peeters, J.; Ramon, H.; De Keyzer, J.; Duflou, J.; Dewulf, W. Quality assessment of mixed plastic flakes from Waste Electrical and Electronic Equipment (WEEE) by spectroscopic techniques. Resour. Conserv. Recycl. 2020, 158, 104801. [Google Scholar] [CrossRef]
- Marín-Cortés, S.; Fernández-Álvarez, M.; Moure, A.; Fernández, J.; Enríquez, E. Chemometric-driven quantification of construction and demolition waste using Raman spectroscopy and SWIR: Enhancing sustainability in the ceramic sector. Resour. Conserv. Recycl. 2023, 199, 107259. [Google Scholar] [CrossRef]
- Chang, C.; Maio, F.; Rem, P.; Gebremariam, A.; Mehari, F.; Xia, H. Cluster-based identification algorithm for in-line recycled concrete aggregates characterization using Laser-Induced Breakdown Spectroscopy (LIBS). Resour. Conserv. Recycl. 2022, 185, 106507. [Google Scholar] [CrossRef]
- Erukainure, F.; Parque, V.; Hassan, M.; FathEl-Bab, A. Design and experimental testing of a tactile sensor for self-compensation of contact error in soft tissue stiffness measurement. J. Mech. Sci. Technol. 2022, 36, 5309–5324. [Google Scholar] [CrossRef]
- Souto, H.; Rufino, F.; Beraldo, R.; Fernandes, S.; Diniz, J. EIS capacitor sensor, with TiO2 dielectric, applied in the evaluation of phosphate in wastewater. J. Integr. Circuits Syst. 2023, 18, 1–4. [Google Scholar] [CrossRef]
- Ghosh Mondal, P.; Kuna, K. An automated technique for characterising foamed bitumen using ultrasonic sensor system. Int. J. Pavement Eng. 2022, 23, 2242–2254. [Google Scholar] [CrossRef]
- Lin, H.D.; Lo, Y.C.; Lin, C.H. Vision-based deformation inspection system for automotive glass using Hough circle detectors. J. Appl. Res. Technol. 2023, 21, 598–612. [Google Scholar] [CrossRef]
- Haefner, B.; Berger, D. Design, data analysis and measurement uncertainty evaluation of an eddy-current sensor array for in-process metrology of carbon fiber reinforced plastics. CIRP Ann. 2019, 68, 539–542. [Google Scholar] [CrossRef]
- Qu, Z.; Wang, W.; Yang, Z.; Bao, Q.; Zheng, Y. High-Precision Thickness Measurement of Cu Film on Si-Based Wafer Using Erasable Printed Eddy Current Coil and High-Sensitivity Associated Circuit Techniques. IEEE Trans. Ind. Electron. 2022, 69, 9556–9565. [Google Scholar] [CrossRef]
- Han, Y.; Fan, J.; Yang, X. A structured light vision sensor for on-line weld bead measurement and weld quality inspection. Int. J. Adv. Manuf. Technol. 2020, 106, 2065–2078. [Google Scholar] [CrossRef]
- Takushima, S.; Kawano, H.; Nakahara, H.; Kurokawa, T. On-machine multi-directional laser displacement sensor using scanning exposure method for high-precision measurement of metal-works. Precis. Eng. 2018, 51, 437–444. [Google Scholar] [CrossRef]
- Jayasinghe, S.; Paoletti, P.; Sutcliffe, C.; Dardis, J.; Jones, N.; Green, P. Automatic quality assessments of laser powder bed fusion builds from photodiode sensor measurements. Prog. Addit. Manuf. 2022, 7, 143–160. [Google Scholar] [CrossRef]
- Böttger, D.; González, G.; Geiser, A.; Kempf, D.; Lanza, G.; Schulze, V.; Wolter, B. Soft sensor for in-line quality control of turning processes based on non-destructive testing techniques and advanced data fusion. Prod. Eng. 2024, 18, 197–206. [Google Scholar] [CrossRef]
- Gao, R.; Tang, X.; Gordon, G.; Kazmer, D. Online product quality monitoring through in-process measurement. Cirp Ann.-Manuf. Technol. 2014, 63, 493–496. [Google Scholar] [CrossRef]
- Benammar, A.; Drai, R. Ultrasonic flaw detection in composite materials using SSP-MPSD algorithm. J. Electr. Eng. Technol. 2014, 9, 1753–1761. [Google Scholar] [CrossRef]
- García de la Yedra, A.; Pfleger, M.; Aramendi, B.; Cabeza, M.; Zubiri, F.; Mitter, T.; Reitinger, B.; Scherleitner, E. Online cracking detection by means of optical techniques in laser-cladding process. Struct. Control Health Monit. 2019, 26, e2291. [Google Scholar] [CrossRef]
- Kim, B.; Park, W.; Kim, K.; Kim, H.Y. CNN-based classification of the laser assembly process for ultra-small batteries. J. Mech. Sci. Technol. 2023, 37, 6181–6192. [Google Scholar] [CrossRef]
- Lee, J.Y.; Kim, T.W.; Pahk, H. Robust defect detection method for a non-periodic TFT-LCD pad area. Int. J. Precis. Eng. Manuf. 2017, 18, 1093–1102. [Google Scholar] [CrossRef]
- Gomes, M.; Cruz, S.; Lopes, H.; Arcipreste, B.; Magalhaes, R.; Da Silva, A.; Viana, J. Distributed optical fiber sensors for PCB-strain analysis. IEEE Trans. Ind. Electron. 2019, 66, 8181–8188. [Google Scholar] [CrossRef]
- Maiolino, P.; Woolley, R.; Popov, A.; Ratchev, S. Structural Quality Inspection Based on a RGB-D Sensor: Supporting Manual-to-Automated Assembly Operations. SAE Int. J. Mater. Manuf. 2015, 9, 12–15. [Google Scholar] [CrossRef]
- Putz, M.; Wiener, T.; Pierer, A.; Hoffmann, M. A multi-sensor approach for failure identification during production enabled by parallel data monitoring. CIRP Ann. 2018, 67, 491–494. [Google Scholar] [CrossRef]
- Kim, J.; Lee, J. Development of a Quality Prediction Algorithm for an Injection Molding Process Considering Cavity Sensor and Vibration Data. Int. J. Precis. Eng. Manuf. 2023, 24, 901–914. [Google Scholar] [CrossRef]
- Nguyen, H.C.; Lee, B.R. Laser-vision-based quality inspection system for small-bead laser welding. Int. J. Precis. Eng. Manuf. 2014, 15, 415–423. [Google Scholar] [CrossRef]
- Li, B.; Mao, S.; Tian, T.; Bi, H.; Tian, Y.; Ma, X.; Qiu, Y. Design and application of soft sensors in rural sewage treatment facilities. Aqua Water Infrastruct. Ecosyst. Soc. 2023, 72, 2001–2016. [Google Scholar] [CrossRef]
- Li, D.; Yang, C.; Li, Y. A multi-subsystem collaborative Bi-LSTM-based adaptive soft sensor for global prediction of ammonia-nitrogen concentration in wastewater treatment processes. Water Res. 2024, 254, 121347. [Google Scholar] [CrossRef] [PubMed]
- Bisciotti, A.; Jiang, D.; Song, Y.; Cruciani, G. Estimating attached mortar paste on the surface of recycled aggregates based on deep learning and mineralogical models. Clean. Mater. 2024, 11, 100215. [Google Scholar] [CrossRef]
- Bonifazi, G.; Palmieri, R.; Serranti, S. Evaluation of attached mortar on recycled concrete aggregates by hyperspectral imaging. Constr. Build. Mater. 2018, 169, 835–842. [Google Scholar] [CrossRef]
- Dong, J.; Tian, Y.Z.; Peng, K.X. Local multi-model integrated soft sensor based on just-in-time learning for mechanical properties of hot strip mill process. J. Iron Steel Res. Int. 2021, 28, 830–841. [Google Scholar] [CrossRef]
- Li, X.; Shen, T. Nondestructive testing system design for biological product based on vibration signal analysis of acceleration sensor. J. Vibroeng. 2017, 19, 2164–2173. [Google Scholar] [CrossRef]
- Bekas, D.; Sharif-Khodaei, Z.; Baltzis, D.; Aliabadi, M.; Paipetis, A. Quality assessment and damage detection in nanomodified adhesively-bonded composite joints using inkjet-printed interdigital sensors. Compos. Struct. 2019, 211, 557–563. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, B.; Yang, J.; Liu, X.; Zhou, J. Silicon Carbide Surface Quality Prediction Based on Artificial Intelligence Methods on Multi-sensor Fusion Detection Test Platform. Mach. Sci. Technol. 2019, 23, 131–152. [Google Scholar] [CrossRef]
- Montazeri, M.; Nassar, A.; Stutzman, C.; Rao, P. Heterogeneous sensor-based condition monitoring in directed energy deposition. Addit. Manuf. 2019, 30, 100916. [Google Scholar] [CrossRef]
- Ma, G.; Yuan, H.; Yu, L.; He, Y. Monitoring of weld defects of visual sensing assisted GMAW process with galvanized steel. Mater. Manuf. Process. 2021, 36, 1178–1188. [Google Scholar] [CrossRef]
- Taherkhani, K.; Sheydaeian, E.; Eischer, C.; Otto, M.; Toyserkani, E. Development of a defect-detection platform using photodiode signals collected from the melt pool of laser powder-bed fusion. Addit. Manuf. 2021, 46, 102152. [Google Scholar] [CrossRef]
- Park, S.H.; Jang, J.W.; Kim, H.S. Non-destructive evaluation of the hidden voids in integrated circuit packages using terahertz time-domain spectroscopy. J. Micromechanics Microeng. 2015, 25, 095007. [Google Scholar] [CrossRef]
- Oh, T.K.; Kim, J.; Lee, C.; Park, S. Nondestructive concrete strength estimation based on electro-mechanical impedance with artificial neural network. J. Adv. Concr. Technol. 2017, 15, 94–102. [Google Scholar] [CrossRef]
- Lauzon-Gauthier, J.; Duchesne, C.; Tessier, J. A Machine Vision Sensor for Quality Control of Green Anode Paste Material. JOM 2020, 72, 287–295. [Google Scholar] [CrossRef]
- Li, B.; Zhang, Y.; Lei, Y.; Wei, H.; Chen, C.; Liu, F.; Zhao, P.; Wang, K. A single-sensor multi-scale quality monitoring methodology for laser-directed energy deposition: Example with height instability and porosity monitoring in additive manufacturing of ceramic thin-walled parts. Addit. Manuf. 2024, 79, 103923. [Google Scholar] [CrossRef]
- Scime, L.; Beuth, J. Anomaly detection and classification in a laser powder bed additive manufacturing process using a trained computer vision algorithm. Addit. Manuf. 2018, 19, 114–126. [Google Scholar] [CrossRef]
- Goh, G.; Hamzah, N.; Yeong, W. Anomaly Detection in Fused Filament Fabrication Using Machine Learning. 3D Print. Addit. Manuf. 2023, 10, 428–437. [Google Scholar] [CrossRef]
- Holzmond, O.; Li, X. In situ real time defect detection of 3D printed parts. Addit. Manuf. 2017, 17, 135–142. [Google Scholar] [CrossRef]
- Zhang, B.; Liu, S.; Shin, Y. In-Process monitoring of porosity during laser additive manufacturing process. Addit. Manuf. 2019, 28, 497–505. [Google Scholar] [CrossRef]
- Wu, Z.; Li, Q.; Xu, Z. Laser Welding Multimodel Quality Forecast Method Based on Dynamic Geometric Features of the Molten Pool. 3D Print. Addit. Manuf. 2023, 10, 723–731. [Google Scholar] [CrossRef]
- Petsiuk, A.; Pearce, J. Towards smart monitored AM: Open source in-situ layer-wise 3D printing image anomaly detection using histograms of oriented gradients and a physics-based rendering engine. Addit. Manuf. 2022, 52, 102690. [Google Scholar] [CrossRef]
- Gorgannejad, S.; Martin, A.; Nicolino, J.; Strantza, M.; Guss, G.; Khairallah, S.; Forien, J.B.; Thampy, V.; Liu, S.; Quan, P.; et al. Localized keyhole pore prediction during laser powder bed fusion via multimodal process monitoring and X-ray radiography. Addit. Manuf. 2023, 78, 103810. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, Z.; Ma, X.; Zhang, H.; Qian, J. Monitoring of early curing stage of cemented soil using polymer optical fiber sensors and microscopic observation. Constr. Build. Mater. 2024, 436, 136888. [Google Scholar] [CrossRef]
- Xu, J.; Teng, J.; Cao, Z.; Guo, X.; Ding, R.; Ren, C.; Yuan, Y.; Wang, X.; Yin, P.; Ye, X. Robust Flexible Electret Tactile Sensor for Identification on Mushy Material in Harsh Environment. Adv. Mater. Technol. 2024, 9, 2400215. [Google Scholar] [CrossRef]
- Hong, S.J.; Park, S.; Lee, A.; Kim, S.Y.; Kim, E.; Lee, C.H.; Kim, G. Nondestructive prediction of pepper seed viability using single and fusion information of hyperspectral and X-ray images. Sens. Actuators A Phys. 2023, 350, 114151. [Google Scholar] [CrossRef]
- Steinke, N.; Döring, S.; Wuchrer, R.; Kroh, C.; Gerlach, G.; Härtling, T. Plasmonic sensor for on-site detection of diclofenac molecules. Sens. Actuators B Chem. 2019, 288, 594–600. [Google Scholar] [CrossRef]
- Belikova, V.; Panchuk, V.; Legin, E.; Melenteva, A.; Kirsanov, D.; Legin, A. Continuous monitoring of water quality at aeration plant with potentiometric sensor array. Sens. Actuators B Chem. 2019, 282, 854–860. [Google Scholar] [CrossRef]
- Tubia, I.; Paredes, J.; Pérez-Lorenzo, E.; Arana, S. Brettanomyces bruxellensis growth detection using interdigitated microelectrode based sensors by means of impedance analysis. Sens. Actuators A Phys. 2018, 269, 175–181. [Google Scholar] [CrossRef]
- Yasuda, T.; Sugawa, S.; Yokomichi, Y.; Kobayashi, K.; Hamori, H.; Teramoto, A. High-speed and contactless inspection of defective micro-LEDs through the photovoltaic effect. J. Soc. Inf. Disp. 2024, 32, 825–835. [Google Scholar] [CrossRef]
- Zhong, Q.; Geng, C.; Xie, H.; Li, J. A novel two-dimensional reflective coherent gradient sensor and its applications in residual deformation measurement of laser repaired metal components. Opt. Lasers Eng. 2023, 168, 107683. [Google Scholar] [CrossRef]
- Trung, L.; Kasai, N.; Le, M.; Sekino, K. Predicting actual crack size through crack signal obtained by advanced Flexible Eddy Current Sensor using ResNet integrated with CBAM and Huber loss function. NDT E Int. 2025, 149, 103249. [Google Scholar] [CrossRef]
- Haring, A.; Singh, M.; Koh, M.; Cesewski, E.; Dillard, D.; Kong, Z.; Johnson, B. Real-time characterization of hydrogel viscoelastic properties and sol-gel phase transitions using cantilever sensors. J. Rheol. 2020, 64, 837–850. [Google Scholar] [CrossRef]
- Elfaham, M.; Eldemerdash, U. Advanced analyses of solid waste raw materials from cement plant using dual spectroscopy techniques towards co-processing. Opt. Laser Technol. 2019, 111, 338–346. [Google Scholar] [CrossRef]
- Kang, S.; Lee, K.; Kang, M.; Jang, Y.; Kim, C. Weld-penetration-depth estimation using deep learning models and multisensor signals in Al/Cu laser overlap welding. Opt. Laser Technol. 2023, 161, 109179. [Google Scholar] [CrossRef]
- Li, S.; Mo, B.; Wang, K.; Xiao, G.; Zhang, P. Nonlinear prediction modeling of surface quality during laser powder bed fusion of mixed powder of diamond and Ni-Cr alloy based on residual analysis. Opt. Laser Technol. 2022, 151, 107980. [Google Scholar] [CrossRef]
- Trabelsi, S.; Lewis, M.; Nelson, S. Density-independent calibration functions for nondestructive moisture sensing in flowing grain. J. Microw. Power Electromagn. Energy 2019, 53, 69–80. [Google Scholar] [CrossRef]
- Li, Z.; Meng, Z.; Fei, F.; Chen, Z. Microwave cavity resonator sensor with an octagonal cross section for thickness measurement of coatings on carbon fibre composites. NDT E Int. 2022, 130, 102680. [Google Scholar] [CrossRef]
- Ding, L.; Wan, H.; Lu, Q.; Chen, Z.; Jia, K.; Ge, J.; Yan, X.; Xu, X.; Ma, G.; Chen, X.; et al. Using deep learning to identify the depth of metal surface defects with narrowband SAW signals. Opt. Laser Technol. 2023, 157, 108758. [Google Scholar] [CrossRef]
- Kang, S.; Kang, M.; Hoon Jang, Y.; Kim, C. Spectrometer as a quantitative sensor for predicting the weld depth in laser welding. Opt. Laser Technol. 2024, 175, 110855. [Google Scholar] [CrossRef]
- Wang, W.; Zhao, H.; Yang, B.; Liu, F.; Wei, L.; Niu, Z.; Lu, G.; Wang, Q.; Song, X.; Tan, C. A novel multi-information fusion CNN for defect detection in laser soldering of SAC305. Microelectron. Reliab. 2024, 162, 115519. [Google Scholar] [CrossRef]
- Liang, T.; Qian, L.; Wenzheng, L.; Renjie, H.; Fayun, G.; Dongjie, Z. Research and implementation of ceramic valve spool surface defect detection system based on region and multilevel optimisation. Nondestruct. Test. Eval. 2019, 34, 401–412. [Google Scholar] [CrossRef]
- Liu, S.; Hua, X.; Liu, Y.; Shan, L.; Lin, W.; Wang, Q. Magnetic focusing sensor and its characterizations of defect non-destructive testing for ferromagnetic steel plate. NDT E Int. 2024, 145, 103106. [Google Scholar] [CrossRef]
- Lee, K.; Kang, S.; Kang, M.; Yi, S.; Kim, C. Estimation of Al/Cu laser weld penetration in photodiode signals using deep neural network classification. J. Laser Appl. 2021, 33, 042009. [Google Scholar] [CrossRef]
- Chen, Y.J.; Tsai, J.C.; Hsu, Y.C. A real-time surface inspection system for precision steel balls based on machine vision. Meas. Sci. Technol. 2016, 27, 074010. [Google Scholar] [CrossRef]
- Kamal, B.; Vestrum, S.; BinDahbag, M.; Abbasi, Z.; Hassanzadeh, H. Microwave-enabled chipless sensor for real-time non-contact water-cut measurements. Meas. J. Int. Meas. Confed. 2024, 228, 114314. [Google Scholar] [CrossRef]
- Zhang, D.; Gao, X.; Wang, H. Prediction model of iron reverse flotation tailings grade based on multi-feature fusion. Meas. J. Int. Meas. Confed. 2023, 206, 112062. [Google Scholar] [CrossRef]
- Gancarz, M.; Wawrzyniak, J.; Gawrysiak-Witulska, M.; Wiącek, D.; Nawrocka, A.; Tadla, M.; Rusinek, R. Application of electronic nose with MOS sensors to prediction of rapeseed quality. Meas. J. Int. Meas. Confed. 2017, 103, 227–234. [Google Scholar] [CrossRef]
- Jaques, L.; Coradi, P.; Muller, A.; Rodrigues, H.; Teodoro, L.; Teodoro, P.; Teixeira, A.; Steinhaus, J. Portable-Mechanical-Sampler System for Real-Time Monitoring and Predicting Soybean Quality in the Bulk Transport. IEEE Trans. Instrum. Meas. 2022, 71, 2517412. [Google Scholar] [CrossRef]
- Bonifazi, G.; Palmieri, R.; Serranti, S. Hyperspectral imaging applied to end-of-life (EOL) concrete recycling. Tech. Mess. 2015, 82, 616–624. [Google Scholar] [CrossRef]
- Liu, W.; Fang, H.; Yang, J.; Tan, G. Surface mortar detection and performance evaluation of recycled aggregates based on hyperspectral technology. Tech. Mess. 2023, 91, 672–689. [Google Scholar] [CrossRef]
- Wang, H.; Li, W.; Feng, Z. Noncontact Thickness Measurement of Metal Films Using Eddy-Current Sensors Immune to Distance Variation. IEEE Trans. Instrum. Meas. 2015, 64, 2557–2564. [Google Scholar] [CrossRef]
- Bao, J.; Ye, B.; Luo, S.; Wang, X.; Wu, J. Thickness Measurement of Titanium Alloy Sheet Based on Eddy Current Method with a Novel Simplified Model. IEEE Trans. Instrum. Meas. 2021, 70, 6000109. [Google Scholar] [CrossRef]
- Zhang, B.; Hungund, A.; Alla, D.; Neelakandan, D.; Roman, M.; O’Malley, R.; Bartlett, L.; Gerald, R.; Huang, J. Advancing Aluminum Casting Optimization With Real-Time Temperature and Gap Measurements Using Optical Fiber Sensors at the Metal-Mold Interface. IEEE Trans. Instrum. Meas. 2023, 72, 7008412. [Google Scholar] [CrossRef]
- Schake, M.; Schulz, M.; Lehmann, P. High-resolution fiber-coupled interferometric point sensor for micro-and nano-metrology. Tech. Mess. 2015, 82, 367–376. [Google Scholar] [CrossRef]
- Tsou, H.H.; Huang, C.C.; Zhao, T.W.; Wang, Z.H. Design and validation of sensor installation for online injection molding sidewall deformation monitoring. Meas. J. Int. Meas. Confed. 2022, 205, 112200. [Google Scholar] [CrossRef]
- Chen, L.; Cikalova, U.; Bendjus, B.; Muench, S.; Roellig, M. Characterization of ceramics based on laser speckle photometry. J. Sens. Sens. Syst. 2020, 9, 345–354. [Google Scholar] [CrossRef]
- Li, G.; Zhou, S.; Ma, L.; Wang, Y. Research on dual wavelength coaxial optical fiber sensor for detecting steel ball surface defects. Meas. J. Int. Meas. Confed. 2019, 133, 310–319. [Google Scholar] [CrossRef]
- Li, X.Y.; Liu, F.L.; Zhang, M.N.; Zhou, M.X.; Wu, C.; Zhang, X. A Combination of Vision- and Sensor-Based Defect Classifications in Extrusion-Based Additive Manufacturing. J. Sens. 2023, 2023, 1441936. [Google Scholar] [CrossRef]
- Su, P.; Yang, X.; Wang, Z.; Wang, J.; Peng, H. Detection of Impurities in Nonmetallic Materials Based on Tilted Spoof Surface Plasmon Polaritons. IEEE Trans. Instrum. Meas. 2021, 70, 8005009. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, Y.; Li, C.; Wu, F.; Chai, H.; Yan, K.; Zhou, L.; Li, Y.; Liu, D.; Bai, J.; et al. Defects evaluation system for spherical optical surfaces based on microscopic scattering dark-field imaging method. Appl. Opt. 2016, 55, 6162–6171. [Google Scholar] [CrossRef]
- Hassan, M. Development of a spatially dispersed short-coherence interferometry sensor using diffraction grating orders. Appl. Opt. 2017, 56, 6391–6397. [Google Scholar] [CrossRef]
- He, J.; Song, C.; Luo, Q.; Lan, L.; Yang, C.; Gui, W. Noise-Robust Self-Adaptive Support Vector Machine for Residual Oxygen Concentration Measurement. IEEE Trans. Instrum. Meas. 2020, 69, 8474–8485. [Google Scholar] [CrossRef]
- Li, J.; Gutierrez-Osuna, R.; Hodges, R.; Luckey, G.; Crowell, J.; Schiffman, S.; Nagle, H. Using Field Asymmetric Ion Mobility Spectrometry for Odor Assessment of Automobile Interior Components. IEEE Sens. J. 2016, 16, 5747–5756. [Google Scholar] [CrossRef]
- Li, J.; Hodges, R.; Gutierrez-Osuna, R.; Luckey, G.; Crowell, J.; Schiffman, S.; Nagle, H. Odor Assessment of Automobile Cabin Air With Field Asymmetric Ion Mobility Spectrometry and Photoionization Detection. IEEE Sens. J. 2016, 16, 409–417. [Google Scholar] [CrossRef]
- Wang, X.; Lu, Y.; Jiang, J.; Lv, C.; Fu, H.; Xie, M. A Flexible Piezoelectric PVDF/MXene Pressure Sensor for Roughness Discrimination. IEEE Sens. J. 2024, 24, 7176–7184. [Google Scholar] [CrossRef]
- Liu, K.; Li, Y.; Yang, J.; Liu, Y.; Yao, Y. Generative Principal Component Thermography for Enhanced Defect Detection and Analysis. IEEE Trans. Instrum. Meas. 2020, 69, 8261–8269. [Google Scholar] [CrossRef]
- Jiang, Z.; Guo, Y.; Pan, D.; Gui, W.; Maldague, X. Polymorphic Measurement Method of FeO Content of Sinter Based on Heterogeneous Features of Infrared Thermal Images. IEEE Sens. J. 2021, 21, 12036–12047. [Google Scholar] [CrossRef]
- Jiang, K.; Jiang, Z.; Xie, Y.; Pan, D.; Gui, W. Prediction of Multiple Molten Iron Quality Indices in the Blast Furnace Ironmaking Process Based on Attention-Wise Deep Transfer Network. IEEE Trans. Instrum. Meas. 2022, 71, 2512114. [Google Scholar] [CrossRef]
- Zhang, Y.; Gao, X.; You, D.; Zhang, N. Data-Driven Detection of Laser Welding Defects Based on Real-Time Spectrometer Signals. IEEE Sens. J. 2019, 19, 9364–9373. [Google Scholar] [CrossRef]
- Nair, A.; Dhawangale, A.; Chandra, S.; Shekhawat, L.; Rathore, A.; Mukherji, S. Polymer-Coated Fiber Optic Sensor as a Process Analytical Tool for Biopharmaceutical Impurity Detection. IEEE Trans. Instrum. Meas. 2020, 69, 7666–7674. [Google Scholar] [CrossRef]
- Ustabas Kaya, G. Development of hybrid optical sensor based on deep learning to detect and classify the micro-size defects in printed circuit board. Meas. J. Int. Meas. Confed. 2023, 206, 112247. [Google Scholar] [CrossRef]
- Satorres Martínez, S.; Ortega Vázquez, C.; Gámez García, J.; Gómez Ortega, J. Quality inspection of machined metal parts using an image fusion technique. Meas. J. Int. Meas. Confed. 2017, 111, 374–383. [Google Scholar] [CrossRef]
- Jiang, Z.; Zhu, J.; Pan, D.; Gui, W.; Xu, Z. Soft Sensors Using Heterogeneous Image Features for Moisture Detection of Sintering Mixture in the Sintering Process. IEEE Trans. Instrum. Meas. 2023, 72, 2517012. [Google Scholar] [CrossRef]
- Cui, J.; Liu, W.; Zhang, Y.; Han, L.; Yin, P.; Li, Y.; Zhou, M.; Wang, P. A visual inspection method for delamination extraction and quantification of carbon fiber reinforced plastic (CFRP). Meas. J. Int. Meas. Confed. 2022, 196, 111252. [Google Scholar] [CrossRef]
- Stern, F.; Taute, W.; Knochel, R.; Hoft, M. Dual Antipodal Vivaldi Antenna-Based Moisture Sensor for Industrial Process Control. IEEE Sens. J. 2023, 23, 22430–22439. [Google Scholar] [CrossRef]
- Zhang, H.; Ma, L.; Xie, F. A method of steel ball surface quality inspection based on flexible arrayed eddy current sensor. Meas. J. Int. Meas. Confed. 2019, 144, 192–202. [Google Scholar] [CrossRef]
- Li, Z.; Meng, Z.; Wu, C.; Fei, F.; Gibson, A. Simultaneous Determination of Levels and Complex Permittivities of Layered Liquids Using a Five-Wire Line-Based Microwave Sensor. IEEE Trans. Instrum. Meas. 2022, 71, 8004811. [Google Scholar] [CrossRef]
- Chiariotti, P.; Fitti, M.; Castellini, P.; Zitti, S.; Zannini, M.; Paone, N. Smart quality control station for non-contact measurement of cylindrical parts based on a confocal chromatic sensor. IEEE Instrum. Meas. Mag. 2018, 21, 22–28. [Google Scholar] [CrossRef]
- Ma, G.; Meng, B.; Zhou, S.; Mao, Y.; Ma, Y.; Xiao, X.; Yuan, C. Wafer-level metal thin film thickness scanning based on multiple probe wavelengths nanosecond transient thermoreflectance. Measurement 2025, 242, 116247. [Google Scholar] [CrossRef]
- Huang, D.; Liao, S.; Sunny, A.; Yu, S. A novel automatic surface scratch defect detection for fluid-conveying tube of Coriolis mass flow-meter based on 2D-direction filter. Meas. J. Int. Meas. Confed. 2018, 126, 332–341. [Google Scholar] [CrossRef]
- Ding, G.; Van Nguyen, H.; Jin, Y.; Xu, H.; Kim, H.B. Particle detection in slurry using optical visualization. J. Vis. 2023, 26, 875–887. [Google Scholar] [CrossRef]
- Jurjevčič, B.; Senegačnik, A.; Drobnič, B.; Kuštrin, I. The characterization of pulverized-coal pneumatic transport using an array of intrusive electrostatic sensors. IEEE Trans. Instrum. Meas. 2015, 64, 3434–3443. [Google Scholar] [CrossRef]
- Song, C.; Jiao, L.; Wang, X.; Liu, Z.; Shen, W.; Chen, H.; Qian, Y. Development and testing of a muti-sensor measurement system for roundness and axis straightness errors of deep-hole parts. Meas. J. Int. Meas. Confed. 2022, 198, 111069. [Google Scholar] [CrossRef]
- Bekal, A.; Balsubramaniam, B.; Awaghade, V.; Ghute, S. Application of Microwave Moisture Sensor for DOC and Animal Feed. IEEE Sens. J. 2020, 20, 14809–14816. [Google Scholar] [CrossRef]
- Xi, J.; Shentu, L.; Hu, J.; Li, M. Automated surface inspection for steel products using computer vision approach. Appl. Opt. 2017, 56, 184–192. [Google Scholar] [CrossRef]
- Rawal, P.; Brillinger, C.; Böhlmann, C.; Hintze, W. Sensor based online quality monitoring system for detection of milling defects on CFRP structures. Ceas Aeronaut. J. 2020, 11, 565–574. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, Y.; Wen, Y. An imaging algorithm of planar array capacitance sensor for defect detection. Measurement 2021, 168, 108466. [Google Scholar] [CrossRef]
- Bakır, M.; Dalgaç, Ş.; Ünal, E.; Karadağ, F.; Demirci, M.; Köksal, A.; Akgöl, O.; Karaaslan, M. High Sensitive Metamaterial Sensor for Water Treatment Centres. Water Air Soil Pollut. 2019, 230, 304. [Google Scholar] [CrossRef]
- Luciani, V.; Bonifazi, G.; Rem, P.; Serranti, S. Upgrading of PVC rich wastes by magnetic density separation and hyperspectral imaging quality control. Waste Manag. 2015, 45, 118–125. [Google Scholar] [CrossRef]
- Trotta, O.; Bonifazi, G.; Capobianco, G.; Serranti, S. Detection of Asbestos Containing Material in Post-Earthquake Building Waste Through Hyperspectral Imaging and Micro-X-Ray Fluorescence. Detritus 2022, 21, 27–34. [Google Scholar] [CrossRef]
- Chen, J.; Lu, W.; Xue, F. “Looking beneath the surface”: A visual-physical feature hybrid approach for unattended gauging of construction waste composition. J. Environ. Manag. 2021, 286, 112233. [Google Scholar] [CrossRef]
- Di Maria, F.; Bianconi, F.; Micale, C.; Baglioni, S.; Marionni, M. Quality assessment for recycling aggregates from construction and demolition waste: An image-based approach for particle size estimation. Waste Manag. 2016, 48, 344–352. [Google Scholar] [CrossRef]
- Kombolias, M.; Obrzut, J.; Postek, M.; Poster, D.; Obeng, Y. Contactless resonant cavity dielectric spectroscopic studies of recycled office papers. Recycling 2019, 4, 43. [Google Scholar] [CrossRef]
- Xia, J.; Wang, X.; Zhang, J.; Kong, C.; Huang, W.; Zhang, X. Flexible Dual-Mechanism Pressure Sensor Based on Ag Nanowire Electrodes for Nondestructive Grading and Quality Monitoring of Fruits. ACS Appl. Nano Mater. 2022, 5, 10652–10662. [Google Scholar] [CrossRef]
- Zhu, C.; Yuan, H.; Ma, G. An active visual monitoring method for GMAW weld surface defects based on random forest model. Mater. Res. Express 2022, 9, 036503. [Google Scholar] [CrossRef]
- Wu, Y.; Cui, B.; Xiao, Y. Crack detection during laser metal deposition by infrared monochrome pyrometer. Materials 2020, 13, 5643. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Dang, H.; Du, J.; He, P.; Jiang, M.; Wei, Z. Research on automated defect classification based on visual sensing and convolutional neural network-support vector machine for gta-assisted droplet deposition manufacturing process. Metals 2021, 11, 639. [Google Scholar] [CrossRef]
- Min, S.H.; Lee, T.; Lee, G.Y.; Zontar, D.; Brecher, C.; Ahn, S.H. Directly printed low-cost nanoparticle sensor for vibration measurement during milling process. Materials 2020, 13, 2920. [Google Scholar] [CrossRef]
- Wang, Z.; Zimmer-Chevret, S.; Léonard, F.; Bourlet, C.; Abba, G. In Situ Monitoring of Internal Defects by a Laser Sensor for CMT Based Wire-Arc Additive Manufacturing Parts. Defect Diffus. Forum 2022, 417, 67–72. [Google Scholar] [CrossRef]
- Seo, K.B.; Kim, B.M.; Kim, E.S. Digital holographic microscopy based on a modified lateral shearing interferometer for three-dimensional visual inspection of nanoscale defects on transparent objects. Nanoscale Res. Lett. 2014, 9, 471. [Google Scholar] [CrossRef]
- Szymanik, B.; Psuj, G.; Hashemi, M.; Lopato, P. Detection and identification of defects in 3D-printed dielectric structures via thermographic inspection and deep neural networks. Materials 2021, 14, 4168. [Google Scholar] [CrossRef]
- Kim, H.J.; Lee, H.H.; Lee, S.H. Analysis of Surface Roughness during Surface Polishing of ITO Thin Film Using Acoustic Emission Sensor Monitoring. Coatings 2023, 13, 2086. [Google Scholar] [CrossRef]
- Mao, Z.; Zhang, C.; Guo, B.; Xu, Y.; Kong, C.; Zhu, Y.; Xu, Z.; Jin, J. The Flatness Error Evaluation of Metal Workpieces Based on Line Laser Scanning Digital Imaging Technology. Photonics 2023, 10, 1333. [Google Scholar] [CrossRef]
- Nunes, C.; Coradi, P.; Jaques, L.; Teodoro, L.; Teodoro, P. Sensor-cable-probe and sampler for early detection and prediction of dry matter loss and real-time corn grain quality in transport and storage. Sci. Rep. 2023, 13, 5686. [Google Scholar] [CrossRef]
- Du, X.; Si, L.; Li, P.; Yun, Z. A method for detecting the quality of cotton seeds based on an improved ResNet50 model. PLoS ONE 2023, 18, e0273057. [Google Scholar] [CrossRef] [PubMed]
- de Medeiros, A.; Capobiango, N.; da Silva, J.; da Silva, L.; da Silva, C.; dos Santos Dias, D. Interactive machine learning for soybean seed and seedling quality classification. Sci. Rep. 2020, 10, 11267. [Google Scholar] [CrossRef]
- Misra, S.; Kim, D.; Kim, J.; Shin, W.; Kim, C. A voting-based ensemble feature network for semiconductor wafer defect classification. Sci. Rep. 2022, 12, 16254. [Google Scholar] [CrossRef]
- Long, H.; Sun, Y.; Yang, X.; Zhao, X.; Zhao, F.; Yang, X. Defect monitoring method for Al-CFRTP UFSW based on BWO–VMD–HHT and ResNet. Sci. Rep. 2024, 14, 18605. [Google Scholar] [CrossRef] [PubMed]
- Ren, Z.; Gao, L.; Clark, S.; Fezzaa, K.; Shevchenko, P.; Choi, A.; Everhart, W.; Rollett, A.; Chen, L.; Sun, T. Machine learning-aided real-time detection of keyhole pore generation in laser powder bed fusion. Science 2023, 379, 89–94. [Google Scholar] [CrossRef]
- Chen, C.; Zhang, X. Research on laser ultrasonic surface defect identification based on a support vector machine. Sci. Prog. 2021, 104, 00368504211059038. [Google Scholar] [CrossRef]
- Li, H.; Ma, Y.; Duan, M.; Wang, X.; Che, T. Defects detection of GMAW process based on convolutional neural network algorithm. Sci. Rep. 2023, 13, 21219. [Google Scholar] [CrossRef]
- Wang, Z.; Xing, Q.; Fu, L.; Sun, H. Realtime vision-based surface defect inspection of steel balls. Trans. Tianjin Univ. 2015, 21, 76–82. [Google Scholar] [CrossRef]
- Narang, A.; Sheverev, V.; Freeman, T.; Both, D.; Stepaniuk, V.; Delancy, M.; Millington-Smith, D.; Macias, K.; Subramanian, G. Process Analytical Technology for High Shear Wet Granulation: Wet Mass Consistency Reported by In-Line Drag Flow Force Sensor Is Consistent with Powder Rheology Measured by At-Line FT4 Powder Rheometer®. J. Pharm. Sci. 2016, 105, 182–187. [Google Scholar] [CrossRef] [PubMed]
- Nagy, B.; Farkas, A.; Gyürkés, M.; Komaromy-Hiller, S.; Démuth, B.; Szabó, B.; Nusser, D.; Borbás, E.; Marosi, G.; Nagy, Z. In-line Raman spectroscopic monitoring and feedback control of a continuous twin-screw pharmaceutical powder blending and tableting process. Int. J. Pharm. 2017, 530, 21–29. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Ying, Y.; Pielecha-Safira, B.; Bilgili, E.; Ramachandran, R.; Romañach, R.; Davé, R.; Iqbal, Z. Raman spectroscopy for in-line and off-line quantification of poorly soluble drugs in strip films. Int. J. Pharm. 2014, 475, 428–437. [Google Scholar] [CrossRef]
- Panikar, S.; Li, J.; Rane, V.; Gillam, S.; Callegari, G.; Kurtyka, B.; Lee, S.; Muzzio, F. Integrating sensors for monitoring blend content in a pharmaceutical continuous manufacturing plant. Int. J. Pharm. 2021, 606, 120085. [Google Scholar] [CrossRef]
- Gupta, A.; Austin, J.; Davis, S.; Harris, M.; Reklaitis, G. A novel microwave sensor for real-time online monitoring of roll compacts of pharmaceutical powders online—A comparative case study with NIR. J. Pharm. Sci. 2015, 104, 1787–1794. [Google Scholar] [CrossRef]
- Zhang, D.; Gao, X.; Qi, W. Soft sensor of iron tailings grade based on froth image features for reverse flotation. Trans. Inst. Meas. Control 2022, 44, 2928–2940. [Google Scholar] [CrossRef]
- Xie, Z.; Tang, Y.; Zhou, Y.; Deng, Q. Surface and thickness measurement of transparent thin-film layers utilizing modulation-based structured-illumination microscopy. Opt. Express 2018, 26, 2944–2953. [Google Scholar] [CrossRef]
- Tiwari, N.; Singh, S.; Akhtar, M. Near field planar microwave probe sensor for nondestructive condition assessment of wood products. J. Appl. Phys. 2018, 123, 224502. [Google Scholar] [CrossRef]
- Lee, S.; Lee, S.; Choi, G.; Pahk, H. Co-axial spectroscopic snap-shot ellipsometry for real-time thickness measurements with a small spot size. Opt. Express 2020, 28, 25879–25893. [Google Scholar] [CrossRef]
- Kesharaju, M.; Nagarajah, R.; Zhang, T.; Crouch, I. Ultrasonic sensor based defect detection and characterisation of ceramics. Ultrasonics 2014, 54, 312–317. [Google Scholar] [CrossRef] [PubMed]
- Peng, X.; Kong, L. Development of a multi-sensor system for defects detection in additive manufacturing. Opt. Express 2022, 30, 30640–30665. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Han, F.; Wang, L.; Zhao, S. Fractional Orbital Angular Momentum Sensor for Dynamic Micro-Displacement. J. Light. Technol. 2024, 42, 1689–1695. [Google Scholar] [CrossRef]
Inline/Online | Atline/Offline | |
---|---|---|
Acquisition rate | Faster than change in process or material properties | Slower than change in process or material properties |
Measurement location | In the material stream/in a bypass of the material stream | Near the production process/at a central location away from the production process |
Sensor data processing | Processing and analysis happen directly or have potential to instantly output results | No potential for direct processing and analysis of sensor data |
Search Number | Search Query |
---|---|
1 | TITLE (sensor AND quality OR monitoring) AND KEY (sensor AND quality OR monitoring) AND LANGUAGE (english) AND PUBYEAR > 2013 AND PUBYEAR < 2025 AND (LIMIT-TO (DOCTYPE,“ar”) OR LIMIT-TO (DOCTYPE,“ch”)) |
2 | TITLE-ABS-KEY (quality AND (product OR assess* OR analys* OR control* OR monitor* OR assurance)) AND TITLE ((waste OR recyc* OR recover* OR “post-consumer” OR “postindustrial”) AND (sensor* OR *spectr* OR imag*)) AND PUBYEAR > 2013 AND PUBYEAR < 2025 AND (LIMIT-TO (DOCTYPE,“ar”) OR LIMIT-TO (DOCTYPE,“ch”) AND (LIMIT-TO (LANGUAGE,“English”)) |
3 | TITLE-ABS-KEY (quality AND (product OR assess* OR analys* OR assurance OR spectr* OR imag*)) AND TITLE (sensor* AND NOT (“sensory” OR “sensorial”)) AND PUBYEAR > 2013 AND PUBYEAR < 2025 AND (LIMIT-TO (DOCTYPE,“ar”) OR LIMIT-TO (DOCTYPE,“re”) OR LIMIT-TO (DOCTYPE,“ch”)) AND (LIMIT-TO (LANGUAGE,“English”)) |
Sensor Category | Publications |
---|---|
VIS and optics | [53,54,55,56] |
IR spectroscopy | [32,33,57,58,59] |
Temperature and thermography | [60] |
Laser displacement | [61] |
Force, strain, and tactile | [62,63] |
Gas sensing | [64] |
Microwave | [65] |
Terahertz and ultrasonography | [66,67] |
Eddy current sensing | [68] |
Vibrometry and accelerometry | [69,70] |
Light intensity | [55] |
Capacitance | [71] |
Acoustic emission | [72] |
X-ray radiography and fluorescence | [73,74] |
Piezoelectric | [75] |
Biosensing | [76,77] |
Raman and UV spectroscopy | [78,79] |
Deflectometry | [80,81] |
Potentiometry | [82] |
Flow, turbidity, and permittivity | [65,83,84] |
Resistivity | [85,86] |
LIBS | [87] |
Humidity and moisture | [88,89] |
Magnetic sensing | [90] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Göbbels, L.; Feil, A.; Raulf, K.; Greiff, K. Current State of the Art and Potential for Construction and Demolition Waste Processing: A Scoping Review of Sensor-Based Quality Monitoring and Control for In- and Online Implementation in Production Processes. Sensors 2025, 25, 4401. https://doi.org/10.3390/s25144401
Göbbels L, Feil A, Raulf K, Greiff K. Current State of the Art and Potential for Construction and Demolition Waste Processing: A Scoping Review of Sensor-Based Quality Monitoring and Control for In- and Online Implementation in Production Processes. Sensors. 2025; 25(14):4401. https://doi.org/10.3390/s25144401
Chicago/Turabian StyleGöbbels, Lieve, Alexander Feil, Karoline Raulf, and Kathrin Greiff. 2025. "Current State of the Art and Potential for Construction and Demolition Waste Processing: A Scoping Review of Sensor-Based Quality Monitoring and Control for In- and Online Implementation in Production Processes" Sensors 25, no. 14: 4401. https://doi.org/10.3390/s25144401
APA StyleGöbbels, L., Feil, A., Raulf, K., & Greiff, K. (2025). Current State of the Art and Potential for Construction and Demolition Waste Processing: A Scoping Review of Sensor-Based Quality Monitoring and Control for In- and Online Implementation in Production Processes. Sensors, 25(14), 4401. https://doi.org/10.3390/s25144401